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ABSTRACT. S-quasiconvex functions (Phu and An, Optimization, Vol. 38, 1996) are stable with
respect to the properties: “every lower level set is convex", “each local minimizer is a global
minimizer", and “each stationary point is a global minimizer" (i.e., these properties remain true
if a sufficiently small linear disturbance is added to a function of this class). In this paper, we
introduce a subclass gfquasiconvex functions, namely stricdyquasiconvex functions which
guarantee the uniqueness of the minimizer. The density of the set of these functions in the set
of s-quasiconvex functions and some necessary and sufficient conditions of these functions are
presented.
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1. INTRODUCTION

A function f is said to be stable with respect to some property (P) if there exists0
such thatf + ¢ fulfills (P) for all linear functions¢ satisfying ||| < e. It was shown in
[4] that well-known kinds of generalized convex functions are often not stable with respect to
the property they have to keep during the generalization, for example, quasiconvex functions
(pseudoconvex functions, respectively) are not stable with respect to the property “every lower
level set is convex" (“each stationary point is a global minimizer”, respectively). Then the
so-calleds-quasiconvex functions were introduced in [4]. They are stable with respect to the

properties “every lower level set is convex", “each local minimizer is a global minimizer" and
“each stationary point is a global minimizer".
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Unfortunately, the uniqueness of the minimizersfuasiconvex functions does not hold
while this property is included often in the sufficient conditions for the continuity of optimal
solutions to parametric optimization problems (see [3]).

In this paper, we introduce strictsrquasiconvex functions which guarantee the uniqueness
of the minimizer. Proposition 2.3 says that under certain assumptions, we can approximate
affine parts of es-quasiconvex function defined ab C R, by strictly convex functions to
obtain a strictlys-quasiconvex function. Strictls-quasiconvex functions are stable with respect
to strict pseudoconvexity (Theorgm P.6). Finally, the necessary and sufficient conditions for
a continuously differentiable function to be stricthyquasiconvex are stated (Theorgmg 3.1 —
B:2).

From [5] and[[6] the following definitions and properties are used:fLeD C R" — R and
D be open and convex. We recall that:

f is said to be convex if, for alty, z; € D, \ € [0, 1],

(1.1) f(@x) < (1= A)f (o) + Af(21),

wherez, = (1 — M\)zo + Az;. f is said to be strictly convex if (11) is a strict inequality for
every distinctey, z1 € D.
f is said to be quasiconvex if, for ath, z; € D, X € [0, 1],

(1.2) f(20) < f(ar) implies f(z)) < f(a).

f is said to be strictly quasiconvex if the second inequality in|(1.2) is strict, for every distinct
xg,x1 € D, A €]0,1[. Note that the concept "strict quasiconvexity" here is exactly the "XC"
concept in[[5].

A differentiable functionf is said to be pseudoconvex if, for alf, z; € D,

(13) f(xo) < f(l’l) ImpIIeS (l’o — I1>TVf(1]1) < O,

where! is the matrix transposition. A differentiable functigris said to be strictly pseudocon-
vex if the first inequality in[(1]3) is not strict, for every distingt, z; € D.

We also recall the definition ofquasiconvex functions (“s" stands for “stablef)is said to
be s-quasiconvex if there exists > 0 such that

f(x0) — f(1)

|20 — 1|

for ‘5’ < 0,9, € D, Ty = (1 — )\)i[}o + Axq and \ € [O, 1[ ([4])
Clearly, every convex function isquasiconvex and &quasiconvex function is quasiconvex.
The following are some properties @fquasiconvexity given ir_[4].

Theorem 1.1([4]). Suppose : D C R" — R.

a) f is s-quasiconvex iff there exists> 0 such thatf + ¢ is quasiconvex for each linear
function onR™ satisfying||¢|| < €;

b) f is s-quasiconvex iff there exists> 0 such thatf + £ is s-quasiconvex for each linear
function{ onR™ satisfying||¢|| < €;

c) A continuously differentiable functiohis s-quasiconvex iff there exists> 0 such that
f + & is pseudoconvex for each linear functi9on R™ satisfying||£|| < e.

fxy) = f(x1) <5

(1.4) <
[EFN|

<46 implies

We will show that, in[(I.4), both inequalities can be replaced by strict inequalities and first
inequalities can be replaced by strict inequalities.

