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Abstract

In this present investigation, we obtain some results for certain second order
linear differential subordination. We also discuss some applications of our re-
sults.
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1. Introduction
LetH denote the class of allanalytic functions in∆ := {z ∈ C : |z| < 1}. For
a positive integern anda ∈ C, let

H[a, n] :=

{
f ∈ H : f(z) = a+

∞∑
k=n

akz
k (n ∈ N := {1, 2, 3, . . .})

}

and

A(p, n) :=

{
f ∈ H : f(z) = zp +

∞∑
k=n+p

akz
k (n, p ∈ N)

}
.

Set
Ap := A(p, 1), A := A1.

For two functionsf, g ∈ H, we say that the functionf(z) is subordinateto
g(z) in ∆ and write

f ≺ g or f(z) ≺ g(z),

if there exists a Schwarz functionw(z) ∈ H with

w(0) = 0 and |w(z)| < 1 (z ∈ ∆),

such that

(1.1) f(z) = g(w(z)) (z ∈ ∆).
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In particular, if the functiong is univalent in∆, the above subordination (1.1)
is equivalent to

f(0) = g(0) and f(∆) ⊂ g(∆).

Miller and Mocanu [2] considered thesecond order linear differential sub-
ordination

A(z)z2p′′(z) +B(z)zp′(z) + C(z)p(z) +D(z) ≺ h(z),

whereA,B,C andD are complex-valued functions defined on∆ andh(z) is
any convex function and in particularh(z) = (1+ z)/(1− z). In fact, they have
proved the following:

Theorem 1.1 (Miller and Mocanu [2, Theorem 4.1a, p.188]).Letn be a posi-
tive integer andA(z) = A ≥ 0. Suppose that the functionsB(z), C(z), D(z) :
∆ → C satisfy<B(z) ≥ A and

(1.2) [=C(z)]2 ≤ n[<B(z)− A]<(nB(z)− nA− 2D(z)).

If p ∈ H[1, n] and if

(1.3) <{Az2p′′(z) +B(z)zp′(z) + C(z)p(z) +D(z)} > 0,

then
<p(z) > 0.

Also Miller and Mocanu [2] have proved the following:
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Theorem 1.2 (Miller and Mocanu [2, Theorem 4.1e, p.195]).Leth be convex
univalent in∆ with h(0) = 0 and letA ≥ 0. Suppose thatk > 4/|h′(0)| and
thatB(z), C(z) andD(z) are analytic in∆ and satisfy

< B(z) ≥ A+ |C(z)− 1| − <(C(z)− 1) + k|D(z)|.

If p ∈ H[0, 1] satisfies the differential subordination

Az2p′′(z) +B(z)zp′(z) + C(z)p(z) +D(z) ≺ h(z)

thenp ≺ h.

In this paper, we extend Theorem1.1by assuming

<{Az2p′′(z) +B(z)zp′(z) + C(z)p(z) +D(z)} > α, (0 ≤ α < 1)

and Theorem1.2by assuming that the functionh(z) is convex of orderα. Cer-
tain results of Karunakaran and Ponnusamy [6], Juneja and Ponnusamy [7] and
Owa and Srivastava [8] are obtained as special cases. Also we give application
of our results to certain functions defined by the familiar Ruscheweyh deriva-
tives.

For two functionsf(z) andg(z) given by

f(z) = zp +
∞∑

k=n+p

akz
k, g(z) = zp +

∞∑
k=n+p

bkz
k (n, p ∈ N) ,

theHadamard product(or convolution) of f andg is defined by

(f ∗ g)(z) := zp +
∞∑

k=n+p

akbkz
k =: (g ∗ f)(z).
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TheRuscheweyh derivativeof f(z) of orderδ + p− 1 is defined by

(1.4) Dδ+p−1 f(z) :=
zp

(1− z)δ+p
∗f(z) (f ∈ A (p, n) ; δ ∈ R\ (−∞,−p])

or, equivalently, by

Dδ+p−1 f(z) := zp +
∞∑

k=p+1

(
δ + k − 1

k − p

)
ak z

k(1.5)

(f ∈ A (p, n) ; δ ∈ R\ (−∞,−p]) .

