APPROXIMATION BY MODIFIED SZÁSZ-MIRAKYAN OPERATORS

L. REMPULSKA AND S. GRACZYK

Institute of Mathematics

Poznan University of Technology ul. Piotrowo 3a, 60-965 Poznan

Poland

EMail: lucyna.rempulska@put.poznan.pl szymon.graczyk@pisop.org.pl

Received: 23 December, 2008

Accepted: 28 May, 2009

Communicated by: I. Gavrea

2000 AMS Sub. Class.: 41A36, 41A25.

Key words: Szász-Mirakyan operator, Polynomial weight space, Order of approximation,

Voronovskaya type theorem.

Abstract: We introduce the modified Szász-Mirakyan operators $S_{n;r}$ related to the Borel

methods B_r of summability of sequences. We give theorems on approximation

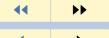
properties of these operators in the polynomial weight spaces.

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk vol. 10, iss. 3, art. 61, 2009

Title Page

Contents



Page 1 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Introduction	3
2	Auxiliary Results	5
3	Theorems	11
4	Remarks	15

Szász-Mirakyan Operators
L. Rempulska and S. Graczyk
vol. 10, iss. 3, art. 61, 2009

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

The approximation of functions by Szász-Mirakyan operators

(1.1)
$$S_n(f;x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f\left(\frac{k}{n}\right), \quad x \in \mathbb{R}_0, \ n \in \mathbb{N},$$

 $(\mathbb{R}_0 = [0, \infty), \mathbb{N} = \{1, 2, ...\})$ has been examined in many papers and monographs (e.g. [11], [1], [2], [4], [5]).

The above operators were modified by several authors (e.g. [3], [6], [9], [10], [12]) which showed that new operators have similar or better approximation properties than S_n . M. Becker in the paper [1] studied approximation problems for the operators S_n in the polynomial weight space C_p , $p \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, connected with the weight function w_p ,

(1.2)
$$w_0(x) := 1, \quad w_p(x) := (1+x^p)^{-1} \quad \text{if} \quad p \in \mathbb{N},$$

for $x \in \mathbb{R}_0$. The C_p is the set of all functions $f : \mathbb{R}_0 \to \mathbb{R}$ $(\mathbb{R} = (-\infty, \infty))$ for which fw_p is uniformly continuous and bounded on \mathbb{R}_0 and the norm is defined by

(1.3)
$$||f||_p \equiv ||f(\cdot)||_p := \sup_{x \in \mathbb{R}_0} w_p(x)|f(x)|.$$

The space C_p^m , $m \in \mathbb{N}$, $p \in \mathbb{N}_0$, of m-times differentiable functions $f \in C_p$ with derivatives $f^{(k)} \in C_p$, $1 \le k \le m$, and the norm (1.3) was considered also in [1].

In [1] it was proved that S_n is a positive linear operator acting from the space C_p to C_p for every $p \in \mathbb{N}_0$. Moreover, for a fixed $p \in \mathbb{N}_0$ there exist $M_k(p) = const. > 0$, k = 1, 2, depending only on p such that for every $f \in C_p$ there hold the inequalities:

(1.4)
$$||S_n(f)||_p \le M_1(p)||f||_p$$
 for $n \in \mathbb{N}$,

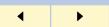
Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page

Contents



Page 3 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

and

$$(1.5) w_p(x) |S_n(f;x) - f(x)| \le M_2(p)\omega_2\left(f; C_p; \sqrt{\frac{x}{n}}\right), x \in \mathbb{R}_0, n \in \mathbb{N},$$

where $\omega_2(f; C_p; \cdot)$ is the second modulus of continuity of f.

In this paper we introduce the following modified Szász-Mirakyan operators

(1.6)
$$S_{n,r}(f;x) := \frac{1}{A_r(nx)} \sum_{k=0}^{\infty} \frac{(nx)^{rk}}{(rk)!} f\left(\frac{rk}{n}\right), \quad x \in \mathbb{R}_0, n \in \mathbb{N},$$

for $f \in C_p$ and every fixed $r \in \mathbb{N}$, where

(1.7)
$$A_r(t) := \sum_{k=0}^{\infty} \frac{t^{rk}}{(rk)!} \quad \text{for} \quad t \in \mathbb{R}_0.$$

Clearly $A_1(t) = e^t$, $A_2(t) = \cosh t \equiv \frac{1}{2} (e^t + e^{-t})$ and $S_{n;1}(f;x) \equiv S_n(f;x)$ for $f \in C_p$, $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$. (The operators $S_{n;2}$ were investigated in [9] for functions belonging to exponential weight spaces.)