Proposition 1.2. The following statements are equivalent:
a) f: D CR"— Riss-quasiconvex;
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b) There existg > 0 such that

f(zo) — f(z1) f(zy) = f(z1)

(1.5) < ¢§ implies )
[0 — @1 ]| ) — 21|
for || < o, z, z1 € Dand\ € [0, 1];
c) There existg > 0 such that

||1’0—371H Hl’x—l’lH

for |0| < o, xo, 21 € D and\ € [0, 1].

Proof. a) = b) Suppose thaf is s-quasiconvex and > 0 is given in the definition ok-
guasiconvex functiorf. Letxzy,z; € D and L@0=/@1) 5 \ith |0| < o. Taked, such that

llz1—=oll

10, < o and L= 5 5 thenM <8 < 4. Hence,) holds true.

llz1—oll 1]

b) = ¢) ltistrivial, since [1.5) implies (1]6) with the same> 0.
¢) = a) Suppose thaf satlsfles.G) anef”“’if(”"1 < ¢ with \5] < 0. Then, for each

[E
51 €16, o[, we have( f(z0) — f(21))/||z1 — 20| < 6. By.) L)t < 5, with A € [0, 1]
Hencell2) =/ < 5 with A € [0,1]. Thus,f is s-quasiconvex. O

[l =1l

As we see from Propositidn 1.2, in (IL.4), replacing both inequalities by strict inequalities
and replacing first inequalities by strict inequalities will not rise to new types of generalized
convexity. In the following section, we replace second inequalities by strict inequalities, and in
this way we shall generate a new type of generalized convexity.

2. STRICTLY s-QUASICONVEX FUNCTIONS
Let us introduce the notion of stricthtquasiconvex functions

Definition 2.1. f : D C R™ — R is said to bestrictly s-quasiconvexf there existsr > 0 such
that

(o) — fla1)

H«’Eo —$1||

fzy) — f(xl)
[x — 1]

for |0| < o, 20,21 € D, xog # x1,25 = (1 — XN)zo + Az @andi €]0, 1].

(2.1) <9 implies <9

Clearly, a strictly convex functiorf is strictly s-quasiconvex. Furthermore, every strictly
s-quasiconvex function is-quasiconvex and every stricthrquasiconvex function is strictly
guasiconvex.

Theorem 2.1. A functionf : D C R™ — R is strictly s-quasiconvex iff there exists> 0 such
that f + ¢ is strictly quasiconvex for each linear functigron R satisfying||¢|| < e.

Proof. (a) Necessity: Assume thdtis strictly s-quasiconvex. Choose= ¢ and supposgis a
linear function satisfyingj¢|| < e, whereo is given in Definitior] 2.[L.. Then

f(xzo) — f(x1) Sf( T — Xo ):£< T1 — Ty )7
|21 — o |21 — o |21 — x|

for every distinctry, 1 € D satisfying f(zo) + {(x0) < f(x1) + &(z1) and for allA €]0, 1].

Since
‘f( o )\susuqza,
BN
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and sincef is strictly s-quasiconvex, we have
f(zx) = flz1) <£< Ty — @ >
1 — 2]
Therefore f(z)) + &(xy) < f(x1) + &(xq), i.e., f + £ is strictly quasiconvex.

(b) Sufficiency: Suppose that there exists 0 such thatf + ¢ is strictly quasiconvex for each
linear function¢ on R" satisfying||¢|| < e. Chooser = ¢ and suppose that, x; € D satisfy

f(“’);f(z'l) < 4 with |0] < e. By the Hahn-Banach theorem, there exists a linear function

llz1—2ol
satisfying||¢|| = ¢ and¢ (HE:gg") = 0. Then,
f(zo) — f(z1) <€( L1 — X )
lzr — ol 7 7 \lzr — 2ol )

Hence,f (zo) + &(z0) < f(z1) 4+ &(z1). Sincef + ¢ is strictly quasiconvex, we havgz,) +
E(zy) < flxy) +&(xy) forall A €]0,1[. It follows that

f(:m)—f(xl)<§<x1—m>:£(951—xo):5
|zx — 21| |21 — 2]l |21 — @ol|
forall A €]0,1]. O

We now consider the density of the set of stricthfguasiconvex functions in the set of
guasiconvex functions.

