

APPROXIMATION BY MODIFIED SZÁSZ-MIRAKYAN OPERATORS

L. REMPULSKA AND S. GRACZYK

INSTITUTE OF MATHEMATICS POZNAN UNIVERSITY OF TECHNOLOGY UL. PIOTROWO 3A, 60-965 POZNAN POLAND lucyna.rempulska@put.poznan.pl

szymon.graczyk@pisop.org.pl

Received 23 December, 2008; accepted 28 May, 2009 Communicated by I. Gavrea

ABSTRACT. We introduce the modified Szász-Mirakyan operators $S_{n;r}$ related to the Borel methods B_r of summability of sequences. We give theorems on approximation properties of these operators in the polynomial weight spaces.

Key words and phrases: Szász-Mirakyan operator, Polynomial weight space, Order of approximation, Voronovskaya type theorem.

2000 Mathematics Subject Classification. 41A36, 41A25.

1. INTRODUCTION

The approximation of functions by Szász-Mirakyan operators

(1.1)
$$S_n(f;x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f\left(\frac{k}{n}\right), \quad x \in \mathbb{R}_0, \ n \in \mathbb{N},$$

 $(\mathbb{R}_0 = [0, \infty), \mathbb{N} = \{1, 2, ...\})$ has been examined in many papers and monographs (e.g. [11], [1], [2], [4], [5]).

The above operators were modified by several authors (e.g. [3], [6], [9], [10], [12]) which showed that new operators have similar or better approximation properties than S_n . M. Becker in the paper [1] studied approximation problems for the operators S_n in the polynomial weight space C_p , $p \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, connected with the weight function w_p ,

(1.2)
$$w_0(x) := 1, \quad w_p(x) := (1+x^p)^{-1} \quad \text{if} \quad p \in \mathbb{N},$$

for $x \in \mathbb{R}_0$. The C_p is the set of all functions $f : \mathbb{R}_0 \to \mathbb{R}$ $(\mathbb{R} = (-\infty, \infty))$ for which fw_p is uniformly continuous and bounded on \mathbb{R}_0 and the norm is defined by

(1.3)
$$||f||_p \equiv ||f(\cdot)||_p := \sup_{x \in \mathbb{R}_0} w_p(x)|f(x)|.$$

⁰⁰³⁻⁰⁹

The space C_p^m , $m \in \mathbb{N}$, $p \in \mathbb{N}_0$, of *m*-times differentiable functions $f \in C_p$ with derivatives $f^{(k)} \in C_p$, $1 \le k \le m$, and the norm (1.3) was considered also in [1].

In [1] it was proved that S_n is a positive linear operator acting from the space C_p to C_p for every $p \in \mathbb{N}_0$. Moreover, for a fixed $p \in \mathbb{N}_0$ there exist $M_k(p) = const. > 0$, k = 1, 2, depending only on p such that for every $f \in C_p$ there hold the inequalities:

(1.4)
$$||S_n(f)||_p \le M_1(p)||f||_p \text{ for } n \in \mathbb{N},$$

and

(1.5)
$$w_p(x) \left| S_n(f;x) - f(x) \right| \le M_2(p)\omega_2\left(f;C_p;\sqrt{\frac{x}{n}}\right), \quad x \in \mathbb{R}_0, n \in \mathbb{N},$$

where $\omega_2(f; C_p; \cdot)$ is the second modulus of continuity of f.

In this paper we introduce the following modified Szász-Mirakyan operators

(1.6)
$$S_{n;r}(f;x) := \frac{1}{A_r(nx)} \sum_{k=0}^{\infty} \frac{(nx)^{rk}}{(rk)!} f\left(\frac{rk}{n}\right), \quad x \in \mathbb{R}_0, n \in \mathbb{N}.$$

for $f \in C_p$ and every fixed $r \in \mathbb{N}$, where

(1.7)
$$A_r(t) := \sum_{k=0}^{\infty} \frac{t^{rk}}{(rk)!} \quad \text{for} \quad t \in \mathbb{R}_0.$$

Clearly $A_1(t) = e^t$, $A_2(t) = \cosh t \equiv \frac{1}{2}(e^t + e^{-t})$ and $S_{n;1}(f;x) \equiv S_n(f;x)$ for $f \in C_p$, $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$. (The operators $S_{n;2}$ were investigated in [9] for functions belonging to exponential weight spaces.)

