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ABSTRACT. We introduce the modified Szász-Mirakyan operatorsSn;r related to the Borel
methodsBr of summability of sequences. We give theorems on approximation properties of
these operators in the polynomial weight spaces.
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1. I NTRODUCTION

The approximation of functions by Szász-Mirakyan operators

(1.1) Sn(f ; x) := e−nx

∞∑
k=0

(nx)k

k!
f

(
k

n

)
, x ∈ R0, n ∈ N,

(R0 = [0,∞), N = {1, 2, ...}) has been examined in many papers and monographs (e.g. [11],
[1], [2], [4], [5]).

The above operators were modified by several authors (e.g. [3], [6], [9], [10], [12]) which
showed that new operators have similar or better approximation properties thanSn. M. Becker
in the paper [1] studied approximation problems for the operatorsSn in the polynomial weight
spaceCp, p ∈ N0 = N ∪ {0}, connected with the weight functionwp,

(1.2) w0(x) := 1, wp(x) := (1 + xp)−1 if p ∈ N,

for x ∈ R0. TheCp is the set of all functionsf : R0 → R (R = (−∞,∞)) for which fwp is
uniformly continuous and bounded onR0 and the norm is defined by

(1.3) ‖f‖p ≡ ‖f(·)‖p := sup
x∈R0

wp(x)|f(x)|.
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2 L. REMPULSKA AND S. GRACZYK

The spaceCm
p , m ∈ N, p ∈ N0, of m-times differentiable functionsf ∈ Cp with derivatives

f (k) ∈ Cp, 1 ≤ k ≤ m, and the norm (1.3) was considered also in [1].
In [1] it was proved thatSn is a positive linear operator acting from the spaceCp to Cp for

everyp ∈ N0. Moreover, for a fixedp ∈ N0 there existMk(p) = const. > 0, k = 1, 2,
depending only onp such that for everyf ∈ Cp there hold the inequalities:

(1.4) ‖Sn(f)‖p ≤ M1(p)‖f‖p for n ∈ N,

and

(1.5) wp(x) |Sn(f ; x)− f(x)| ≤ M2(p)ω2

(
f ; Cp;

√
x

n

)
, x ∈ R0, n ∈ N,

whereω2(f ; Cp; ·) is the second modulus of continuity off .
In this paper we introduce the following modified Szász-Mirakyan operators

(1.6) Sn;r(f ; x) :=
1

Ar(nx)

∞∑
k=0

(nx)rk

(rk)!
f

(
rk

n

)
, x ∈ R0, n ∈ N,

for f ∈ Cp and every fixedr ∈ N, where

(1.7) Ar(t) :=
∞∑

k=0

trk

(rk)!
for t ∈ R0.

Clearly A1(t) = et, A2(t) = cosh t ≡ 1
2
(et + e−t) andSn;1(f ; x) ≡ Sn(f ; x) for f ∈ Cp,

x ∈ R0 andn ∈ N. (The operatorsSn;2 were investigated in [9] for functions belonging to
exponential weight spaces.)

We mention that the definition ofSn;r is related to the Borel method of summability of se-
quences. It is well known ([7]) that a sequence(an)∞0 , an ∈ R, is summable tog by the Borel
methodBr, r ∈ N, if the series

∑∞
k=0

xrk

(rk)!
ak is convergent onR and

lim
x→∞

re−x

∞∑
k=0

xrk

(rk)!
ak = g.

In Section 2 we shall give some elementary properties ofSn;r. The approximation theorems
will be given in Section 3.

2. AUXILIARY RESULTS

It is known ([1]) that forek(x) = xk, k = 0, 1, 2, there holds:Sn(e0; x) = 1, Sn(e1; x) = x
andSn(e2; x) = x2 + x

n
, which imply that

(2.1) Sn

(
(e1(t)− e1(x))2; x

)
=

x

n
for x ∈ R0, n ∈ N.