Proposition 2.2. If a s-quasiconvex : D C R" — R is not strictly s-quasiconvex then it is
affine on a certain interval irD.

Proof. Suppose thaf is not strictlys-quasiconvex. Sincé is s-quasiconvex, there exists> 0
such thatf +¢ is quasiconvex for each linear functig@nR™ satisfying||¢|| < e (Theorenj 1.]L).
On the other hand, in view of Theorédm R 1+ ¢ is not strictly quasiconvex for some linear
function ¢ on R” satisfying||{|| < e. Sincef + £ is quasiconvex, we conclude thAt+ ¢ is

constant on a certain interval. Hengas affine on this interval. 0J
Proposition 2.3. Suppose thaf :]a,b[ C R — R is s-quasiconvex and let> 0. If it is affine
only on a finite number of intervalg;, b;] Cla,b[, (i = 1,2,...,k) then there exist strictly
convex functiong; defined orja;, b;] (i = 1,2, ..., k) such that

gi(z) ifx€lapb)] =1,2,...,k),
h(z) = _
f(ZL‘) if z G](Z,b[\ UZ‘:LQ 77777 k [ai,bi]
is strictly s-quasiconvex anflf — hl|: = sup,c,, |f(z) — h(z)| <
Proof. Assume without loss of generality thatis affine only onfa;,b;]. By Theorenj 111 (a),
there exists, > 0 such thatf + ¢ is quasiconvex for each linear functigron R satisfying
€]l < €. Assume without loss of generality thAfa,) < f(b;).

First, consider the cas€a;) < f(by). Choosey, (z): = az?+Bz+7, (a, 3,7 € R,a > 0)
such that

gi(ar1) = fla1), gi(br) = f(b1)
0 < gy(ar)
e> sup |f(z)— gi(z)].

x€la1,b1]
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We are now in a position to show that the sum of the function
gi(z) if x € [ay, b,
h(x) = _
f(z) itz €la,b[\[ar, b]

and¢ is quasiconvex for each linear functigrsatisfying||¢|| < min{eo, g1 (a1)}. Suppose that
&(z) = —ax, a > 0. Sincea < g} (a;) andg; is strictly convex oray, b1], f(a1) + a(z — a;) <
flar1) + g5 (ar)(x — a1) < g1(x) for everyx €]ay, by]. It follows thatg, (a;) — aa; = f(a;) —
aa; < g1(x) — ax. Hence,

(2.2) gi(ar) +&(ar) < gu() + ().

for everyz €lay, b1]. Letxgy, 1 €]a,b[C RandX €]0,1].
We now consider the casg €] — oo, ai[N]a, b] andz;y € [ay, by]. If z) € [a1, 2] then, by
quasiconvexity ofj; + £ and by [2.2) (withe = =),

h(za) +&(7a) = gi(xa) + &(70)
< max{gi(a1) + &(a1), g1(z1) + &(71)}
= g1(x1) + &(21) = h(x1) + §(21).

If 2 € [0, a:] then, by quasiconvexity of + ¢ and by [2.2) (withe = 1),

h(zy) +&(za) = fza) +&(22)

max{ f(zo) + &(wo), f(a1) + &(a1)}
max{ f(zo) + (7o), g1(w1) + (1)}
max{h(zo) + &(zo), h(z1) + &(21)}

Similarly, if eitherxzy €] — oo, a1[N}]a,b[ andz; € by, +oo]N]a,b] or 2y € [a1,b;] and
x1 €]by, +00[N]a, b[, we have

h(zy) + &(xy) < max{h(zg) + &(xo), h(x1) + &(z1)}

for all ) € [z, z1]. It implies thath + ¢ is quasiconvex for each linear functigrsatisfying
1€]] < min{eo, €; }. By Theorenj 1.1 (a); is s-quasiconvex.