In particular, ifδ = l (l + p ∈ N), we find from the definition (1.4) or (1.5) that

Dl+p−1 f(z) =
zp

(l + p− 1)!

dl+p−1

dzl+p−1

{
zl−1 f(z)

}
(f ∈ A (p, n) ; l + p ∈ N) .

In our present investigation of the second order linear differential subordina-
tion, we need the following definitions and results:

Definition 1.1 (Miller and Mocanu [2, Definition 2.2b, p. 21]). LetQ be the
set of functionsq that are analytic and univalent on∆ \ E(q), where

E(q) = {ζ ∈ ∂∆ : lim
z→ζ

q(z) = ∞}

and are such thatq′(ζ) 6= 0 for ζ ∈ ∂∆\E(q),where∂∆ := {z ∈ C : |z| = 1},
∆ := ∆ ∪ ∂∆.
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Theorem 1.3 (Miller and Mocanu [2, Lemma 2.2d, p. 24]).Let q ∈ Q, with
q(0) = a. Letp(z) = a+pnz

n + · · · be analytic in∆ with p(z) 6≡ a andn ≥ 1.
If p(z) is not subordinate toq(z), then there exist pointsz0 = r0e

θ0 ∈ ∆ and
ζ0 ∈ ∂∆− E(q), and anm ≥ n ≥ 1 for whichp(∆r0) ⊂ q(∆),

(i) p(z0) = q(ζ0)

(ii) z0p
′(z0) = mζ0q

′(ζ0), and(1.6)

(iii) <[z0p
′′(z0)/p

′(z0) + 1] ≥ m<[z0q
′′(z0)/q

′(z0) + 1],

where∆r := {z ∈ C : |z| < r}.

Theorem 1.4 (cf. Miller and Mocanu [2, Theorem 2.3i (i), p. 35]).Let Ω be
a simply connected domain andψ : C3 ×∆ → C satisfies the condition

ψ(iσ, ζ, µ+ iη; z) 6∈ Ω

for z ∈ ∆ and for realσ, ζ, µ, η satisfyingζ ≤ −n(1 + σ2)/2 andζ + µ ≤ 0.
Letp(z) = 1 + pnz

n + pn+1z
n+1 + · · · be analytic in∆. If

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω,

then<p(z) > 0.
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2. Differential Subordination with Convex
Functions of Order α

By appealing to Theorem1.3, we first prove the following:

Theorem 2.1. Let h be a convex univalent function of orderα, 0 ≤ α < 1, in
∆ with h(0) = 0 and letA ≥ 0. Suppose that

k > 22(1−α)
/
|h′(0)|

and thatB(z), C(z) andD(z) are analytic in∆ and satisfy

(2.1) n<B(z) ≥ n(1−αn)A+
1

2β(α)
[|C(z)− 1|−<(C(z)− 1)]+k|D(z)|,

where

(2.2) β(α) :=


4α(1− 2α)

4− 22α+1
α 6= 1

2

(log 4)−1 α =
1

2
.

If p ∈ H[0, n] satisfies the differential subordination

(2.3) Az2p′′(z) +B(z)zp′(z) + C(z)p(z) +D(z) ≺ h(z),

thenp ≺ h.
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Proof. Our proof of Theorem2.1is essentially similar to Theorem1.2of Miller
and Mocanu [2]. Let the subordination in (2.3) be satisfied so thatD(0) = 0.
Since

k|h′(0)| > 22(1−α),

there is anr0, 0 < r0 < 1 such that

(1 + r0)
2(1−α)

r0
= k|h′(0)| and 22(1−α) <

(1 + r)2(1−α)

r
< k|h′(0)|

for r0 < r < 1. Sinceh is convex of orderα in ∆, the functionhr(z) = h(rz)
is convex of orderα in ∆ (r0 < r < 1). By settingpr(z) = p(rz) for r0 <
r < 1, we see that the subordination (2.3) becomes

ur(z) := Az2p′′r(z) +B(rz)zp′r(z) + C(rz)pr(z) +D(rz) ≺ hr(z)(2.4)

(z ∈ ∆; r0 < r < 1).

