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ABSTRACT. Two classes of univalent harmonic functions on unit disc satisfying the conditions
S (=) (lan|+bn]) < (1—a)(1=[b1]) andy ;e n(n—a)(|an|+[bal) < (1—a)(1— b))

are given. That the ranges of the functions belonging to these two classes are starlike and convex,
respectively. Sharp coefficient relations and distortion theorems are given for these functions.
Furthermore results concerning the convolutions of functions satisfying above inequalities with
univalent, harmonic and convex functions in the unit disk and with harmonic functions having
positive real part.
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1. INTRODUCTION

Let U denote the open unit disc art; denote the class of all complex valued, harmonic,
orientation-preserving, univalent functiorisn U normalized byf(0) = f.(0) — 1 = 0. Each
f € Sy can be expressed gs= h + g whereh andg belong to the linear spadé(U) of all
analytic functions or/.

Firstly, Clunie and Sheil-Small [3] studieg}; together with some geometric subclasses of
Sy. They proved that althoughiy is not compact, it is normal with respect to the topology of
uniform convergence on compact subset& ofMeanwhile the subclas$), of Sy consisting of
the functions having the properf¢(0) = 0 is compact.

In this article we concentrate on two specific subclasses of univalent harmonic mappings.
These classes have corresponding meaning in the class of convex and starlike analytic func-
tions of ordera. The geometrical properties of the functions in these classes together with the
neighborhoods in the meaning of Ruscheveyh and convolution products are considered.
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2 METIN OZTURK AND SIBEL YALGIN

2. THE CLASSESHS(«) AND HC («)

LetU, = {z: |z| <r, 0 <r <1} andU; = U. Harmonic, complex-valued, orientation-
preserving, univalent mappingsdefined onJ can be written as

(2.1) f(z) = h(z) + g(2),
where
(2.2) h(z)=z+ f: 2" and  g(z) = i b, 2"

are analytic inU.
Denote byH S(«) the class of all functions of the forrh (2.1) that satisfy the condition

o0

(2.3) > (n—a)(jan| + [ba]) < (1 = a)(L —[bi])

n=2

and byH C(«) the subclass off S(«) that consists of all functions subject to the condition
> nln—a)(|an| + [bal) < (1 —a)(1 —[bi]),
n=2

where0 < o < 1 and0 < |b;| < 1. The corresponding subclassesbf(«) and HC'(«) with
b, = 0 will be denoted byH S°(«) and HC?(«), respectively. Whe = 0, these classes are
denoted byH S and HC' and have been studied by Y. Avcl and E. Zlotkiewicz [2]]blff = 1
and (2.1 .) is satisfied, then the mappings b,z are not univalent i/ and of no interest.

If h,g, H, G are of the form[(2]2) and if

f(z) =h(2)+g(z) and F(z)= H(z)+ G(z)

then the convolution of andF' is defined to be the function

z)=z+ i an A2+ i b, B, 2"
n=2 n=1

while the integral convolution is defined by

foF(z —z+za” non i
=1

The d—neighborhood of is the set

n=2

Ns(f) = {F : Z”(‘an — An| + [by = Byl) + by — Bi| < 5}

(seel[1], I%]). In this case, let us define the generalizedeighborhood of to be the set

N(f) = {F : Z(n— a)(|an, — Ap| 4+ [bp — Bal) + (1 — )by — By < (1 —oz)5}.

n=2
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3. MAIN RESULTS

First, let us give the interrelations between the clagéfén) and H.S, HC(«) and HC.
Theorem 3.1. HS(a) € HS and HC(a) € HC. Consequently S°(«) ¢ HS° and
HC%(«) € HCP. In particular if 0 < a; < ap < 1thenHS (o) € HS(ay) and HC(ap) C
HO(O./l).

Proof. Since
[e.e] o0 n—
(3.1) D nllan] +[bal) <) . Ianl + [bn]) < 1= [b]
n=2 n=2
and
—n(n —a)
Zn (Jan] + ) <> ——— ———(lau| + [ba) <1 o]
n=2
we have the proof of theorem. O
Corollary 3.2. (i) Each member of7 S°(a) mapsU onto a domain starlike with respect
to the origin.

(i) Functions of the clas& C°(«) mapsU, onto convex domains.
Theorem 3.3. The classH S(«) consist of univalent sense preserving harmonic mappings.