On the other hand, sincgis not affine on any interval contained i \ [a;,b,] andg; is
strictly convex,h is not affine on any intervals. By Proposition|2k2is strictly s-quasiconvex.
SINCesUp,ciq, 41 1/ (2) — g1(z)| < €, we conclude thatf — A < e.

Finally, we consider the casga,) = f(b;). By Theorenj 1]1 (b), there exists > 0 such
that f + £ is s-quasiconvex for each linear functigron R satisfying||¢|| < min{¢/2,¢,}. Set
f = f + & where¢ is a linear function omR satisfying||¢|| < min{e/2, o} and&(ar) < £(by).
Thenf is s-quasiconvex, affine ofu;, b;] and f(a;) < f(by). Applying the above case, there
exists a strictlys-quasiconvex functioh such that| f — k|| < €/2. It follows that

If =hll=If+&=h+ &l <IIf—hll+ gl <e

<
<

From Propositiof 2]3, we have the following.

Corollary 2.4. The set of strictlg-quasiconvex functions defined éh=|a,b[ C R is dense
in the setw of s-quasiconvex functions, which are affine only on a finite number of intervals in
la,b.
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We do not know whether the conclusion of Corollary| 2.4 holds for the €aseR™, n > 1.
Note that the uniqueness of the minimizer of strigtlguasiconvex functions follows directly
from the uniqueness of the minimizer of strictly quasiconvex functions.

We now consider continuously differentiable functions.

Lemma 2.5.1f f: D C R® — Riis strictly pseudoconvex then it is strictly quasiconvex.

Proof. Suppose thaf is strictly pseudoconvex. Lety, z; € D, xy # x; be such thaf (z,) <
f(z1). We want to show thaf (z,) < f(z1) for all z) € ]xy,z;[. Assume the contrary that
there existss € |z, 21| such that

f(ax) = fla1) = f(wo).

By the strictly pseudoconvexity of, we have

(2.3) (1 —23)"Vf(zy) <0 and (z¢ — z3)" Vf(z35) < 0.
Sets: = (z1 — 3)/|lz1 — z3]| then—s: = (z¢ — z3)/||zo — 25]|. It follows from (2.3) that
sTV f(zy) < 0and—sV f(x3) < 0, a contradiction. O

Theorem 2.6. Suppose that : D C R" — R is continuously differentiable. Thefi,is strictly
s-quasiconvex iff there exists> 0 such thatf + ¢ is strictly pseudoconvex for each linear
function¢ onR™ satisfying||¢|| < e.

Proof. (a) Necessity: Assume thdtis strictly s-quasiconvex. Then, it is-quasiconvex. By
Theoren] 1.1, there exists > 0 such thatf + £ is pseudoconvex for each linear functign
on R" satisfying||¢|| < €. On the either hand, by Theorém 2.1, there exists 0 such that

f + ¢ is strictly quasiconvex for each linear functigron R" satisfying||¢|| < e». Therefore,

f + & is pseudoconvex and strictly quasiconvex for each linear fungtion R satisfying
€]l < e: = min{e,ex}. Thusf + £ is pseudoconvex and XC (see [5]). By Theorem!1 [5],
f + ¢ is strictly pseudoconvex for each linear functioon R™ satisfying||¢|| < e.

(b) Sufficiency: Suppose that there exists- 0 such thatf + ¢ is strictly pseudoconvex for
each linear functiog onR” satisfying||¢|| < e. By Lemmd 2.5,f + ¢ is strictly quasiconvex.
According to Theorerp 21 is strictly s-quasiconvex. O

3. NECESSARY AND SUFFICIENT CONDITIONS FOR STRICTLY s-QUASICONVEX
FUNCTIONS

Our next objective is to give necessary and sufficient conditions for a continuously differen-
tiable function to be strictlg-quasiconvex.