Assume thatpr is not subordinate tohr, for somer in (r0, 1). Then by Theorem
1.3there exist pointsz0 ∈ ∆, w0 ∈ ∂∆ and anm ≥ n ≥ 1 such that

(2.5) pr(z0) = hr(w0), z0p
′
r(z0) = mw0h

′
r(w0),

(2.6) <
(

1 +
z0p

′′
r(z0)

p′r(z0)

)
≥ m<

(
1 +

w0h
′′
r(w0)

h′r(w0)

)
.

Therefore we have

(2.7) <
(

1 +
z2
0p
′′
r(z0)

mw0h′(w0)

)
≥ mα.
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From Equations (2.5), (2.6) and (2.7), it follows that

(2.8) <
(
z2
0p
′′
r(z0)

w0h′r(w0)

)
≥ m(mα− 1).

Sincehr(z) is convex of orderα or equivalently

<
(

1 +
zh′′r(z)

h′r(z)

)
> α (z ∈ ∆),

by [2, Theorem 3.3f, p.115], we have

<zh
′
r(z)

hr(z)
> β(α) (z ∈ ∆)

whereβ(α) is given by Equation (2.2) and this condition is equivalent to∣∣∣∣ hr(z)

zh′r(z)
− 1

2β(α)

∣∣∣∣ ≤ 1

2β(α)
(z ∈ ∆).

Therefore,

(2.9) <
[
(C(rz0)− 1)

hr(w0)

w0h′r(w0)

]
≥ 1

2β
{<[C(rz0)− 1]− |C(rz0)− 1|}.

Sinceh is convex of orderα, we have the following well-known estimate:

|h′(z)| ≥ |h′(0)|
(1 + r)2(1−α)

(|z| = r < 1).
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By settingz = rw0, we see that

(2.10) |w0h
′
r(w0)| ≥

r|h′(0)|
(1 + r)2(1−α)

(|w0| = 1).

By setting

(2.11) V :=
Az2

0p
′′
r(z0)

w0h′r(w0)
+
B(rz0)z0p

′
r(z0)

w0h′r(w0)

+ (C(rz0)− 1)
pr(z0)

w0h′r(w0)
+

D(rz0)

w0h′r(w0)
,

we see that

(2.12) ur(z0) = hr(w0) + V w0h
′
r(w0).

From (2.8), (2.9), (2.10) and (2.11), we have

<V ≥ m(mα− 1)A+m<B(rz0) +
1

2β(α)
[<(C(rz0)− 1)− |C(rz0)− 1|]

− (1 + r)2(1−α)

r|h′(0)|
|D(rz0)|

≥ m[(nα− 1)A+ <B(rz0)]

+
1

2β(α)
[<(C(rz0)− 1)− |C(rz0)− 1|]− k|D(rz0)|

≥ n[(nα− 1)A+ <B(rz0)]

− 1

2β(α)
[|C(rz0)− 1| − <(C(rz0)− 1)]− k|D(rz0)| ≥ 0,

http://jipam.vu.edu.au/
mailto:vravi@svce.ac.in
http://jipam.vu.edu.au/


Certain Second Order Linear
Differential Subordinations

V. Ravichandran

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 25

J. Ineq. Pure and Appl. Math. 5(3) Art. 59, 2004

http://jipam.vu.edu.au

it follows that ur(z0) 6∈ hr(∆), a contradiction. Therefore,pr ≺ hr for r ∈
(r0, 1). By lettingr → 1−, we obtain the desired conclusionp ≺ h.

Remark 2.1. Whenα = 0, n = 1, Theorem2.1 reduces to Theorem1.2 of
Miller and Mocanu [2].

