Journal of Inequalities in Pure and
Applied Mathematics

CERTAIN SECOND ORDER LINEAR DIFFERENTIAL
SUBORDINATIONS

V. RAVICHANDRAN

Department of Computer Applications
Sri Venkateswara College of Engineering
Pennalur, Sriperumbudur 602 105, India

EMail: vravi@svce.ac.in
URL: http://www.svce.ac.in/~vravi

(©2000Victoria University
ISSN (electronic): 1443-5756
003-04

volume 5, issue 3, article 59,
2004.

Received 29 December, 2003;
accepted 03 April, 2004.

Communicated by: N.E. Cho

Abstract
Contents
44
| 2
Home Page
Go Back

Close

Quit


Please quote this number (003-04) in correspondence regarding this paper with the Editorial Office.

mailto:necho@pknu.ac.kr
http://jipam.vu.edu.au/
mailto:vravi@svce.ac.in
http://www.svce.ac.in/~vravi
http://www.vu.edu.au/

Abstract

In this present investigation, we obtain some results for certain second order
linear differential subordination. We also discuss some applications of our re-
sults.
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Let H denote the class of alnalyticfunctions inA := {z € C: |z| < 1}. For
a positive integen anda € C, let

H[a,n]::{fEH:f(z):a+Zakzk (nEN::{1,2,3,...})}
k=n
and
A(p,n) := {fEH:f(z):zp+ Z apz” (n,pEN)}.

k=n+p

Set
Ap = A(p7 1)7 A= Al-

For two functionsf, g € H, we say that the functiorf(z) is subordinateto
g(z) in A and write

f=<g or f(z) <g(2),
if there exists a Schwarz functian(z) € H with

w(0) =0 and |w(z)| <1 (z€A),
such that

(1.1) f(z) = g(w(z)) (z€A).
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In particular, if the functiory is univalent inA, the above subordination (1)
is equivalent to

f(0) =g(0) and f(A)Cg(A).

Miller and Mocanu P] considered thesecond order linear differential sub-
ordination

A(2)2p"(2) + B(2)2p'(2) + C(2)p(2) + D(2) < h(2),

where A, B,C and D are complex-valued functions defined anandh(z) is
any convex function and in particulatz) = (1+2)/(1— z). In fact, they have
proved the following:

Theorem 1.1 (Miller and Mocanu [2, Theorem 4.1a, p.188])Letn be a posi-
tive integer and4(z) = A > 0. Suppose that the functio#¥ =), C(z), D(z) :
A — C satisfyRB(z) > Aand

(1.2) [SC(2)]> < n[RB(2) — A|R(nB(2) — nA —2D(2)).
If p € H[1,n] and if
(1.3) R{AZ*p"(2) + B(2)2p/(2) + C(2)p(2) + D(2)} > 0,

then
Rp(z) > 0.

Also Miller and Mocanu §] have proved the following:

Certain Second Order Linear
Differential Subordinations

V. Ravichandran

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 4 of 25

J. Ineq. Pure and Appl. Math. 5(3) Art. 59, 2004

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:vravi@svce.ac.in
http://jipam.vu.edu.au/

Theorem 1.2 (Miller and Mocanu [2, Theorem 4.1e, p.195])Leth be convex
univalent inA with 2(0) = 0 and letA > 0. Suppose that > 4/|h'(0)| and
that B(z), C'(z) and D(z) are analytic inA and satisfy

RB(z) > A+1|C(z) — 1] = R(C(2) — 1) + k|D(2)|.
If p € H[0, 1] satisfies the differential subordination
AZ*"(2) + B(2)2p'(2) + C(2)p(2) + D(z) < h(2)

thenp < h. Certain Second Order Linear
Differential Subordinations

In this paper, we extend Theorelrl by assuming

R{AZ"(2) + B(2)2p' (2) + C(2)p(2) + D(2)} > a, (0<a<1)