Moreover, for every fixedq ∈ N, there exists a polynomialPq(x) =
∑q

k=0 akx
k with real

coefficientsak, aq 6= 0, depending only onq such that

(2.2) Sn

(
(e1(t)− e1(x))2q; x

)
≤ Pq(x)n−q for x ∈ R0, n ∈ N.
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From (1.1) – (1.4), (1.6) and (1.7) we deduce thatSn;r is a positive linear operator well
defined on every spaceCp, p ∈ N0, and

Sn;r(e0; x) = 1,(2.3)

Sn;r(e1; x) =
x

n

A′
r(nx)

Ar(nx)
,(2.4)

Sn;r(e2; x) =
x2

n2

A′′
r(nx)

Ar(nx)
+

x

n2

A′
r(nx)

Ar(nx)
,(2.5)

for x ∈ R0 andn, r ∈ N, and

(2.6) Sn;r(f ; 0) = f(0) for f ∈ Cp, n, r ∈ N.

Here we derive a simpler formula forAr.

Lemma 2.1. Let r ∈ N be a fixed number. ThenAr defined by (1.7) can be rewritten in the
form: A1(t) = et, A2(t) = cosh t,

(2.7) A2m(t) =
1

m

[
cosh t +

m−1∑
k=1

exp

(
t cos

kπ

m

)
cos

(
t sin

kπ

m

)]
,

for 2 ≤ m ∈ N, and

(2.8) A2m+1(t) =
1

2m + 1

[
et + 2

m∑
k=1

exp

(
t cos

2kπ

2m + 1

)
cos

(
t sin

2kπ

2m + 1

)]
,

for m ∈ N andt ∈ R0.

Proof. The formulas forA1 andA2 are obvious by (1.7). Forr ≥ 3 andt ∈ R0 we have

et =
∞∑

k=0

trk

(rk)!
+

∞∑
k=0

trk+1

(rk + 1)!
+ · · ·+

∞∑
k=0

trk+r−1

(rk + r − 1)!

which by (1.7) can be written in the form

et = Ar(t) +

∫ t

0

Ar(u) du +

∫ t

0

∫ v1

0

Ar(u) du dv1

+ · · ·+
∫ t

0

∫ v1

0

. . .

∫ vr−2

0

Ar(u) du dvr−2 . . . dv1.

By (r − 1)-times differentiation we get the equality

et = A(r−1)
r (t) + A(r−2)

r (t) + · · ·+ A′
r(t) + Ar(t) for t ∈ R0,

which shows thaty = Ar(t) is the solution of the differential equation

(2.9) y(r−1) + y(r−2) + · · ·+ y′ + y = et

satisfying the initial conditions

(2.10) y(0) = 1, y′(0) = y′′(0) = · · · = y(r−2)(0) = 0.

Using now the Laplace transformation

L[y(t)] = Y (s) :=

∫ ∞

0

y(t)e−stdt, s = x + iy,

we have by (2.10)

L
[
y(k)(t)

]
= skY (s)− sk−1 for k = 1, . . . , r − 1,
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and consequently we get from (2.7)(
sr−1 + sr−2 + · · ·+ s + 1

)
Y (s) =

1

s− 1
+ sr−2 + sr−3 + · · ·+ s + 1,

and

(2.11) Y (s) =
sr−1

sr − 1
.

By the inverse Laplace transformation we get

(2.12) y(t) = L−1

[
sr−1

sr − 1

]
for t ∈ R0,

and thisL−1 transform can be calculated by the residues ofY .
It is known that the inverse transform of a rational functionP (s)

Q(s)
with the simple polessk can

be written as follows

(2.13) L−1

[
P (s)

Q(s)

]
=
∑
sk

∗P (sk)e
skt

Q′(sk)
+ 2re

∑
sk

∗∗P (sk)e
skt

Q′(sk)
,

where
∑∗ denotes the sum for all realsk and

∑∗∗ denotes the sum for all complexsk = xk+iyk

with a positiveyk.
The functionY defined by (2.11) has the simple polessk = r

√
1 = e2kπi/r for k = 0, 1, . . . , r−

1. From this and (2.12) and (2.13) forr = 2m, 2 ≤ m ∈ N, we get

y(t) =
1

2m

(∑
sk

∗
eskt + 2re

∑
sk

∗∗
eskt

)

=
1

m

[
cosht +

m−1∑
k=1

exp

(
t cos

kπ

m

)
cos

(
t sin

kπ

m

)]
.