Proof. From [2, Theorem 1] forf in HS(«) and forzy, zo € U with z; # z, we have

|h(z1) = h(22)] = |21 — 22 (1 — |2 Z”’ad)

n=2
and

19(21) = g(22) < |21 = 2| <|b1| + 2| anbn|> :

n=2

When we consider the relatign (8.1), it follows that

[f(z21) = f(2)] = |21 — 2 (1—|b1|—|22|zn(lan|+|bn\))

n=2

= [a1 — 2 (1 — [b1] = [22] Y _(n — a)(lan| + [bal)

n=2

—alz| Y (lan| + |bnl)>
n=2

> |z = 2|1 = [ba] = |22|(1 = a)(1 = |ba]) — afza[(1 = [ba])]

= [z1 = 2[(1 = [ba])(1 = [2]) > 0.
So f is univalent. Since

Jr(z) = W) =g (2)

> (W) +1g'(z (1— Izlznlan| = lbn| = !Z\anb |>
> (W) +1g')N0A - Ibl\)(l— |21) >

f is sense preserving. O
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4 METIN OZTURK AND SIBEL YALGIN

Remark 3.4. (i) The functionsf,(z) = z + Z—jr} ¢’z are in HS(a) and the sequence
converges uniformly ta + ¢*z. Thus the clas#l S(«a) is not compact.
(i) If fe HS(a),thenforeach, 0 <r <1,r71f(rz) € HS(a).
(i) If fe HS(a)andfy(2) = (f(z) — b1 f(2))/(1 — |b|?) thenfy, € HS (), but f(z) =
fo(2) + b1 fo(2) may not be inH S(«).
(iv) If f=h+ge HS«)then the function

= [ 1 [ M0, T,

satisfies[(2]3) witth; = 0, henceF(z) is a convex harmonic mapping. Convexity
of F(z) however, does not imply starlikeness fifz) (or even univalence) in general
situation.

Theorem 3.5.Each function in the clasd S°(a) maps disk#/,, » < 1=2 onto convex domains.
The constangj—g is best possible.

Proof. If f € HS%(«) andr, 0 < r < 1 be fixed, then=! f(rz) € HS%(«). We must find an
upper bound for such that

n(n —
Z |an|+|b|)"1<1

n=2

Sincef € HSY we have

Oonn ( ) -
Z |an!+!b! Zn |an| +bal) <1

n=2

provided(n — a)r"™1/(1 — a) < 1 whichis true ifr < (1 — «a)/(2 — «). O

Theorem 3.6.1f f € HS(«), then

[F ()] < 2](1+ [ba]) +

(L=’ =) .
2

and

F(2)] = (1= |b]) (|z| _-ar) ) |

2

Equalities are attained by the functions

folz) = =+ Pl + 210 a2
for properly chosen red.

Proof. We have

o0

@) < 2@+ [Ba]) + 2 Y (lan] + [ba)-

n=2
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Since
> 1 o
D (lanl +[ba]) < §u—axrﬁmn+§wm+wm
n=2
1 o0
—5 D (n—a=2)(Jau| + [bn])
n=3

IN

L= a)(1— i) + S~ @)1~ [

= L1-a)( )

it follows that

£ < el + by + LU

for zin U.
Similarly we get

@) 2 =@ = 1Bal) = 12 Y (laal + [ba])

> J(1 - o)) - L=l

= (1— b)) (!z\ - (- 0‘2)$> '

The classe#] S(a) and HC(«) are uniformly bounded, hence they are normal. O

Remark 3.7. We can give a similar result fadd C'(«) to that given forH S(«). As the proof is

similar we shall omit it.

Theorem 3.8.1If f € HC(«), then

3—a—2a?
2c

P12 =l (121 - 225268,

[F] < 21+ 1ba]) + (1= [ba])]2*

and

Equalities are attained by the functions
3 —a—2a%_
f@( ) =z + |b ‘619 TZQ
for properly chosen redl.

Theorem 3.9. The extreme points df S°(«) are only the functions of the form: + a,, 2" or
z + by, 2™ with
1- 1 —
] =~ fbul=——,  0<a<l
n—o«o m—«

Proof. Suppose that
f(z)=z+ Z(anz" + bp2")

n=2
is such that

o0

271‘ (|an| + [ba]) < ay, > 0.

n=2
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Then, if A > 0 is small enough we can replaegby a; — A, ax + A and we obtain two functions
f1(2), fa(z) that satisfy the same condition and for which one géts) = 1[fi(z) + fo(z)].
Hencef is not a possible extreme point 8fS° ().