From the proof of Theorem2.1, it is clear that the conditionh(0) = 0 in not
necessary whenC(z) = 1 and hence the following:

Corollary 2.2. Leth be a convex univalent function of orderα, 0 ≤ α < 1, in
∆, h(0) = a and letA ≥ 0. Suppose that

k > 22(1−α)/|h′(0)|

and thatB(z) andD(z) are analytic in∆ withD(0) = 0 and

(2.13) n < B(z) ≥ n(1− αn)A+ k|D(z)|

for all z ∈ ∆. If p ∈ H[a, n], p(0) = h(0), satisfies the differential subordina-
tion

(2.14) Az2p′′(z) +B(z)zp′(z) + p(z) +D(z) ≺ h(z),

thenp ≺ h.

By takingA = 0 andD(z) = 0 in Theorem2.1, we obtain the following:

Corollary 2.3. Leth be a convex univalent function of orderα, 0 ≤ α < 1, in
∆ with h(0) = 0. LetB(z) andC(z) be analytic functions on∆ satisfying

<B(z) ≥ 1

2nβ(α)
[|C(z)− 1| − <(C(z)− 1)],
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whereβ(α) is as given in Theorem2.1. If p ∈ H[0, n] satisfies the subordination

B(z)zp′(z) + C(z)p(z) ≺ h(z),

thenp(z) ≺ h(z).

By takingB(z) = 1, α = 0, n = 1, in Corollary2.3, we have the following:

Corollary 2.4. Let h be a convex univalent function in∆ with h(0) = 0. Let
C(z) be analytic functions on∆ satisfying

<C(z) > |C(z)− 1|.

If the analytic functionp(z) satisfies the subordination

zp′(z) + C(z)p(z) ≺ h(z),

thenp(z) ≺ h(z).
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3. Differential Subordination with Caratheodory
Functions of Order α

By appealing to Theorem1.4, we now prove the following:

Theorem 3.1.Letn be a positive integer andA(z) = A ≥ 0. Suppose that the
functionsB(z), C(z), D(z) : ∆ → C satisfy<B(z) ≥ A and

(3.1) [=C(z)]2 ≤ n [<B(z)− A]

×
[
n(<B(z)− A)− δ + 2α

1− α
<C(z)− 2 + δ

1− α
<(D(z)− α)

]
.

If p ∈ H[1, n] and

(3.2) <{Az2p′′(z) +B(z)zp′(z) + C(z)p(z) +D(z)} > α (α < 1),

then

<p(z) > δ + 2α

δ + 2
.

Proof. Define the functionP (z) by

P (z) :=
p(z)− γ

1− γ
where γ :=

δ + 2α

δ + 2
.

Then inequality (3.2) can be written as

<{ψ(P (z), zP ′(z), z2P ′′(z); z)} > 0,
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mailto:vravi@svce.ac.in
http://jipam.vu.edu.au/


Certain Second Order Linear
Differential Subordinations

V. Ravichandran

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 25

J. Ineq. Pure and Appl. Math. 5(3) Art. 59, 2004

http://jipam.vu.edu.au

where

ψ(r, s, t; z) = At+B(z)s+ C(z)r +
γC(z) +D(z)− α

1− γ
.

In view of Theorem1.4, it is enough to show that

<ψ(iσ, ζ, µ+ iη; z) ≤ 0

for all real numbersσ, ζ, µ andη with ζ ≤ −n(1+σ2)
2

, ζ + µ ≤ 0 and for all
z ∈ ∆. Now,

<ψ(iσ, ζ, µ+ iη; z)

= µA+ ζ<B(z)− σ=C(z) + <
[
γC(z) +D(z)− α

1− γ

]
≤ ζ(<B(z)− A)− σ=C(z) + <

[
γC(z) +D(z)− α

1− γ

]
≤ −1

2

{
n[<B(z)− A]σ2 + 2=C(z)σ

+n[<B(z)− A]− 2<
[
γC(z) +D(z)− α

1− γ

]}
≤ 0,

provided (3.1) holds. This completes the proof of our Theorem3.1.