We mention that the definition of $S_{n;r}$ is related to the Borel method of summability of sequences. It is well known ([7]) that a sequence $(a_n)_0^\infty$, $a_n \in \mathbb{R}$, is summable to g by the Borel method B_r , $r \in \mathbb{N}$, if the series $\sum_{k=0}^{\infty} \frac{x^{rk}}{(rk)!} a_k$ is convergent on \mathbb{R} and

$$\lim_{x \to \infty} r e^{-x} \sum_{k=0}^{\infty} \frac{x^{rk}}{(rk)!} a_k = g$$

In Section 2 we shall give some elementary properties of $S_{n;r}$. The approximation theorems will be given in Section 3.

2. AUXILIARY RESULTS

It is known ([1]) that for $e_k(x) = x^k$, k = 0, 1, 2, there holds: $S_n(e_0; x) = 1$, $S_n(e_1; x) = x$ and $S_n(e_2; x) = x^2 + \frac{x}{n}$, which imply that

(2.1)
$$S_n\left((e_1(t) - e_1(x))^2; x\right) = \frac{x}{n} \quad \text{for} \quad x \in \mathbb{R}_0, n \in \mathbb{N}.$$

Moreover, for every fixed $q \in \mathbb{N}$, there exists a polynomial $\mathcal{P}_q(x) = \sum_{k=0}^q a_k x^k$ with real coefficients $a_k, a_q \neq 0$, depending only on q such that

(2.2)
$$S_n\left((e_1(t) - e_1(x))^{2q}; x\right) \le \mathcal{P}_q(x)n^{-q} \quad \text{for} \quad x \in \mathbb{R}_0, n \in \mathbb{N}.$$

From (1.1) – (1.4), (1.6) and (1.7) we deduce that $S_{n;r}$ is a positive linear operator well defined on every space C_p , $p \in \mathbb{N}_0$, and

(2.3)
$$S_{n;r}(e_0; x) = 1,$$

(2.4)
$$S_{n;r}(e_1; x) = \frac{x}{n} \frac{A'_r(nx)}{A_r(nx)},$$

(2.5)
$$S_{n;r}(e_2;x) = \frac{x^2}{n^2} \frac{A_r''(nx)}{A_r(nx)} + \frac{x}{n^2} \frac{A_r'(nx)}{A_r(nx)},$$

for $x \in \mathbb{R}_0$ and $n, r \in \mathbb{N}$, and

(2.6)
$$S_{n;r}(f;0) = f(0) \quad \text{for} \quad f \in C_p, \ n, r \in \mathbb{N}$$

Here we derive a simpler formula for A_r .

Lemma 2.1. Let $r \in \mathbb{N}$ be a fixed number. Then A_r defined by (1.7) can be rewritten in the form: $A_1(t) = e^t$, $A_2(t) = \cosh t$,

(2.7)
$$A_{2m}(t) = \frac{1}{m} \left[\cosh t + \sum_{k=1}^{m-1} \exp\left(t \cos \frac{k\pi}{m}\right) \cos\left(t \sin \frac{k\pi}{m}\right) \right],$$

for $2 \leq m \in \mathbb{N}$, and

(2.8)
$$A_{2m+1}(t) = \frac{1}{2m+1} \left[e^t + 2\sum_{k=1}^m \exp\left(t\cos\frac{2k\pi}{2m+1}\right)\cos\left(t\sin\frac{2k\pi}{2m+1}\right) \right],$$

for $m \in \mathbb{N}$ and $t \in \mathbb{R}_0$.