We mention that the definition of $S_{n;r}$ is related to the Borel method of summability of sequences. It is well known ([7]) that a sequence $(a_n)_0^\infty$, $a_n \in \mathbb{R}$, is summable to g by the Borel method B_r , $r \in \mathbb{N}$, if the series $\sum_{k=0}^\infty \frac{x^{rk}}{(rk)!} a_k$ is convergent on \mathbb{R} and

$$\lim_{x \to \infty} r e^{-x} \sum_{k=0}^{\infty} \frac{x^{rk}}{(rk)!} a_k = g.$$

In Section 2 we shall give some elementary properties of $S_{n;r}$. The approximation theorems will be given in Section 3.

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page

Contents

44 >>

Page 4 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

2. Auxiliary Results

It is known ([1]) that for $e_k(x)=x^k$, k=0,1,2, there holds: $S_n(e_0;x)=1$, $S_n(e_1;x)=x$ and $S_n(e_2;x)=x^2+\frac{x}{n}$, which imply that

(2.1)
$$S_n\left((e_1(t) - e_1(x))^2; x\right) = \frac{x}{n} \quad \text{for} \quad x \in \mathbb{R}_0, n \in \mathbb{N}.$$

Moreover, for every fixed $q \in \mathbb{N}$, there exists a polynomial $\mathcal{P}_q(x) = \sum_{k=0}^q a_k x^k$ with real coefficients a_k , $a_q \neq 0$, depending only on q such that

$$(2.2) S_n\left((e_1(t) - e_1(x))^{2q}; x\right) \le \mathcal{P}_q(x) n^{-q} \quad \text{for} \quad x \in \mathbb{R}_0, n \in \mathbb{N}.$$

From (1.1) – (1.4), (1.6) and (1.7) we deduce that $S_{n;r}$ is a positive linear operator well defined on every space C_p , $p \in \mathbb{N}_0$, and

$$(2.3) S_{n:r}(e_0; x) = 1,$$

(2.4)
$$S_{n,r}(e_1; x) = \frac{x}{n} \frac{A'_r(nx)}{A_r(nx)},$$

(2.5)
$$S_{n,r}(e_2;x) = \frac{x^2}{n^2} \frac{A_r''(nx)}{A_r(nx)} + \frac{x}{n^2} \frac{A_r'(nx)}{A_r(nx)},$$

for $x \in \mathbb{R}_0$ and $n, r \in \mathbb{N}$, and

(2.6)
$$S_{n:r}(f;0) = f(0) \text{ for } f \in C_p, n, r \in \mathbb{N}.$$

Here we derive a simpler formula for A_r .

Lemma 2.1. Let $r \in \mathbb{N}$ be a fixed number. Then A_r defined by (1.7) can be rewritten in the form: $A_1(t) = e^t$, $A_2(t) = \cosh t$,

(2.7)
$$A_{2m}(t) = \frac{1}{m} \left[\cosh t + \sum_{k=1}^{m-1} \exp\left(t \cos \frac{k\pi}{m}\right) \cos\left(t \sin \frac{k\pi}{m}\right) \right],$$

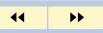
Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page

Contents



Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

for $2 \leq m \in \mathbb{N}$, and

(2.8) $A_{2m+1}(t)$

$$= \frac{1}{2m+1} \left[e^t + 2\sum_{k=1}^m \exp\left(t\cos\frac{2k\pi}{2m+1}\right) \cos\left(t\sin\frac{2k\pi}{2m+1}\right) \right],$$

for $m \in \mathbb{N}$ and $t \in \mathbb{R}_0$.