This shows that the formula (2.7) is proved.
Analogously by (2.12) and (2.13) we obtain (2.8). �

From (2.7) and (2.8) we have that

A3(t) =
1

3

(
et + 2e−t/2 cos

(√
3

2
t

))
,

A4(t) =
1

2
(cosht + cos t),

A6(t) =
1

3

(
cosht + 2cosh

t

2
cos

(√
3

2
t

))
, for t ∈ R0.

Applying the formula (1.7) and Lemma 2.1, we immediately obtain the following:

Lemma 2.2. For every fixedr ∈ N there exists a positive constantM3(r) depending only onr
such that

(2.14) 1 ≤ enx

Ar(nx)
≤ M3(r) for x ∈ R0, n ∈ N.

Lemma 2.3. Let r ∈ N. Then fore1(x) = x there holds

(2.15) lim
n→∞

nSn;r (e1(t)− e1(x); x) = 0
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and
lim

n→∞
nSn;r

(
(e1(t)− e1(x))2 ; x

)
= x,

at everyx ∈ R0. Moreover, we have

(2.16) Sn;r

(
(e1(t)− e1(x))2q ; x

)
≤ M3(r)Sn

(
(e1(t)− e1(x))2q ; x

)
for x ∈ R0, n ∈ N and every fixedq ∈ N.

Proof. The inequality (2.16) is obvious by (1.1), (1.6) and (2.14).
We shall prove only (2.15) forr = 2m, m ∈ N.
If r = 2 thenA2(t) = cosh t and by (2.4) we have

Sn;2 (e1(t)− e1(x); x) = x

(
sinh nx

cosh nx
− 1

)
=

−2x

e2nx + 1
for x ∈ R0, n ∈ N,

which implies (2.15).
If r = 2m with 2 ≤ m ∈ N, then by (2.4), (2.7) and (2.14) we get

|Sn;2m (e1(t)− e1(x); x)| = x

A2m(nx)

∣∣∣∣ 1nA′
2m(nx)− A2m(nx)

∣∣∣∣
=

x

mA2m(nx)

∣∣∣∣∣sinh nx− cosh nx

+
m−1∑
k=1

exp

(
nx cos

kπ

m

)[
cos

kπ

m
cos

(
nx sin

kπ

m

)

− sin
kπ

m
sin

(
nx sin

kπ

m

)
− cos

(
nx sin

kπ

m

)] ∣∣∣∣∣
≤ M3(2m)

x

m

[
e−2nx + 3

m−1∑
k=1

exp

(
−2nx sin2 kπ

m

)]
and from this we immediately obtain (2.15). �

From (1.6), (1.1) – (1.4) and (2.14) the following lemma results.

Lemma 2.4. The operatorSn;r, n, r ∈ N, is linear and positive, and acts from the spaceCp to
Cp for everyp ∈ N0. For f ∈ Cp

‖Sn;r(f)‖p ≤ ‖f‖p‖Sn;r(1/wp)‖p

≤ M3(r)‖f‖p · ‖Sn(1/wp)‖p ≤ M4(p, r)‖f‖p for n, r,∈ N,

whereM4(p, r) = M1(p)M3(r) and M1(p), M3(r) are positive constants given in (1.4) and
(2.14).

3. THEOREMS

First we shall prove two theorems on the order of approximation off ∈ Cp by Sn;r, r ≥ 2.

Theorem 3.1. Let p ∈ N0 and 2 ≤ r ∈ N be fixed numbers. Then there existsM5(p, r) =
const. > 0 (depending only onp andr) such that for everyf ∈ C1

p there holds the inequality

(3.1) wp(x) |Sn;r(f ; x)− f(x)| ≤ M5(p, r)‖f ′‖p

√
x

n
,
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for x ∈ R0 andn ∈ N.