Forα = δ = 0, Theorem3.1reduces to Theorem1.1.
By takingD = 0 andC(z) = 1 in Theorem3.1, we have the following:
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Corollary 3.2. LetA ≥ 0 and<B(z)− A > δ > 0. If p ∈ H[1, n] satisfies

<{Az2p′′(z) +B(z)zp′(z) + p(z)} > α (α < 1)

then

<p(z) > nδ + 2α

nδ + 2
.

Corollary 3.3. Letλ(z) andR(z) be functions defined on∆ and

<λ(z) > δ +
2 + δ

(1− α)n
<R(z) ≥ 0.

If p ∈ H[1, n] satisfies

<{λ(z)zp′(z) + p(z) +R(z)} > α (α < 1),

then

<p(z) > 2α+ δn

2 + δn
.

A special case of Corollary3.3is obtained by Owa and Srivastava [8, Lemma
2, p. 254].

The proof of the following theorem is similar and hence it is omitted.

Theorem 3.4.Letn be a positive integer andA(z) = A ≥ 0. Suppose that the
functionsB(z), C(z), D(z) : ∆ → C satisfy<B(z) ≥ A and

(3.3) [=C(z)]2

≤ n[<B(z)−A]

[
n(<B(z)− A)− δ + 2α

1− α
<C(z)− 2 + δ

1− α
<(D(z)− α)

]
.
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If p ∈ H[1, n] satisfies

(3.4) <{Az2p′′(z) +B(z)zp′(z) + C(z)p(z) +D(z)} < α (α > 1),

then

<p(z) < δ + 2α

δ + 2
.
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4. Applications
We now give certain applications of our results obtained in Section2 and3.

Theorem 4.1. Let γ ∈ C with γ 6= −1,−2,−3, . . . and letφ,Φ be analytic
functions on∆ with φ(z)Φ(z) 6= 0 for z ∈ ∆. If

<C(z)− |C(z)− 1| > 1− 2nβ(α)<B(z),

where

B(z) :=
Φ(z)

φ(z)
and C(z) :=

γΦ(z) + zΦ′(z)

φ(z)
,

then the integral operator defined by

I(f)(z) :=
1

zγΦ(z)

∫ z

0

tγ−1f(t)φ(t)dt

satisfiesI(f)(z) ≺ h(z) for every functionf(z) ≺ h(z) whereh(z) is a convex
function of orderα.

Proof. The result follows immediately from Corollary2.3.

Theorem 4.2.Leth be a convex univalent function of orderα in ∆, 0 ≤ α < 1
andh(0) = 1. LetM,N,R be analytic in∆ withR(0) = 0 and

M(z) = zn + . . . , andN(z) = zn + . . . .

Let

<βN(z)

zN ′(z)
> k|R(z)|

(
k >

22(1−α)

|h′(0)|

)
.
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If

(4.1) β
M ′(z)

N ′(z)
+ (1− β)

M(z)

N(z)
+R(z) ≺ h(z),

then
M(z)

N(z)
≺ h(z).

Proof. Let the functionp(z) be defined by

p(z) = M(z)/N(z).

Thenp(0) = 1 = h(0) and it follows that

p(z) +
N(z)

zN ′(z)
zp′(z) =

M ′(z)

N ′(z)
.

Also, a computation shows that the subordination in (4.1) is equivalent to

p(z) +
βN(z)

zN ′(z)
zp′(z) +R(z) ≺ h(z).

The result now follows by an application of Corollary2.2

Remark 4.1. Whenβ = 1, α = 0, Theorem4.2reduces to [2, Theorem 4.1h, p.
199] of Miller and Mocanu. Ifα = 0 andR(z) = 0, then Theorem4.2reduces
to a result of Juneja and Ponnusamy [7, Corollary 1, p. 290].