V. Ravichandran

and Theoreni..2 by assuming that the functidn(z) is convex of order. Cer- Title Page

tain results of Karunakaran and PonnusanjyJuneja and Ponnusamyjfand Contents

Owa and Srivastavéal] are obtained as special cases. Also we give application

of our results to certain functions defined by the familiar Ruscheweyh deriva- « dd

tives. < >
For two functionsf(z) andg(z) given by

Go Back
f(z) =2"+ Z ap?®,  g(2) = 22 + Z brz®  (n,p €N), Close
k=n+p k=n+p Quit
theHadamard productor convolutior) of f andg is defined by Page 5 of 25
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TheRuscheweyh derivativa f(z) of orderd + p — 1 is defined by

(A8 D77 () 1= e ) (€ Alp): 5 € B (moc, )
or, equivalently, by
(1.5) DOl f(2) = 2P i (6 —;; ﬁ; 1) ar 2"

k=p+1

(f € Alp,n); 6 € R\ (o0, —p]).
In particular, if§ = [ (I + p € N), we find from the definition.4) or (1.5) that

P dr—1

DI f(z) =

-1
e =R SIS
(feA(p,n); l+p€eN).
In our present investigation of the second order linear differential subordina-

tion, we need the following definitions and results:

Definition 1.1 (Miller and Mocanu [2, Definition 2.2b, p. 21]). LetQ be the
set of functiong that are analytic and univalent oA \ E(q), where

B(q) = {¢ € 9A : lim g(2) = oo}

and are such thaf' (¢) # 0for ( € 0A\E(q), wheredA :={z € C: |z| =1},
A= AUDIA.
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Theorem 1.3 (Miller and Mocanu [2, Lemma 2.2d, p. 24]).Letqg € @, with
q(0) = a. Letp(z) = a+p,z" +--- be analytic inA withp(z) # aandn > 1.
If p(z) is not subordinate tg(z), then there exist points, = roe® € A and
(o € 0A — E(q), and anm > n > 1 for whichp(A,,) C ¢(A),

(1) plzo) = Q(Co)
(1.6) (i)  zop'(20) = mCoq'(G), and
(@) Rlzop”(z )/ (Zo) +1] = mR[200"(20) /4 (20) + 1],

whereA, :={z € C:

Theorem 1.4 (cf. Miller and Mocanu [2, Theorem 2.3i (i), p. 35]).Let{2 be
a simply connected domain and: C? x A — C satisfies the condition

Y(io, ¢, u+in; z) € Q

for z € A and for realo, ¢, i, n satisfying¢ < —n(1 + ¢%)/2 and¢ + pu < 0.
Letp(z) = 14 pp2" + ppy12™ ! + - - - be analytic inA. If

(p(2), 20/ (2), 2°p" (2); 2) € Q,

|z| < r}.

thenRp(z) > 0.
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By appealing to Theorerh.3, we first prove the following:

Theorem 2.1. Let h be a convex univalent function of order0 < o < 1, in
A with h(0) = 0 and letA > 0. Suppose that

k> 220=2) /1p/(0
/ ’ ( ) Certain Second Order Linear
Differential Subordinations

and thatB(z), C'(z) and D(z) are analytic inA and satisfy

V. Ravichandran

(2.1) nRB(z) > n(1—an)A+ —[|C’( )—1|=R(C(2) —1)|+k|D(2)],
26( ) Title Page
where Contents
4%(1 — 20 1 44 >
o 4 _ 920+1 a# 9 < >
(2.2) Bar) = ;
(log 471 a= 3 Go Back
_ . . S Close
If p € H[0, n] satisfies the differential subordination
Quit
(2.3) A2*p"(2) + B(2)2p/ (2) + C(2)p(2) + D(2) < h(z), Page 8 of 25
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Proof. Our proof of Theoren2.1is essentially similar to Theorefn2 of Miller
and Mocanu ]. Let the subordination inA.3) be satisfied so thab(0) = 0.
Since

| (0)] > 22072,

there is an, 0 < rq < 1 such that

(1 + 7”0)2(1_a)
To

(14 7)20-)

— k|4 (0)] and 2217 < < k|W(0)]

for vy < r < 1. Sinceh is convex of orderv in A, the functionh,.(z) = h(rz)
is convex of ordervin A (ro < r < 1). By settingp,(z) = p(rz) for ry <
r < 1, we see that the subordinatioh ) becomes

(24) uy(z) = AZP(2) + B2)ap(2) + Crapi(2) + Dlrz) < by ()
(zeA;rg<r<l).