Proof. Let f ∈ C1
p . Then by (1.6), (1.7) and (2.14) it follows that

|Sn;r(f ; x)− f(x)| ≤ Sn;r (|f(t)− f(x)| ; x)

≤ M3(r)Sn (|f(t)− f(x)|; x) for x ∈ R0, n ∈ N,

and fort, x ∈ R0

|f(t)− f(x)| =
∣∣∣∣∫ t

x

f ′(u) du

∣∣∣∣ ≤ ‖f ′‖p

(
1

wp(t)
+

1

wp(x)

)
|t− x|.

Using now the operatorSn, (1.1) – (1.4) and (2.1), we get

wp(x)Sn (|f(t)− f(x)|; x) ≤ ‖f ′‖p

{
wp(x)Sn

(
|t− x|
wp(t)

; x

)
+ Sn(|t− x|; x)

}
≤ ‖f ′‖p

(
Sn

(
(t− x)2; x

))1/2
{

2‖Sn(1/w2p)‖1/2
2p + 1

}
≤
(
2
√

M1(2p) + 1
)
‖f ′‖p

√
x

n
for x ∈ R0, n ∈ N.

Combining the above, we obtain the estimation (3.1). �

Theorem 3.2. Let p ∈ N0 and2 ≤ r ∈ N be fixed. Then there existsM6(p, r) = const. > 0
(depending only onp andr) such that for everyf ∈ Cp, x ∈ R0 andn ∈ N there holds

(3.2) wp(x) |Sn;r(f ; x)− f(x)| ≤ M6(p, r)ω1

(
f ; Cp;

√
x

n

)
,

whereω1(f ; Cp; ·) is the modulus of continuity off ∈ Cp, i.e.

(3.3) ω1(f ; Cp; t) := sup
0≤u≤t

‖∆uf(·)‖p for t ≥ 0,

and∆uf(x) = f(x + u)− f(x).

Proof. The inequality (3.2) forx = 0 follows by (1.2), (2.6) and (3.3).
Let f ∈ Cp andx > 0. We use the Steklov functionfh,

fh(x) :=
1

h

∫ h

0

f(x + t) dt for x ∈ R0, h > 0.

Thisfh belongs to the spaceC1
p and by (3.3) it follows that

(3.4) ‖f − fh‖p ≤ ω1(f ; Cp; h)

and

(3.5) ‖f ′h‖p ≤ h−1ω1(f ; Cp; h), for h > 0.

By the above properties offh and (2.3) we can write∣∣Sn;r

(
f(t); x

)
− f(x)

∣∣ ≤ |Sn;r (f(t)− fh(t); x)|+
∣∣Sn;r

(
fh(t); x

)
− fh(x)

∣∣+ |fh(x)− f(x)| ,
for n ∈ N andh > 0. Next, by Lemma 2.4 and (3.4) we get

wp(x)
∣∣Sn;r

(
f(t)− fh(t); x

)∣∣ ≤ M4(p, r)‖f − fh‖p ≤ M4(p, r)ω1(f ; Cp; h).

In view of Theorem 3.1 and (3.5) we have

wp(x)
∣∣Sn;r

(
fh; x

)
− fh(x)

∣∣ ≤ M5(p, r)‖f ′h‖p

√
x

n
≤ M5(p, r)h

−1

√
x

n
ω1(f ; Cp; h).
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Consequently,

(3.6) wp(x) |Sn;r(f ; x)− f(x)| ≤ ω1(f ; Cp; h)

(
M4(p, r) + M5(p, r)h

−1

√
x

n
+ 1

)
,

for x > 0, n ∈ N andh > 0. Puttingh =
√

x/n in (3.6) for givenx andn, we obtain the
desired estimation (3.2). �

Theorem 3.2 implies the following:

Corollary 3.3. If f ∈ Cp, p ∈ N0, and2 ≤ r ∈ N, then

lim
n→∞

Sn;r(f ; x) = f(x) at every x ∈ R0.