Proof. The formulas for A_1 and A_2 are obvious by (1.7). For $r \geq 3$ and $t \in \mathbb{R}_0$ we have

$$e^{t} = \sum_{k=0}^{\infty} \frac{t^{rk}}{(rk)!} + \sum_{k=0}^{\infty} \frac{t^{rk+1}}{(rk+1)!} + \dots + \sum_{k=0}^{\infty} \frac{t^{rk+r-1}}{(rk+r-1)!}$$

which by (1.7) can be written in the form

$$e^{t} = A_{r}(t) + \int_{0}^{t} A_{r}(u) du + \int_{0}^{t} \int_{0}^{v_{1}} A_{r}(u) du dv_{1} + \dots + \int_{0}^{t} \int_{0}^{v_{1}} \dots \int_{0}^{v_{r-2}} A_{r}(u) du dv_{r-2} \dots dv_{1}.$$

By (r-1)-times differentiation we get the equality

$$e^t = A_r^{(r-1)}(t) + A_r^{(r-2)}(t) + \dots + A_r'(t) + A_r(t)$$
 for $t \in \mathbb{R}_0$,

which shows that $y = A_r(t)$ is the solution of the differential equation

(2.9)
$$y^{(r-1)} + y^{(r-2)} + \dots + y' + y = e^t$$

satisfying the initial conditions

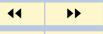
(2.10)
$$y(0) = 1, \quad y'(0) = y''(0) = \dots = y^{(r-2)}(0) = 0.$$

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk vol. 10, iss. 3, art. 61, 2009

Title Page

Contents



Page 6 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Using now the Laplace transformation

$$\mathcal{L}[y(t)] = Y(s) := \int_0^\infty y(t)e^{-st}dt, \quad s = x + iy,$$

we have by (2.10)

$$\mathcal{L}[y^{(k)}(t)] = s^k Y(s) - s^{k-1}$$
 for $k = 1, \dots, r-1$,

and consequently we get from (2.7)

$$(s^{r-1} + s^{r-2} + \dots + s + 1) Y(s) = \frac{1}{s-1} + s^{r-2} + s^{r-3} + \dots + s + 1,$$

and

(2.11)
$$Y(s) = \frac{s^{r-1}}{s^r - 1}.$$

By the inverse Laplace transformation we get

(2.12)
$$y(t) = \mathcal{L}^{-1} \left[\frac{s^{r-1}}{s^r - 1} \right] \quad \text{for} \quad t \in \mathbb{R}_0,$$

and this \mathcal{L}^{-1} transform can be calculated by the residues of Y.

It is known that the inverse transform of a rational function $\frac{P(s)}{Q(s)}$ with the simple poles s_k can be written as follows

(2.13)
$$\mathcal{L}^{-1}\left[\frac{P(s)}{Q(s)}\right] = \sum_{s_k} {}^* \frac{P(s_k)e^{s_k t}}{Q'(s_k)} + 2re \sum_{s_k} {}^{**} \frac{P(s_k)e^{s_k t}}{Q'(s_k)},$$

where \sum^* denotes the sum for all real s_k and \sum^{**} denotes the sum for all complex $s_k = x_k + iy_k$ with a positive y_k .

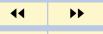
Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page

Contents



Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

The function Y defined by (2.11) has the simple poles $s_k = \sqrt[r]{1} = e^{2k\pi i/r}$ for k = 0, 1, ..., r - 1. From this and (2.12) and (2.13) for $r = 2m, 2 \le m \in \mathbb{N}$, we get

$$y(t) = \frac{1}{2m} \left(\sum_{s_k}^* e^{s_k t} + 2re \sum_{s_k}^{**} e^{s_k t} \right)$$
$$= \frac{1}{m} \left[\cosh t + \sum_{k=1}^{m-1} \exp\left(t \cos \frac{k\pi}{m}\right) \cos\left(t \sin \frac{k\pi}{m}\right) \right].$$

This shows that the formula (2.7) is proved.

Analogously by (2.12) and (2.13) we obtain (2.8).