Assume thap, is not subordinate th,., for somer in (o, 1). Then by Theorem
1.3there exist points, € A, wy € 0A and anm > n > 1 such that

(2.5) pr(20) = hr(wo), Zop;(zo) = mwoh;(wo),
zop;r (20) wohy (wo)
9 w (1) = (1 )

Therefore we have

2.7) R (1 + M) > ma.

mwoh! (wo)
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From Equations4.5), (2.6) and @.7), it follows that

2,1
20 Py (ZO)

. — ] = —1).
(2.8) R (woh;(wo)> > m(ma —1)
Sinceh,.(z) is convex of orderv or equivalently

zhy(2) x
%(14—%) > o (ZEA),

by [2, Theorem 3.3f, p.115], we have

zh, (2) ~
) Bla) (z€4)

wheref(a) is given by Equation4.2) and this condition is equivalent to

R

he(z) 1
zhi(z)  28(a)

1 —_
< 26(a) (z € A).

Therefore,

29 ® [<c<mo> - 1>%] > S IRIC(20) = 1] = [Clrzo) ~ 11}

Sinceh is convex of ordery, we have the following well-known estimate:

[7(0)]

/ > I R S
R sy

(Jz2| =r < 1).
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By settingz = rwg, we see that
r|h'(0)]

(2.10) |wohz. (wo)| = RESSEED) (lwo| = 1).
By setting
_Azgpl(z) | Blrzo)zopy(z0)
(2.11) vV .= woh! (w0) woh! (1)
pr(20) D(rzp)
+ (C(TZO> - 1)w0h;<w0) woh;(woy
we see that
(2.12) ur(20) = he.(wo) + Vweh..(wp).
From 2.9), (2.9), (2.10 and .11), we have
1
RV > m(ma —1)A+mRB(rz) + m[?ﬁ(C(mO) —1)—|C(rz) — 1]]
(1 +7)20-
- WW(WO)’
> m[(na — 1)A+ RB(rz)]
+ 33 R(Crz0) = 1) = [C(rz0) = 1] = kD)

> nf(na — 1)A+ RB(rz)]

1
_ %[IC(%) — 1| = R(C(rz) — 1)] — k| D(r=)| > 0,
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it follows thatw,(z9) ¢ h.(A), a contradiction. Therefore,. < h, for r €
(ro, 1). By lettingr — 1~, we obtain the desired conclusipn< h. O

Remark 2.1. Whena = 0,n =
Miller and Mocanu [].

1, Theorem2.1 reduces to Theorerh.2 of

From the proof of Theorer.1, it is clear that the conditioh(0) = 0 in not
necessary whefi(z) = 1 and hence the following:

Corollary 2.2. Leth be a convex univalent function of order0 < o < 1, in
A, h(0) = a and letA > 0. Suppose that

k> 2207 /|1 (0)]
and thatB(z) and D(z) are analytic inA with D(0) = 0 and

(2.13) nR B(z) > n(l —an)A+ k|D(z)]

forall z € A. If p € H[a,n], p(0) = h(0), satisfies the differential subordina-
tion
(2.14) A" (2) + B(2)2p'(2) + p(2) + D(2) < h(z),
thenp < h.