Let now f € HS%(«) be such that

> n—uoa
(3.2) STl ) =1, e £ 0,0 £0
n=2

If A > 0is small enough and i, ¢ with || = |¢| = 1 are properly chosen complex numbers,
then leaving all but,, b, coefficients off (=) unchanged and replacing, b, by

1— 1

A, b= A
k— « -«
1 1

ar— A A2
k—« l—«a

we obtain functiong(z), f»(z) thatsatisfy(3.2) and suchthaf(z) = 1[fi(z)+ f2(z)]. Inthis
casef can not be an extreme point. Thus fof| = (1 —«a)/(n — ), |by| = (1 —a)/(m — ),
f(z) =z +ayz"or f(z) = z + b,,2™ are extreme points dff S°(«). O

Similarly we can obtain that the following result is true.
Theorem 3.10.The extreme points df C°(«) are only the functions of the form: + a,,z" or
z + by, 2™ with

11—« 11—«

lan| = 0<a<l.

n(n —a)’ |m|:m(m—a)7

Let K, denote the class of harmonic univalent functions of the fornj (2.1) tyith 0 that
mapU onto convex domains. It is known|[3, Theorem 5.10] that the sharp inequalities

2|4, <n+1, 2|B,| <n—1
are true.
Theorem 3.11. Suppose that

F(z)=z+ i(Anz” + B,2")

n=2

belongs toK'Y,. Then

(i) If f € HC () thenf * F is starlike univalent ang o F is convex.
(i) If f(z) satisfies the condition

Y n*(n—a)(jan + b)) <1 -0
n=2

thenf x F'is convex univalent.

Proof. We justify the case (i). Since

(9) oo An B,
>0 = a)ancdal + By = St ) (Jeal | 52| + 1l 2
n=2 n=2
<3 nln—a)(ad + 1) <10
n=2

it follows that f « F'is in HS(«). Namely f * F is starlike univalent.
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Furthermore, the transformation

/1“%@2)6175:1"@(2)
()

now shows thaf o F' € HC(« O

Let S denote the class of analytic univalent functions of the fétta) = z + >~ A,2". Itis
n=2

well known that the sharp inequalityl,,| < n is true.
Theorem 3.12.1f f € HC®(a) and F € S thenfor|e| < 1, f * (F + ¢F) is starlike univalent.

Proof. Since
Z(n—a)(\anAn\—i-\an ) < Z n(n —a)(|a,| + |ba]) <1 —«
n=2 n=2

it follows that f x (F + ¢ F) is starlike univalent.
Let P, denote the class of functior’s complex and harmonic itv, f = h + g such that
Re f(z) >0,z € U and

z)=1+ ZAHZ", G(z) = Z B,2".
n=1 n=2
It is known [4, Theorem 3] that the sharp inequalities
Al <n+1, By <n—1
are true. U

Theorem 3.13.Suppose that

F(z) =1+ ) (An2"+ Bp2")
n=1
belongs toP};. Then
(i) If f € HC() then forj < |A,| <2, 4-f  F is starlike univalent andi-f o F' is
Convex.
(i) If f(z) satisfies the condition

Y ¥ = a)(|an| + b)) <1 -«

n=2

thenAilf x I is convex univalent.
Proof. We justify the case (ii). Since

> anA, b, B,, d 5 ( n+1 n—l)
n(n — « + n(n—a) (| |lay, + |bn
(=)= D < 2w = o) (el + T

n=2

IN

< Zn2(n —a)(|an| + |bn]) <1 -«

n=2

4 f * Fis convex univalent. O
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Remark 3.14.If f € HS?(a) andF' € KY, thenf « F' need not be univalent. For example, if
f(z) =z+=2z"andF(z) = Re (%) +ilm <( > thenf « F(z) = z+("2+(1n)—(1af“) "is
not univalent inU. But f < F'is univalent and starllke

Theorem 3.15.Let

f(z) = z+bl_z+i(anz”+bn7)
is a member of/C'(a). If 0 < 5=2(1 — [by]), thT(;:nQN(f) C HS(«).
Proof. Let f € HC/(a) andF(z) =2+ Biz+ 3.2 ,(A,2" + B,z") belong toN (f). We have
(1= a)[Bil+ Y (n—a)(|4s| + |By))
< (1= a)|By - bl + (1— i
+ 2(” — a)([An — an| + [Bn — ba) + z;(” — a)(lan| 4 |bn])

[e.e]

1
< _ _ - _
<(1—a)i+(1—a)lbi] + Q_Q;n(n @)(Jan| + [ba])
<1 -a)d+(1—-a)lby (1—!b1|)
<1-
Hence, for )
—
5 (L= ul)
F(z) e HS(w). O
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