From (2.7) and (2.8) we have that

$$A_3(t) = \frac{1}{3} \left(e^t + 2e^{-t/2} \cos \left(\frac{\sqrt{3}}{2} t \right) \right),$$

$$A_4(t) = \frac{1}{2} (\cosh t + \cos t),$$

$$A_6(t) = \frac{1}{3} \left(\cosh t + 2\cosh \frac{t}{2} \cos \left(\frac{\sqrt{3}}{2} t \right) \right), \quad \text{for} \quad t \in \mathbb{R}_0.$$

Applying the formula (1.7) and Lemma 2.1, we immediately obtain the following:

Lemma 2.2. For every fixed $r \in \mathbb{N}$ there exists a positive constant $M_3(r)$ depending only on r such that

(2.14)
$$1 \le \frac{e^{nx}}{A_n(nx)} \le M_3(r) \quad \text{for} \quad x \in \mathbb{R}_0, n \in \mathbb{N}.$$

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Lemma 2.3. Let $r \in \mathbb{N}$. Then for $e_1(x) = x$ there holds

(2.15)
$$\lim_{n \to \infty} n S_{n;r} \left(e_1(t) - e_1(x); x \right) = 0$$

and

$$\lim_{n \to \infty} n S_{n;r} \left((e_1(t) - e_1(x))^2; x \right) = x,$$

at every $x \in \mathbb{R}_0$. Moreover, we have

$$(2.16) S_{n;r}\left(\left(e_1(t) - e_1(x)\right)^{2q}; x\right) \le M_3(r) S_n\left(\left(e_1(t) - e_1(x)\right)^{2q}; x\right)$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$ and every fixed $q \in \mathbb{N}$.

Proof. The inequality (2.16) is obvious by (1.1), (1.6) and (2.14).

We shall prove only (2.15) for $r = 2m, m \in \mathbb{N}$.

If r = 2 then $A_2(t) = \cosh t$ and by (2.4) we have

$$S_{n;2}(e_1(t) - e_1(x); x) = x \left(\frac{\sinh nx}{\cosh nx} - 1 \right)$$
$$= \frac{-2x}{e^{2nx} + 1} \quad \text{for} \quad x \in \mathbb{R}_0, n \in \mathbb{N},$$

which implies (2.15).

If r = 2m with $2 \le m \in \mathbb{N}$, then by (2.4), (2.7) and (2.14) we get

$$|S_{n;2m}(e_1(t) - e_1(x); x)| = \frac{x}{A_{2m}(nx)} \left| \frac{1}{n} A'_{2m}(nx) - A_{2m}(nx) \right|$$

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

$$= \frac{x}{mA_{2m}(nx)} \left| \sinh nx - \cosh nx \right|$$

$$+ \sum_{k=1}^{m-1} \exp\left(nx \cos \frac{k\pi}{m}\right) \left[\cos \frac{k\pi}{m} \cos\left(nx \sin \frac{k\pi}{m}\right) - \sin \frac{k\pi}{m} \sin\left(nx \sin \frac{k\pi}{m}\right) - \cos\left(nx \sin \frac{k\pi}{m}\right)\right] \right|$$

$$\leq M_3(2m) \frac{x}{m} \left[e^{-2nx} + 3\sum_{k=1}^{m-1} \exp\left(-2nx \sin^2 \frac{k\pi}{m}\right)\right]$$

and from this we immediately obtain (2.15).

From (1.6), (1.1) - (1.4) and (2.14) the following lemma results.

Lemma 2.4. The operator $S_{n;r}$, $n, r \in \mathbb{N}$, is linear and positive, and acts from the space C_p to C_p for every $p \in \mathbb{N}_0$. For $f \in C_p$

$$||S_{n,r}(f)||_p \le ||f||_p ||S_{n,r}(1/w_p)||_p \le M_3(r)||f||_p \cdot ||S_n(1/w_p)||_p \le M_4(p,r)||f||_p \quad for \quad n,r,\in\mathbb{N},$$

where $M_4(p,r) = M_1(p)M_3(r)$ and $M_1(p)$, $M_3(r)$ are positive constants given in (1.4) and (2.14).

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk vol. 10, iss. 3, art. 61, 2009

Title Page

Contents

>>

44

◀

Page 10 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Theorems

First we shall prove two theorems on the order of approximation of $f \in C_p$ by $S_{n;r}$, r > 2.