Theorem 3.1. Suppose that : D C R"” — R is continuously differentiable. Thefi,is strictly

s-quasiconvex iff there exists> 0 such that

(3.1) f(wo) — f(z1) <5
[0 — 21|

forall || < o,x0,21 € D.

(2o — 561)T

implies
|20 — 1]

Proof. (a) Necessity: Assume thgtis strictly s-quasiconvex. Then, by Theorém 2.6, there
existse > 0 such thatf + ¢ is strictly pseudoconvex for each linear functipon R™ satisfying

€|l < e. Seto: = e. Suppose thaty,z; € D, and% < ¢ for |§| < e. Choose a

linear function¢ such that|¢|| = § and{ ((x1 — xo)/||z1 — z0||) = 6. Then, f(xo) + &(xo) <
f(z1) + &(z1). Sincef + £ is strictly pseudoconvex,

@0 =0 G (546 (ay) <0

|20 — 1]
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Clearly,¢ can be expressed in the fogfw) = 27 a, with somea € R". Hence,

0> T
e+ G e

_<m0 ) Vf( ) ({L‘O— 1)Ta

||$1 —1’0|| ||371 —«’Eo||
T o — X

B MW(:&) e <#) _
Hxl —l’0|| ||l‘1 —JCOH

Thus,

Therefore,[(3]1) holds true.

(b) Sufficiency: Suppose that there exists> 0 satisfying [(3.1). We prove that is strictly

s-quasiconvex. Suppose t i 0)= f(” < ¢ with |§] < . Choose a linear functiofisuch that

]l = 0 andg (=) = 4. Then,

llz1—zol|

(3.2) (o) + &(wo) < flz1) + (1)
Consider the differentiable functian: [0, 1] — R defined as follows

A = (f+8) (@2) = (f + &) (1 = A)zo + Azq).
We are now in a position to show that\) < ¢(1) forall A €]0,1]

Assume the contrary that(\) > ¢(1), for someX €]0,1[. Then, there exist§, € [\, 1],
such that

$(Xo) = ¢(1),¢'(No) = (1 — 20)" V (f + &) (z,) <0,
wherex,, = (1 — A\g)xo + Aox1. This yields
(3.3) f(@1) + (1) = ¢(1) < B (No) = £ (2x,) + & (20o) -
By (32) and[BR)/ (x0) + &(0) < f (wa,) + & (2a,). Hence,

F(@o) = f (22) §£<|a%—:vo ):f(ﬁ;ﬂfo) =

Hx)\o —560|| ’IAO —IOH \Il —l’oH

It follows from (3.1) that

(o0= 1) W(m)d-f(—%_% )

[2x, = ol [ 23, = ol
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Then,¢ can be expressed in the fogte) = 27 a, with somea € R". Therefore,

s () e ()

(:BO — T
[E

3o = oll

_ (xO - IAO)T (l‘o - xAO)T

e — ol 23, = ol

_ (IO — xAO)T

 lne — ol

_ (xo — on)T

s — ol
Hence(zo — )" V (f 4 &) (z,,) < 0 which yields(z; — z0)" V (f +€) (zx,) > 0. Thus,
¢ (zy,) > 0, a contradiction. Therefore\) < ¢(1) forall A €]0,1[. It follows thatf (z)) +
€ (xn) < f(z1) + & (z1). Hence,

f(xx) = f(x1) (5171—@): (561—550)25
for—ml ~\o—al) =\ —al) =

i.e., f is strictly s-quasiconvex. O

0>
Vf (:C)\O) +
(Vf () +a)

\Y (f + 5) (I)\o) :

Theorem 3.2. A continuously differentiable functiohon D C R"™ is strictly s-quasiconvex iff
there existg > 0 such thatf is strictly convex on every segmeng, z,] satisfying

(3.4) (o —w0)"
|21 — 20|

Vi(zy)| <a forall z) € [zg,z1].