Proof. The formulas for A_1 and A_2 are obvious by (1.7). For $r \ge 3$ and $t \in \mathbb{R}_0$ we have

$$e^{t} = \sum_{k=0}^{\infty} \frac{t^{rk}}{(rk)!} + \sum_{k=0}^{\infty} \frac{t^{rk+1}}{(rk+1)!} + \dots + \sum_{k=0}^{\infty} \frac{t^{rk+r-1}}{(rk+r-1)!}$$

which by (1.7) can be written in the form

$$e^{t} = A_{r}(t) + \int_{0}^{t} A_{r}(u) \, du + \int_{0}^{t} \int_{0}^{v_{1}} A_{r}(u) \, du \, dv_{1} + \dots + \int_{0}^{t} \int_{0}^{v_{1}} \dots \int_{0}^{v_{r-2}} A_{r}(u) \, du \, dv_{r-2} \dots dv_{1}.$$

By (r-1)-times differentiation we get the equality

$$e^{t} = A_{r}^{(r-1)}(t) + A_{r}^{(r-2)}(t) + \dots + A_{r}'(t) + A_{r}(t) \text{ for } t \in \mathbb{R}_{0},$$

which shows that $y = A_r(t)$ is the solution of the differential equation

(2.9)
$$y^{(r-1)} + y^{(r-2)} + \dots + y' + y = e^t$$

satisfying the initial conditions

(2.10)
$$y(0) = 1, \quad y'(0) = y''(0) = \dots = y^{(r-2)}(0) = 0.$$

Using now the Laplace transformation

$$\mathcal{L}[y(t)] = Y(s) := \int_0^\infty y(t)e^{-st}dt, \quad s = x + iy,$$

we have by (2.10)

$$\mathcal{L}[y^{(k)}(t)] = s^k Y(s) - s^{k-1}$$
 for $k = 1, ..., r-1$,

$$\left(s^{r-1} + s^{r-2} + \dots + s + 1\right)Y(s) = \frac{1}{s-1} + s^{r-2} + s^{r-3} + \dots + s + 1,$$

and

(2.11)
$$Y(s) = \frac{s^{r-1}}{s^r - 1}.$$

By the inverse Laplace transformation we get

(2.12)
$$y(t) = \mathcal{L}^{-1} \left[\frac{s^{r-1}}{s^r - 1} \right] \quad \text{for} \quad t \in \mathbb{R}_0,$$

and this \mathcal{L}^{-1} transform can be calculated by the residues of Y.

It is known that the inverse transform of a rational function $\frac{P(s)}{Q(s)}$ with the simple poles s_k can be written as follows

(2.13)
$$\mathcal{L}^{-1}\left[\frac{P(s)}{Q(s)}\right] = \sum_{s_k} {}^* \frac{P(s_k)e^{s_k t}}{Q'(s_k)} + 2re \sum_{s_k} {}^{**} \frac{P(s_k)e^{s_k t}}{Q'(s_k)},$$

where \sum^{*} denotes the sum for all real s_k and \sum^{**} denotes the sum for all complex $s_k = x_k + iy_k$ with a positive y_k .

The function Y defined by (2.11) has the simple poles $s_k = \sqrt[r]{1} = e^{2k\pi i/r}$ for $k = 0, 1, \ldots, r-1$. From this and (2.12) and (2.13) for $r = 2m, 2 \le m \in \mathbb{N}$, we get

$$y(t) = \frac{1}{2m} \left(\sum_{s_k}^{*} e^{s_k t} + 2re \sum_{s_k}^{**} e^{s_k t} \right)$$
$$= \frac{1}{m} \left[\cosh t + \sum_{k=1}^{m-1} \exp\left(t\cos\frac{k\pi}{m}\right)\cos\left(t\sin\frac{k\pi}{m}\right) \right].$$

This shows that the formula (2.7) is proved.

Analogously by (2.12) and (2.13) we obtain (2.8).