Theorem 3.1. Let $p \in \mathbb{N}_0$ and $2 \le r \in \mathbb{N}$ be fixed numbers. Then there exists $M_5(p,r) = const. > 0$ (depending only on p and r) such that for every $f \in C_p^1$ there holds the inequality

(3.1)
$$w_p(x) |S_{n;r}(f;x) - f(x)| \le M_5(p,r) ||f'||_p \sqrt{\frac{x}{n}},$$

for $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

Proof. Let $f \in C_p^1$. Then by (1.6), (1.7) and (2.14) it follows that

$$|S_{n,r}(f;x) - f(x)| \le S_{n,r}(|f(t) - f(x)|;x)$$

 $\le M_3(r)S_n(|f(t) - f(x)|;x) \text{ for } x \in \mathbb{R}_0, n \in \mathbb{N},$

and for $t, x \in \mathbb{R}_0$

$$|f(t) - f(x)| = \left| \int_x^t f'(u) \, du \right| \le ||f'||_p \left(\frac{1}{w_p(t)} + \frac{1}{w_p(x)} \right) |t - x|.$$

Using now the operator S_n , (1.1) - (1.4) and (2.1), we get

$$w_{p}(x)S_{n}(|f(t) - f(x)|; x) \leq ||f'||_{p} \left\{ w_{p}(x)S_{n} \left(\frac{|t - x|}{w_{p}(t)}; x \right) + S_{n}(|t - x|; x) \right\}$$

$$\leq ||f'||_{p} \left(S_{n} \left((t - x)^{2}; x \right) \right)^{1/2} \left\{ 2 ||S_{n}(1/w_{2p})||_{2p}^{1/2} + 1 \right\}$$

$$\leq \left(2\sqrt{M_{1}(2p)} + 1 \right) ||f'||_{p} \sqrt{\frac{x}{n}} \quad \text{for} \quad x \in \mathbb{R}_{0}, n \in \mathbb{N}.$$

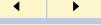
Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page

Contents



Page 11 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Combining the above, we obtain the estimation (3.1).

Theorem 3.2. Let $p \in \mathbb{N}_0$ and $2 \le r \in \mathbb{N}$ be fixed. Then there exists $M_6(p,r) = const. > 0$ (depending only on p and r) such that for every $f \in C_p$, $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$ there holds

(3.2)
$$w_p(x) |S_{n;r}(f;x) - f(x)| \le M_6(p,r)\omega_1\left(f;C_p;\sqrt{\frac{x}{n}}\right),$$

where $\omega_1(f; C_p; \cdot)$ is the modulus of continuity of $f \in C_p$, i.e.

(3.3)
$$\omega_1(f; C_p; t) := \sup_{0 \le u \le t} \|\Delta_u f(\cdot)\|_p \quad \text{for} \quad t \ge 0,$$

and
$$\Delta_u f(x) = f(x+u) - f(x)$$
.

Proof. The inequality (3.2) for x = 0 follows by (1.2), (2.6) and (3.3).

Let $f \in C_p$ and x > 0. We use the Steklov function f_h ,

$$f_h(x) := \frac{1}{h} \int_0^h f(x+t) dt$$
 for $x \in \mathbb{R}_0, h > 0$.

This f_h belongs to the space C_p^1 and by (3.3) it follows that

$$(3.4) ||f - f_h||_p \le \omega_1(f; C_p; h)$$

and

(3.5)
$$||f_h'||_p \le h^{-1}\omega_1(f; C_p; h), \text{ for } h > 0.$$

By the above properties of f_h and (2.3) we can write

$$\begin{aligned}
& \left| S_{n,r} \big(f(t); x \big) - f(x) \right| \\
& \leq \left| S_{n,r} \left(f(t) - f_h(t); x \right) \right| + \left| S_{n,r} \big(f_h(t); x \big) - f_h(x) \right| + \left| f_h(x) - f(x) \right|, \\
\end{aligned}$$

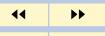
Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page

Contents



Page 12 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

for $n \in \mathbb{N}$ and h > 0. Next, by Lemma 2.4 and (3.4) we get

$$w_p(x) |S_{n,r}(f(t) - f_h(t); x)| \le M_4(p,r) ||f - f_h||_p \le M_4(p,r) \omega_1(f; C_p; h).$$