By takingA = 0 andD(z) = 0 in Theoren?2.1, we obtain the following:

Corollary 2.3. Leth be a convex univalent function of ordey0 < o < 1, in
A with h(0) = 0. Let B(z) andC(z) be analytic functions or satisfying

1

RB) 2 55(a)

1C(2) = 1] = R(C(2) = 1)],
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wheref(«) is as given in Theore 1. If p € H[0, n] satisfies the subordination
B(z)zp/(2) + C(2)p(2) < h(2),
thenp(z) < h(z).
By taking B(z) = 1, « = 0, n = 1, in Corollary2.3, we have the following:

Corollary 2.4. Let h be a convex univalent function i with 4(0) = 0. Let
C'(z) be analytic functions or satisfying

RC(z) > |C(z) — 1].
If the analytic functiorp(z) satisfies the subordination
2p' (2) + C(2)p(z) < h(z2),

thenp(z) < h(z).
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By appealing to Theorerh.4, we now prove the following:

Theorem 3.1. Letn be a positive integer and(z) = A > 0. Suppose that the
functionsB(z),C(z), D(z) : A — C satisfyRB(z) > A and

(3'1) [% C(Z)]2 <n [%B('Z) - A] Certain Second Order Linear
5 + 2 2+ ) Differential Subordinations
X n(%B(Z) - A) N 1 — « %C<2) B 1— a%(D(Z) N Oé) ' V. Ravichandran
If p € H[1,n] and Title Page
(32)  R{AZp"(2) + B(2)2p/(2) + C(2)p(2) + D(2)} > a (a < 1), Contents
0+ 2«
Rp(z) > 5~ < >
Proof. Define the functionP(z) by Go Back
( ) Close
_p(z) = 0+ 2 _
P(z):= T where ~:= 5o Quit

Page 14 of 25
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where

1C(2) + D(z) —
1 —n

O(r, s, 2) = At + B(2)s + C(2)r +
In view of Theoreml.4, it is enough to show that

Rp(io, ¢, p+1in; z) <0

for all real numbersr, ¢, p andn with ¢ < L , ¢+ p < 0and for all
z € A. Now,

Rip(io, ¢, p+in; 2)

= puA+(RB(z) —0SC(2) + R [

<((RB(z) — A) —0SC(2) + R {

< —% {n[RB(z) — Alo® +28C(z)o

Fn[RB(2) — A] — 2R [70(7’) f_l)f) - O‘} } <0,

provided @.1) holds. This completes the proof of our Theora&rh [

Fora =6 = 0, Theorem3.1reduces to Theorerh 1
By taking D = 0 andC'(z) = 1 in Theorem3.1, we have the following:
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Corollary 3.2. LetA > 0 andRB(z) — A > § > 0. If p € H[1, n] satisfies

R{AZ*"(2) + B(2)2p'(2) + p(2)} > a (a < 1)

then 519

Rp(z) > nnétt ;.
Corollary 3.3. LetA(z) and R(z) be functions defined af and

RA(z) >+ %%R(z) > 0.
If p € H[1, n] satisfies
RIN=)20 (2) +p(2) + R(2)} > o (a<1),

then oot §

Rp(z) > ;_:_5:.

A special case of Corollary.3is obtained by Owa and Srivastava Lemma
2, p. 254].
The proof of the following theorem is similar and hence it is omitted.

Theorem 3.4.Letn be a positive integer and(z) = A > 0. Suppose that the
functionsB(z),C(z), D(z) : A — C satisfyRB(z) > A and

(3.3) [3C(2)]
B (H—QQ%C(Z)— 249

11—« 1l—«

< n[RB(z)—A] In(RB(z) — A) R(D(z) —a)| .
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If p € H[1, n] satisfies

(3.4)

then

R{AZ2P"(2) + B(2)2p(2) + C(2)p(2) + D(2)} < «

(Oé > 1)7
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We now give certain applications of our results obtained in Sectiamd 3.

Theorem 4.1. Lety € Cwithy # —1,—2,-3,... and lety, ® be analytic
functions onA with ¢(z)®(z) # 0 for z € A. If

RC(2) = |C(2) = 1| > 1 = 2n6(a)RB(z),

where
®(2)
¢(2)

then the integral operator defined by

B(z) :=

and C(z) :=

10)6) = g [ £ 0o

satisfies/ (f)(z) < h(z) for every functionf(z) < h(z) whereh(z) is a convex
function of ordera.