From (2.7) and (2.8) we have that

$$A_{3}(t) = \frac{1}{3} \left(e^{t} + 2e^{-t/2} \cos\left(\frac{\sqrt{3}}{2}t\right) \right),$$

$$A_{4}(t) = \frac{1}{2} (\cosh t + \cos t),$$

$$A_{6}(t) = \frac{1}{3} \left(\cosh t + 2\cosh\frac{t}{2}\cos\left(\frac{\sqrt{3}}{2}t\right) \right), \quad \text{for} \quad t \in \mathbb{R}_{0}$$

Applying the formula (1.7) and Lemma 2.1, we immediately obtain the following:

Lemma 2.2. For every fixed $r \in \mathbb{N}$ there exists a positive constant $M_3(r)$ depending only on r such that

(2.14)
$$1 \le \frac{e^{nx}}{A_r(nx)} \le M_3(r) \quad for \quad x \in \mathbb{R}_0, n \in \mathbb{N}.$$

Lemma 2.3. Let $r \in \mathbb{N}$. Then for $e_1(x) = x$ there holds

(2.15)
$$\lim_{n \to \infty} n S_{n;r} \left(e_1(t) - e_1(x); x \right) = 0$$

and

$$\lim_{n \to \infty} n S_{n;r} \left(\left(e_1(t) - e_1(x) \right)^2; x \right) = x,$$

at every $x \in \mathbb{R}_0$. Moreover, we have

(2.16)
$$S_{n;r}\left(\left(e_{1}(t)-e_{1}(x)\right)^{2q};x\right) \leq M_{3}(r)S_{n}\left(\left(e_{1}(t)-e_{1}(x)\right)^{2q};x\right)$$

for $x \in \mathbb{R}_{0}$, $n \in \mathbb{N}$ and every fixed $q \in \mathbb{N}$.

Proof. The inequality (2.16) is obvious by (1.1), (1.6) and (2.14). We shall prove only (2.15) for $r = 2m, m \in \mathbb{N}$.

If r = 2 then $A_2(t) = \cosh t$ and by (2.4) we have

$$S_{n;2}(e_1(t) - e_1(x); x) = x \left(\frac{\sinh nx}{\cosh nx} - 1\right)$$
$$= \frac{-2x}{e^{2nx} + 1} \quad \text{for} \quad x \in \mathbb{R}_0, n \in \mathbb{N},$$

which implies (2.15).

If r=2m with $2\leq m\in\mathbb{N},$ then by (2.4), (2.7) and (2.14) we get

$$|S_{n;2m} (e_1(t) - e_1(x); x)| = \frac{x}{A_{2m}(nx)} \left| \frac{1}{n} A'_{2m}(nx) - A_{2m}(nx) \right|$$

$$= \frac{x}{mA_{2m}(nx)} \left| \sinh nx - \cosh nx + \sum_{k=1}^{m-1} \exp\left(nx \cos\frac{k\pi}{m}\right) \left[\cos\frac{k\pi}{m} \cos\left(nx \sin\frac{k\pi}{m}\right) - \sin\frac{k\pi}{m} \sin\left(nx \sin\frac{k\pi}{m}\right) - \cos\left(nx \sin\frac{k\pi}{m}\right) \right] \right|$$

$$= \frac{1}{2} M_3(2m) \frac{x}{m} \left[e^{-2nx} + 3 \sum_{k=1}^{m-1} \exp\left(-2nx \sin^2\frac{k\pi}{m}\right) \right]$$

If from this we immediately obtain (2.15).

and from this we immediately obtain (2.15).

From (1.6), (1.1) - (1.4) and (2.14) the following lemma results.

Lemma 2.4. The operator $S_{n;r}$, $n, r \in \mathbb{N}$, is linear and positive, and acts from the space C_p to C_p for every $p \in \mathbb{N}_0$. For $f \in C_p$

$$\begin{split} \|S_{n;r}(f)\|_{p} &\leq \|f\|_{p} \|S_{n;r}(1/w_{p})\|_{p} \\ &\leq M_{3}(r) \|f\|_{p} \cdot \|S_{n}(1/w_{p})\|_{p} \leq M_{4}(p,r) \|f\|_{p} \quad for \quad n,r, \in \mathbb{N}, \end{split}$$

where $M_4(p,r) = M_1(p)M_3(r)$ and $M_1(p)$, $M_3(r)$ are positive constants given in (1.4) and (2.14).