In view of Theorem 3.1 and (3.5) we have

$$w_p(x) |S_{n;r}(f_h;x) - f_h(x)| \le M_5(p,r) ||f_h'||_p \sqrt{\frac{x}{n}} \le M_5(p,r) h^{-1} \sqrt{\frac{x}{n}} \omega_1(f;C_p;h).$$

Consequently,

(3.6)
$$w_p(x) |S_{n;r}(f;x) - f(x)|$$

$$\leq \omega_1(f;C_p;h) \left(M_4(p,r) + M_5(p,r)h^{-1}\sqrt{\frac{x}{n}} + 1 \right),$$

for x > 0, $n \in \mathbb{N}$ and h > 0. Putting $h = \sqrt{x/n}$ in (3.6) for given x and n, we obtain the desired estimation (3.2).

Theorem 3.2 implies the following:

Corollary 3.3. If $f \in C_p$, $p \in \mathbb{N}_0$, and $2 \le r \in \mathbb{N}$, then

$$\lim_{n\to\infty} S_{n;r}(f;x) = f(x) \quad \text{at every} \quad x \in \mathbb{R}_0.$$

This convergence is uniform on every interval $[x_1, x_2]$, $x_1 \ge 0$.

The Voronovskaya type theorem given in [1] for the operators S_n can be extended to $S_{n;r}$ with $r \geq 2$.

Theorem 3.4. Suppose that $f \in C_p^2$, $p \in \mathbb{N}_0$, and $2 \le r \in \mathbb{N}$. Then

(3.7)
$$\lim_{n \to \infty} n \left(S_{n,r}(f;x) - f(x) \right) = \frac{x}{2} f''(x)$$

at every $x \in \mathbb{R}_0$.

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk vol. 10, iss. 3, art. 61, 2009

Title Page

Contents

Page 13 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. The statement (3.7) for x=0 is obvious by (2.6). Choosing x>0, we can write the Taylor formula for $f\in C_p^2$:

$$f(t) = f(x) + f'(x) + \frac{1}{2}f''(x)(t-x)^2 + \varphi(t,x)(t-x)^2$$
 for $t \in \mathbb{R}_0$,

where $\varphi(t) \equiv \varphi(t, x)$ is a function belonging to C_p and $\lim_{t \to x} \varphi(t) = \varphi(x) = 0$. Using now the operator $S_{n:r}$ and (2.3), we get

$$S_{n,r}(f(t);x) = f(x) + f'(x)S_{n,r}(t-x;x) + \frac{1}{2}f''(x)S_{n,r}((t-x)^2;x) + S_{n,r}(\varphi(t)(t-x)^2;x),$$

for $n \in \mathbb{N}$, which by Lemma 2.3 implies that

(3.8)
$$\lim_{n \to \infty} n \left(S_{n;r}(f(t); x) - f(x) \right) = \frac{x}{2} f''(x) + \lim_{n \to \infty} n S_{n;r} \left(\varphi(t) (t - x)^2; x \right).$$

It is clear that

(3.9)
$$\left| S_{n,r} \left(\varphi(t)(t-x)^2; x \right) \right| \le \left(S_{n,r} (\varphi^2(t); x) S_{n,r} ((t-x)^4; x) \right)^{1/2},$$
 and by Corollary 3.3

(3.10)
$$\lim_{n \to \infty} S_{n;r}(\varphi^2(t); x) = \varphi^2(x) = 0.$$

Moreover, by (2.16) and (2.2) we deduce that the sequence $(n^2S_{n;r}((t-x)^4;x))_1^{\infty}$ is bounded at every fixed $x \in \mathbb{R}_0$. From this and (3.9) and (3.10) we get

$$\lim_{n \to \infty} n S_{n;r} \left(\varphi(t)(t-x)^2; x \right) = 0$$

which with (3.8) yields the statement (3.7).

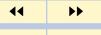
Szász-Mirakyan Operators

L. Rempulska and S. Graczyk vol. 10, iss. 3, art. 61, 2009

701. 10, 155. 5, at t. 01, 200

Title Page

Contents



Page 14 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

4. Remarks

Remark 1. We observe that the estimation (1.5) for the operators S_n is better than (3.2) obtained for $S_{n;r}$ with $r \geq 2$. It is generated by formulas (2.3) – (2.5) and Lemma 2.1 which show that the operators $S_{n;r}$, $r \geq 2$, preserve only the function $e_0(x) = 1$. The operators S_n preserve the function $e_k(x) = x^k$, k = 0, 1.