More generally, we have the following:
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Theorem 4.3. Let δ > −p be any real number,λ ∈ C with <λ ≥ 0. LetR(z)
be a function defined on∆ withR(0) = 0 andh(z) a convex function of order
α, 0 ≤ α < 1, h(0) = 1. Letg ∈ Ap satisfy

<
{
λ
Dδ+p−1g(z)

Dδ+pg(z)

}
≥ µ(δ + p)|R(z)|,

(
k >

22(1−α)

|h′(0)|

)
.

If f ∈ Ap satisfies

(1− λ)

[
Dδ+p−1f(z)

Dδ+p−1g(z)

]µ

+ λ
Dδ+pf(z)

Dδ+pg(z)

[
Dδ+p−1f(z)

Dδ+p−1g(z)

]µ−1

+R(z) ≺ h(z),

then [
Dδ+p−1f(z)

Dδ+p−1g(z)

]µ

≺ h(z).

Proof. Let the functionp(z) be defined by

p(z) :=

[
Dδ+p−1f(z)

Dδ+p−1g(z)

]µ

.

Then a computation shows that the following subordination holds:

B(z)zp′(z) + p(z) +R(z) ≺ h(z),

where

B(z) :=
λ

µ(δ + p)

Dδ+p−1g(z)

Dδ+pg(z)
.

The result follows by an application of Corollary2.2.
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WhenR(z) = 0 andµ = 1, the Theorem4.3 reduces to Juneja and Pon-
nusamy [7, Theorem 1, p. 289].

Theorem 4.4.Letα be a complex number<α > 0 andβ < 1. LetM,N,R be
analytic in∆ withR(0) = 0 and

M(z) := zn + c1z
n+k + · · · , N(z) := zn + d1z

n+k + · · · .

Let

<αN(z)

zN ′(z)
> δ +

2 + δk

(1− β)k
<R(z).

If

(4.2) <[α
M ′(z)

N ′(z)
+ (1− α)

M(z)

N(z)
+R(z)] > β,

then

<M(z)

N(z)
>

2β + kδ

2 + kδ
.

Proof. Let p(z) := M(z)/N(z). Thenp(0) = 1 = h(0). It follows that

p(z) +
N(z)

zN ′(z)
zp′(z) =

M ′(z)

N ′(z)
.

Then

<p(z) +
αN(z)

zN ′(z)
zp′(z) +R(z) = <[α

M ′(z)

N ′(z)
+ (1− α)

M(z)

N(z)
+R(z)]

> β.
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If B(z) is defined byB(z) := αN(z)/[zN ′(z)], then it follows that

<B(z) > δ +
2 + δk

(1− β)k
<R(z).

The result now follows by an application of Corollary3.3

Remark 4.2. For R(z) = 0, β = 0, Theorem4.4 is due to Karunakaran and
Ponnusamy [6, Theorem B, p. 562].

Theorem 4.5. Let δ > −p be any real number,λ ∈ C with <λ ≥ 0. LetR(z)
be a function defined on∆ withR(0) = 0, 0 ≤ α < 1. Letg ∈ Ap satisfies

<
{
λ
Dδ+p−1g(z)

Dδ+pg(z)

}
> µ(δ + p)δ +

µ(δ + p)(2 + δ)

1− α
<R(z) ≥ 0.

If f ∈ Ap satisfies

<

{
(1− λ)

[
Dδ+p−1f(z)

Dδ+p−1g(z)

]µ

+ λ
Dδ+pf(z)

Dδ+pg(z)

[
Dδ+p−1f(z)

Dδ+p−1g(z)

]µ−1

+R(z)

}
> α,

then [
Dδ+p−1f(z)

Dδ+p−1g(z)

]µ

≥ 2α+ δ

2 + δ
.

Proof. Let

p(z) :=

[
Dδ+p−1f(z)

Dδ+p−1g(z)

]µ

.
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Then a computation shows that

<{B(z)zp′(z) + p(z) +R(z)} > α,

where

B(z) :=
λ

µ(δ + p)

Dδ+p−1g(z)

Dδ+pg(z)
.

The result follows easily.
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