Proof. (a) Necessity: Assume thdtis strictly s-quasiconvex. Choose = o, whereo is given
in Definition[2.1. Let[xo, z;] € D satisfy [3.4). We have to show thatis strictly convex on
(g, x1]. Takeyo, y1 € [z, 1], A € [0, 1]. By the mean-value theorem, there exigts [yo, y1]

such that
f(yl) - f(yo)

ly1 — woll
Therefore, by Definitiop 2|1,

- ‘<y1 —0) G| <a=o
ly1 — ol

fly) = fo) _ fur) = fly)
1 — ol lyxn — w1l
for all y) € [yo, y1]. Itfollows thatf(y,) < (1 — A)f(vo) + Af(y1). Hence,f is strictly convex
on [z, x1].

(b) Sufficiency: Assume that there is an> 0 such thatf is strictly convex on every segment
[zo, 1] satisfying [3.4). Choose = «. We have to show that fod| < o, 29,21 € D,
zy = (1= Nxo + Azq andX €10, 1[, (2.1) is satisfied. Assume the contrary that

f(xo) - f(fl) <& but fxy) — f(%)

[0 — 21| 5 — 21
In analogy to the proof of Theorem 2/2 [4], we consider the function

g@t=f(%+t

Sinceg is continuous, the set: = argma%gtguxo_m”g(t) is nonempty and closed. Moreover,
(3.5) implies that

(3.5) > 6.

M) — 6t 0<t< ||z — .
[z — 1|

9([lzo = z1]]) < 9(0) < g(lJx = z1]).
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If either 0 or ||z — z1|| belongs ta4 so doeg|x) —z1||. This implies thatdN |0, ||zo — x1||[ # 0.
Takez € AN|0, ||z — x1||[. Theng'(z) = 0. It follows that

PR

=0 <o =a.
Hl’o—%”

SinceV f is continuous and € |0, ||zo — 21]|[, there existsy > 0 such that

b =n)_g (fvl T ) ‘ -

[1 — 2ol [o — 21|

holds true fort € [z — w,z + w] C|0, ||xzo — z1||[. This implies by our assumption thatis

strictly convex onz — w, z + w]. Sinceg’(z) = 0, we conclude that is a minimizer ofg on

[z —w, z +w]. Itfollows from z € A thatg is constant oz — w, z + w], in contradiction with
the strict convexity of;. This completes our proof. O

The following corollary is a direct result of Theor¢m|3.2.

Corollary 3.3. A continuously differentiable functiofion ]a, b[ C R is strictly s-quasiconvex
iff there existsy > 0 such thatf is strictly convex on the level set

L(Lf ) = {z €]a,b[: [f'(z)] < a}.

Example 3.1. The functions

fl(x) = \/H> T € [_1’ 1]7
fo(z) = —cosx, x € [—2,2],
fas(z) =Inzx, x € [1,2]

given in [4] are not onlys-quasiconvex but also strictly-quasiconvex. Since a strictly
guasiconvex function is strictly quasiconvex, a convex function which is constant on some in-
terval is not strictlys-quasiconvex.

4. CONCLUDING REMARKS

Based on the results in the above sectionsand [4] — [5][Fig. 4 gives a complete description of
the relations existing between stricguasiconvexity $S-QQ, s-quasiconvexity £-Q0), strict
guasiconvexity (SQC), quasiconvexity (QC), strict pseudoconvexity (SPC), pseudoconvexity
(PC), strict convexity (SC), and convexity (C) of continuously differentiable functions. This
figure consists of 11 disjoint regions, numbered from 1 to 11. Here all abbreviations refer to
circular regions, apart from SPC which refers to the intersection of the circles defined by PC
and SQC. QC refers to the entire interior of the largest cirele)Crefers to the union of the
regions 3-9, an&S-QCrefers to the union of the regions 6-8.

In [1], we introduced the notion of-quasimonotone maps which are stable with respect to
their characterizations. In analogy to this paper, we can generate a new type of generalized
monotonicity, namely strict-quasimonotonicity and show that in the case of a differentiable
map, stricts-quasimonotonicity of the gradient is equivalent to stekgjuasiconvexity of the
underlying function. This will be a subject of another paper. Also, an application of this trend
in the theory of general economic equilibrium was presented in [2].
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