Remark 2. In the paper [2], the approximation properties of the Szász-Mirakyan operators S_n in the exponential weight spaces C_q^* , q>0, with the weight function $v_q(x)=e^{-qx}$, $x\in\mathbb{R}_0$ were examined. Obviously the operators $S_{n;r}$, $r\geq 2$, can be investigated also in these spaces.

Remark 3. G. Kirov in [8] defined the new Bernstein polynomials for m-times differentiable functions and showed that these operators have better approximation properties than classical Bernstein polynomials.

The Kirov idea was applied to the operators S_n in [10].

We mention that the Kirov method can be extended to the operators $S_{n;r}$ with $r \geq 2$, i.e. for functions $f \in C_p^m$, $m \in \mathbb{N}$, $p \in \mathbb{N}_0$, and a fixed $2 \leq r \in \mathbb{N}$ we can consider the operators

$$S_{n;r}^*(f;x) := \frac{1}{A_r(nx)} \sum_{k=0}^{\infty} \frac{(nx)^{rk}}{(rk)!} \sum_{j=0}^m \frac{f^{(j)}\left(\frac{rk}{n}\right)}{j!} \left(\frac{rk}{n} - x\right)^j,$$

for $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

In [10] it was proved that the $S_{n;1}^*$ have better approximation properties for $f \in C_n^m$, $m \ge 2$, than $S_{n;1}$.

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk vol. 10, iss. 3, art. 61, 2009

Title Page

Contents

>>

44

Page 15 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] M. BECKER, Global approximation theorems for Szász-Mirakyan and Baskakov operators in polynomial weight spaces, *Indiana Univ. Math. J.*, **27**(1) (1978), 127–142.
- [2] M. BECKER, D. KUCHARSKI AND R.J. NESSEL, Global approximation theorems for the Szász-Mirakyan operators in exponential weight spaces, *Linear Spaces and Approximation (Proc. Conf. Oberwolfach, 1977)*, Birkhäuser Verlag, Basel, Internat. Series of Num. Math., 40 (1978), 319–333.
- [3] A. CIUPA, Approximation by a generalized Szász type operator, *J. Comput. Anal. and Applic.*, **5**(4) (2003), 413–424.
- [4] R.A. DE VORE AND G.G. LORENTZ, *Constructive Approximation*, Springer-Verlag, Berlin, New York, 1993.
- [5] Z. DITZIAN AND V. TOTIK, *Moduli of Smoothness*, Springer-Verlag, New-York, 1987.
- [6] P. GUPTA AND V. GUPTA, Rate of convergence on Baskakov-Szász type operators, *Fasc. Math.*, **31** (2001), 37–44.
- [7] G.H. HARDY, Divergent Series, Oxford Univ. Press, Oxford, 1949.
- [8] G.H. KIROV, A generalization of the Bernstein polynomials, *Mathematica (Balcanica)*, **2**(2) (1992), 147–153.
- [9] M. LEŚNIEWICZ AND L. REMPULSKA, Approximation by some operators of the Szász-Mirakyan type in exponential weight spaces, *Glas. Mat. Ser.* III, **32**(52)(1) (1997), 57–69.
- [10] L. REMPULSKA AND Z. WALCZAK, Modified Szász-Mirakyan operators, *Mathematica (Balcanica)*, **18** (2004), 53–63.

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page

Contents

Page 16 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

- [11] O. SZÁSZ, Generalizations of S. Bernstein's polynomials to the infinite interval, *J. Res. Nat. Bur. Standards*, *Sect.* B, **45** (1950), 239–245.
- [12] Z. WALCZAK, On the convergence of the modified Szász-Mirakyan operators, *Yokohama Math. J.*, **51**(1) (2004), 11–18.

Szász-Mirakyan Operators

L. Rempulska and S. Graczyk

vol. 10, iss. 3, art. 61, 2009

Title Page
Contents

44 >>>

(

Page 17 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756