This convergence is uniform on every interval[x1, x2], x1 ≥ 0.

The Voronovskaya type theorem given in [1] for the operatorsSn can be extended toSn;r

with r ≥ 2.

Theorem 3.4. Suppose thatf ∈ C2
p , p ∈ N0, and2 ≤ r ∈ N. Then

(3.7) lim
n→∞

n (Sn;r(f ; x)− f(x)) =
x

2
f ′′(x)

at everyx ∈ R0.

Proof. The statement (3.7) forx = 0 is obvious by (2.6). Choosingx > 0, we can write the
Taylor formula forf ∈ C2

p :

f(t) = f(x) + f ′(x) +
1

2
f ′′(x)(t− x)2 + ϕ(t, x)(t− x)2 for t ∈ R0,

whereϕ(t) ≡ ϕ(t, x) is a function belonging toCp andlim
t→x

ϕ(t) = ϕ(x) = 0.

Using now the operatorSn;r and (2.3), we get

Sn;r(f(t); x) = f(x)+f ′(x)Sn;r(t−x; x)+
1

2
f ′′(x)Sn;r((t−x)2; x)+Sn;r

(
ϕ(t)(t− x)2; x

)
,

for n ∈ N, which by Lemma 2.3 implies that

(3.8) lim
n→∞

n (Sn;r(f(t); x)− f(x)) =
x

2
f ′′(x) + lim

n→∞
nSn;r

(
ϕ(t)(t− x)2; x

)
.

It is clear that

(3.9)
∣∣Sn;r

(
ϕ(t)(t− x)2; x

)∣∣ ≤ (Sn;r(ϕ
2(t); x)Sn;r((t− x)4; x)

)1/2
,

and by Corollary 3.3

(3.10) lim
n→∞

Sn;r(ϕ
2(t); x) = ϕ2(x) = 0.

Moreover, by (2.16) and (2.2) we deduce that the sequence(n2Sn;r((t− x)4; x))
∞
1 is bounded

at every fixedx ∈ R0. From this and (3.9) and (3.10) we get

lim
n→∞

nSn;r

(
ϕ(t)(t− x)2; x

)
= 0

which with (3.8) yields the statement (3.7). �

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 61, 8 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 L. REMPULSKA AND S. GRACZYK

4. REMARKS

Remark 1. We observe that the estimation (1.5) for the operatorsSn is better than (3.2) obtained
for Sn;r with r ≥ 2. It is generated by formulas (2.3) – (2.5) and Lemma 2.1 which show that
the operatorsSn;r, r ≥ 2, preserve only the functione0(x) = 1. The operatorsSn preserve the
functionek(x) = xk, k = 0, 1.

Remark 2. In the paper [2], the approximation properties of the Szász-Mirakyan operatorsSn

in the exponential weight spacesC∗
q , q > 0, with the weight functionvq(x) = e−qx, x ∈ R0

were examined. Obviously the operatorsSn;r, r ≥ 2, can be investigated also in these spaces.

Remark 3. G. Kirov in [8] defined the new Bernstein polynomials form-times differentiable
functions and showed that these operators have better approximation properties than classical
Bernstein polynomials.

The Kirov idea was applied to the operatorsSn in [10].
We mention that the Kirov method can be extended to the operatorsSn;r with r ≥ 2, i.e. for

functionsf ∈ Cm
p , m ∈ N, p ∈ N0, and a fixed2 ≤ r ∈ N we can consider the operators

S∗n;r(f ; x) :=
1

Ar(nx)

∞∑
k=0

(nx)rk

(rk)!

m∑
j=0

f (j)
(

rk
n

)
j!

(
rk

n
− x

)j

,

for x ∈ R0 andn ∈ N.
In [10] it was proved that theS∗n;1 have better approximation properties forf ∈ Cm

p , m ≥ 2,
thanSn;1.
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