3. THEOREMS

First we shall prove two theorems on the order of approximation of $f \in C_p$ by $S_{n;r}$, $r \ge 2$.

Theorem 3.1. Let $p \in \mathbb{N}_0$ and $2 \leq r \in \mathbb{N}$ be fixed numbers. Then there exists $M_5(p,r) =$ const. > 0 (depending only on p and r) such that for every $f \in C_p^1$ there holds the inequality

(3.1)
$$w_p(x) |S_{n;r}(f;x) - f(x)| \le M_5(p,r) ||f'||_p \sqrt{\frac{x}{n}}$$

for $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

Proof. Let $f \in C_p^1$. Then by (1.6), (1.7) and (2.14) it follows that

$$|S_{n;r}(f;x) - f(x)| \le S_{n;r} (|f(t) - f(x)|;x) \le M_3(r) S_n (|f(t) - f(x)|;x) \quad \text{for} \quad x \in \mathbb{R}_0, n \in \mathbb{N}$$

and for $t, x \in \mathbb{R}_0$

$$|f(t) - f(x)| = \left| \int_{x}^{t} f'(u) \, du \right| \le ||f'||_{p} \left(\frac{1}{w_{p}(t)} + \frac{1}{w_{p}(x)} \right) |t - x|.$$

Using now the operator S_n , (1.1) – (1.4) and (2.1), we get

$$w_{p}(x)S_{n}\left(|f(t) - f(x)|; x\right) \leq \|f'\|_{p} \left\{ w_{p}(x)S_{n}\left(\frac{|t - x|}{w_{p}(t)}; x\right) + S_{n}(|t - x|; x) \right\}$$

$$\leq \|f'\|_{p} \left(S_{n}\left((t - x)^{2}; x\right)\right)^{1/2} \left\{2\|S_{n}(1/w_{2p})\|_{2p}^{1/2} + 1\right\}$$

$$\leq \left(2\sqrt{M_{1}(2p)} + 1\right) \|f'\|_{p} \sqrt{\frac{x}{n}} \quad \text{for} \quad x \in \mathbb{R}_{0}, n \in \mathbb{N}.$$

Combining the above, we obtain the estimation (3.1).

Theorem 3.2. Let $p \in \mathbb{N}_0$ and $2 \leq r \in \mathbb{N}$ be fixed. Then there exists $M_6(p, r) = const. > 0$ (depending only on p and r) such that for every $f \in C_p$, $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$ there holds

(3.2)
$$w_p(x) |S_{n;r}(f;x) - f(x)| \le M_6(p,r)\omega_1\left(f;C_p;\sqrt{\frac{x}{n}}\right),$$

where $\omega_1(f; C_p; \cdot)$ is the modulus of continuity of $f \in C_p$, i.e.

(3.3)
$$\omega_1(f;C_p;t) := \sup_{0 \le u \le t} \|\Delta_u f(\cdot)\|_p \quad for \quad t \ge 0,$$

and $\Delta_u f(x) = f(x+u) - f(x)$.

Proof. The inequality (3.2) for x = 0 follows by (1.2), (2.6) and (3.3).

Let $f \in C_p$ and x > 0. We use the Steklov function f_h ,

$$f_h(x) := \frac{1}{h} \int_0^h f(x+t) dt \quad \text{for} \quad x \in \mathbb{R}_0, h > 0.$$

This f_h belongs to the space C_p^1 and by (3.3) it follows that

(3.4)
$$||f - f_h||_p \le \omega_1(f; C_p; h)$$

and

(3.5)
$$||f'_h||_p \le h^{-1}\omega_1(f;C_p;h), \text{ for } h > 0.$$

By the above properties of f_h and (2.3) we can write

$$|S_{n;r}(f(t);x) - f(x)| \le |S_{n;r}(f(t) - f_h(t);x)| + |S_{n;r}(f_h(t);x) - f_h(x)| + |f_h(x) - f(x)|,$$

for $n \in \mathbb{N}$ and $h > 0$. Next, by Lemma 2.4 and (3.4) we get

$$w_p(x) \left| S_{n;r} (f(t) - f_h(t); x) \right| \le M_4(p, r) \| f - f_h \|_p \le M_4(p, r) \omega_1(f; C_p; h).$$