Proof. The result follows immediately from Corollag3. O

Theorem 4.2.Let h be a convex univalent function of ordein A, 0 < a < 1
andh(0) = 1. Let M, N, R be analytic inA with R(0) = 0 and

M(z)=2"4+...,andN(z) =2"+....
Let

BN (2) 22(1=)
v > HRe (k> Ty )

R
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@1) B+ (= D + R < hio),
then M(2)
NG2) < h(z).

Proof. Let the functionp(z) be defined by
p(z) = M(2)/N(2).
Thenp(0) = 1 = h(0) and it follows that

N(z) ., . M)
p(z) + ZN—,(Z)ZP (2) = N’—(z)

Also, a computation shows that the subordinatiordii)(is equivalent to

o+ 203

zp'(z) + R(z) < h(z).

The result now follows by an application of Corollazy? O

Remark 4.1. Wheng = 1, « = 0, Theoremt.2reduces to P, Theorem 4.1h, p.

199] of Miller and Mocanu. ltx = 0 and R(z) = 0, then Theorerd.2 reduces
to a result of Juneja and Ponnusamy Corollary 1, p. 290].

More generally, we have the following:
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Theorem 4.3.Letd > —p be any real numbern, € C with R\ > 0. Let R(z)
be a function defined oA with R(0) = 0 andh(z) a convex function of order
a,0<a<1,h(0)=1. Letg € A, satisfy

) et (-3

If f € A, satisfies

p—1 Certain Second Order Linear
+ R(z) < h(z)’ Differential Subordinations

DL ()" DOPf(2) [D3+P=1f (2
=4 [DéTlgEz;] D5+Pg((2)) {D“”‘lg((zg

V. Ravichandran

then 0+ 1f< ) Iz
Do f(2
{W] < h(z). Title Page
Proof. Let the functiornp(z) be defined by Contents
44 44
D7 f()]"
)= )] L1
i i inati . Go Back
Then a computation shows that the following subordination holds:
Close
B(2)zp'(2) + p(2) + R(2) < h(2), ou
where Page 20 of 25

A D6+p*1
B(z) = 5 5 g(Z)
lu( + p) g(Z) J. Ineq. Pur(la. and Appl. Math. 5(3) Art. 59, 2004
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WhenR(z) = 0 andp = 1, the Theoremi.3 reduces to Juneja and Pon-
nusamy [, Theorem 1, p. 289].

Theorem 4.4.Leta be a complex numbéta > 0 andg < 1. LetM, N, R be
analytic in A with R(0) = 0 and

M(Z) = Zn+012n+k+"'7 N(Z) = Zn—i-dlZnJrk—i—'--

L
) SLIC NP ES /TR
ZN'(z) (1- D)k '
If
(4.2) %[a%:—((;) . a)% +R(2)] > 8,
then S%M(Z> 26+ ko
N(z) = 24ko~
Proof. Letp(z) := M(z)/N(z). Thenp(0) = 1 = h(0). It follows that
P+ ki) = T
Then
Ro(e) + S () 4 Bl = Rla ) + (1= ) + RO

> .
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If B(z) is defined byB(z) := aN(z)/[zN'(z)], then it follows that

240k
%B(Z) >0+ m%R(Z)

The result now follows by an application of Corolla®y3 ]

Remark 4.2. For R(z) = 0, § = 0, Theorem4.4 is due to Karunakaran and

Ponnusamyf, Theorem B, p. 562].

Theorem 4.5.Letd > —p be any real numbern, € C with R\ > 0. Let R(z)
be a function defined oA with R(0) = 0,0 < o < 1. Letg € A, satisfies

D(Hp*lg(z)
" {A Dorg(2)

(0 +p)(2+90)

l—«

} > u(d+p)i+ 2 RR(z) > 0.

If f € A, satisfies

fon 2ot

\DITA(2) [D‘”plf(z)rl . R(Z)} -

D¥p=1g(z) Dotrg(z) [ DOP~1g(z)
then
D”p‘lf(z) K - 200+ 9
D¥r=lg(z)| — 244
Proof. Let
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Then a computation shows that
R{B(2)2p(2) +p(2) + R(2)} > a,
where

A Drg(z)
Bl) = p(d +p) Drg(z)

The result follows easily.
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