In view of Theorem 3.1 and (3.5) we have

$$w_p(x) \left| S_{n;r}(f_h; x) - f_h(x) \right| \le M_5(p, r) \|f_h'\|_p \sqrt{\frac{x}{n}} \le M_5(p, r) h^{-1} \sqrt{\frac{x}{n}} \omega_1(f; C_p; h).$$

6

Consequently,

(3.6)
$$w_p(x) |S_{n;r}(f;x) - f(x)| \le \omega_1(f;C_p;h) \left(M_4(p,r) + M_5(p,r)h^{-1}\sqrt{\frac{x}{n}} + 1 \right),$$

for x > 0, $n \in \mathbb{N}$ and h > 0. Putting $h = \sqrt{x/n}$ in (3.6) for given x and n, we obtain the desired estimation (3.2).

Theorem 3.2 implies the following:

Corollary 3.3. If $f \in C_p$, $p \in \mathbb{N}_0$, and $2 \leq r \in \mathbb{N}$, then

$$\lim_{n \to \infty} S_{n;r}(f;x) = f(x) \quad at \ every \quad x \in \mathbb{R}_0.$$

This convergence is uniform on every interval $[x_1, x_2], x_1 \ge 0$.

The Voronovskaya type theorem given in [1] for the operators S_n can be extended to $S_{n;r}$ with $r \ge 2$.

Theorem 3.4. Suppose that $f \in C_p^2$, $p \in \mathbb{N}_0$, and $2 \leq r \in \mathbb{N}$. Then

(3.7)
$$\lim_{n \to \infty} n \left(S_{n;r}(f;x) - f(x) \right) = \frac{x}{2} f''(x)$$

at every $x \in \mathbb{R}_0$.

Proof. The statement (3.7) for x = 0 is obvious by (2.6). Choosing x > 0, we can write the Taylor formula for $f \in C_p^2$:

$$f(t) = f(x) + f'(x) + \frac{1}{2}f''(x)(t-x)^2 + \varphi(t,x)(t-x)^2 \quad \text{for} \quad t \in \mathbb{R}_0,$$

where $\varphi(t) \equiv \varphi(t, x)$ is a function belonging to C_p and $\lim_{t \to x} \varphi(t) = \varphi(x) = 0$.

Using now the operator $S_{n;r}$ and (2.3), we get

$$S_{n;r}(f(t);x) = f(x) + f'(x)S_{n;r}(t-x;x) + \frac{1}{2}f''(x)S_{n;r}((t-x)^2;x) + S_{n;r}\left(\varphi(t)(t-x)^2;x\right),$$

for $n \in \mathbb{N}$, which by Lemma 2.3 implies that

(3.8)
$$\lim_{n \to \infty} n \left(S_{n;r}(f(t);x) - f(x) \right) = \frac{x}{2} f''(x) + \lim_{n \to \infty} n S_{n;r} \left(\varphi(t)(t-x)^2;x \right).$$

It is clear that

(3.9)
$$\left|S_{n;r}\left(\varphi(t)(t-x)^{2};x\right)\right| \leq \left(S_{n;r}(\varphi^{2}(t);x)S_{n;r}((t-x)^{4};x)\right)^{1/2},$$

and by Corollary 3.3

(3.10)
$$\lim_{n \to \infty} S_{n;r}(\varphi^2(t); x) = \varphi^2(x) = 0.$$

Moreover, by (2.16) and (2.2) we deduce that the sequence $(n^2 S_{n;r}((t-x)^4;x))_1^{\infty}$ is bounded at every fixed $x \in \mathbb{R}_0$. From this and (3.9) and (3.10) we get

$$\lim_{n \to \infty} n S_{n;r} \left(\varphi(t)(t-x)^2; x \right) = 0$$

which with (3.8) yields the statement (3.7).

4. **Remarks**

Remark 1. We observe that the estimation (1.5) for the operators S_n is better than (3.2) obtained for $S_{n;r}$ with $r \ge 2$. It is generated by formulas (2.3) – (2.5) and Lemma 2.1 which show that the operators $S_{n;r}$, $r \ge 2$, preserve only the function $e_0(x) = 1$. The operators S_n preserve the function $e_k(x) = x^k$, k = 0, 1.

Remark 2. In the paper [2], the approximation properties of the Szász-Mirakyan operators S_n in the exponential weight spaces C_q^* , q > 0, with the weight function $v_q(x) = e^{-qx}$, $x \in \mathbb{R}_0$ were examined. Obviously the operators $S_{n;r}$, $r \ge 2$, can be investigated also in these spaces.

Remark 3. G. Kirov in [8] defined the new Bernstein polynomials for *m*-times differentiable functions and showed that these operators have better approximation properties than classical Bernstein polynomials.

The Kirov idea was applied to the operators S_n in [10].

We mention that the Kirov method can be extended to the operators $S_{n;r}$ with $r \ge 2$, i.e. for functions $f \in C_p^m$, $m \in \mathbb{N}$, $p \in \mathbb{N}_0$, and a fixed $2 \le r \in \mathbb{N}$ we can consider the operators

$$S_{n;r}^*(f;x) := \frac{1}{A_r(nx)} \sum_{k=0}^{\infty} \frac{(nx)^{rk}}{(rk)!} \sum_{j=0}^m \frac{f^{(j)}\left(\frac{rk}{n}\right)}{j!} \left(\frac{rk}{n} - x\right)^j,$$

for $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

In [10] it was proved that the $S_{n;1}^*$ have better approximation properties for $f \in C_p^m$, $m \ge 2$, than $S_{n;1}$.

REFERENCES

- [1] M. BECKER, Global approximation theorems for Szász-Mirakyan and Baskakov operators in polynomial weight spaces, *Indiana Univ. Math. J.*, **27**(1) (1978), 127–142.
- [2] M. BECKER, D. KUCHARSKI AND R.J. NESSEL, Global approximation theorems for the Szász-Mirakyan operators in exponential weight spaces, *Linear Spaces and Approximation (Proc. Conf. Oberwolfach, 1977)*, Birkhäuser Verlag, Basel, Internat. Series of Num. Math., 40 (1978), 319–333.
- [3] A. CIUPA, Approximation by a generalized Szász type operator, *J. Comput. Anal. and Applic.*, **5**(4) (2003), 413–424.
- [4] R.A. DE VORE AND G.G. LORENTZ, Constructive Approximation, Springer-Verlag, Berlin, New York, 1993.
- [5] Z. DITZIAN AND V. TOTIK, Moduli of Smoothness, Springer-Verlag, New-York, 1987.
- [6] P. GUPTA AND V. GUPTA, Rate of convergence on Baskakov-Szász type operators, *Fasc. Math.*, **31** (2001), 37–44.
- [7] G.H. HARDY, Divergent Series, Oxford Univ. Press, Oxford, 1949.
- [8] G.H. KIROV, A generalization of the Bernstein polynomials, *Mathematica (Balcanica)*, **2**(2) (1992), 147–153.
- [9] M. LEŚNIEWICZ AND L. REMPULSKA, Approximation by some operators of the Szász-Mirakyan type in exponential weight spaces, *Glas. Mat. Ser.* III, 32(52)(1) (1997), 57–69.
- [10] L. REMPULSKA AND Z. WALCZAK, Modified Szász-Mirakyan operators, *Mathematica (Balcanica)*, 18 (2004), 53–63.
- [11] O. SZÁSZ, Generalizations of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards, Sect. B, 45 (1950), 239–245.
- [12] Z. WALCZAK, On the convergence of the modified Szász-Mirakyan operators, *Yokohama Math. J.*, **51**(1) (2004), 11–18.