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ABSTRACT. The error bounds for Gauss–Legendre and Lobatto quadratures are proved for four
times differentiable functions (instead of six times differentiable functions as in the classical
results). Auxiliarily we establish some inequalities for 3–convex functions.
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1. I NTRODUCTION

The classical error bounds for the Gauss–Legendre quadrature rule (with three knots) and for
the Lobatto quadrature rule (with four knots) hold for six times differentiable functions. In this
paper we obtain error bounds for these rules for four times differentiable functions. To prove
our main results we establish some inequalities for so–called 3–convex functions. In [7] using
the same technique the error bounds for Midpoint, Trapezoidal, Simpson and Radau quadrature
rules were reproved. We prove our results for functions defined on[−1, 1] and next we translate
them to the interval[a, b].

Now we would like to recall the notions and results needed in this paper (cf. also the Intro-
duction to [7]).

1.1. Convex functions of higher orders. Hopf’s thesis [2] is probably the first work devoted
to higher–order convexity. This concept was also studied among others by Popoviciu [4]. Let
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2 SZYMON WA̧SOWICZ

I ⊂ R be an interval and letn ∈ N. Recall that the functionf : I → R is calledn–convexif

(1.1) D(x0, x1, . . . , xn+1; f) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x0 x1 . . . xn+1
...

...
...

...
xn

0 xn
1 . . . xn

n+1

f(x0) f(x1) . . . f(xn+1)

∣∣∣∣∣∣∣∣∣∣∣
≥ 0

for anyx0, x1, . . . , xn+1 ∈ I such thatx0 < x1 < · · · < xn+1. Obviously1–convex functions
are convex in the classical sense. More information on the definition and properties of convex
functions of higher orders can be found in [2, 3, 4, 6].

The following theorem (cf. [2, 3, 4]) characterizesn–convexity of(n+1)–times differentiable
functions.

Theorem A. Assume thatf : (a, b) → R is an(n + 1)–times differentiable function. Thenf is
n–convex if and only iff (n+1)(x) ≥ 0, x ∈ (a, b).

The next result holds for the interval[a, b].

Theorem B. [7, Theorem 1.3]Assume thatf : [a, b] → R is (n + 1)–times differentiable on
(a, b) and continuous on[a, b]. If f (n+1)(x) ≥ 0, x ∈ (a, b), thenf is n–convex.

1.2. Quadrature Rules. For a functionf : [−1, 1] → R we define some operators connected
with the quadrature rules:

G2(f) :=
1

2

(
f

(
−
√

3

3

)
+ f

(√
3

3

))
,

G3(f) :=
5

18
f

(
−
√

15

5

)
+

4

9
f(0) +

5

18
f

(√
15

5

)
,

L(f) :=
1

12
f(−1) +

5

12
f

(
−
√

5

5

)
+

5

12
f

(√
5

5

)
+

1

12
f(1),

S(f) := 1
6
(f(−1) + 4f(0) + f(1)) ,

I(f) :=
1

2

∫ 1

−1

f(x)dx.

The operatorsG2 andG3 are connected with Gauss–Legendre quadrature rules. The operators
L andS concern Lobatto and Simpson’s quadrature rules, respectively. The operatorI stands
for the integral mean value. Obviously all these operators are linear.

Next we recall the well known quadrature rules (cf. e.g. [5], [8], [9], [10]).

Gauss–Legendre quadratures.If f ∈ C4
(
[−1, 1]

)
then

(1.2) I(f) = G2(f) +
f (4)(ξ)

270
for someξ ∈ (−1, 1).

If f ∈ C6
(
[−1, 1]

)
then

(1.3) I(f) = G3(f) +
f (6)(ξ)

31500
for someξ ∈ (−1, 1).

Lobatto quadrature. If f ∈ C6
(
[−1, 1]

)
then

(1.4) I(f) = L(f)− f (6)(ξ)

23625
for someξ ∈ (−1, 1).

J. Inequal. Pure and Appl. Math., 7(3) Art. 84, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ON ERRORBOUNDS FORGAUSS–LEGENDRE ANDLOBATTO QUADRATURE RULES 3

Simpson’s Rule. If f ∈ C4
(
[−1, 1]

)
then

(1.5) I(f) = S(f)− f (4)(ξ)

180
for someξ ∈ (−1, 1).

2. I NEQUALITIES FOR 3–CONVEX FUNCTIONS

Let V (x1, . . . , xn) be the Vandermonde determinant of the terms involved.

Lemma 2.1. If f : [−1, 1] → R is 3–convex, then the inequality

v2
(
f(−u) + f(u)

)
≤ u2

(
f(−v) + f(v)

)
+ 2(v2 − u2)f(0)

holds for any0 < u < v ≤ 1.

Proof. Let 0 < u < v ≤ 1. Sincef is 3–convex and−1 ≤ −v < −u < 0 < u < v ≤ 1, then
by (1.1)

0 ≤ D(−v,−u, 0, u, v; f) =

∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
−v −u 0 u v
v2 u2 0 u2 v2

−v3 −u3 0 u3 v3

f(−v) f(−u) f(0) f(u) f(v)

∣∣∣∣∣∣∣∣∣∣
.

Expanding this determinant by the last row we obtain

V (−u, 0, u, v)f(−v)− V (−v, 0, u, v)f(−u) + V (−v,−u, u, v)f(0)

− V (−v,−u, 0, v)f(u) + V (−v,−u, 0, u)f(v) ≥ 0.

Computing the Vandermonde determinants

V (−u, 0, u, v) = V (−v,−u, 0, u) = 2u3v(v2 − u2),

V (−v, 0, u, v) = V (−v,−u, 0, v) = 2uv3(v2 − u2),

V (−v,−u, u, v) = 4uv(v2 − u2)2

and rearranging the above inequality we obtain

2uv3(v2 − u2)
(
f(−u) + f(u)

)
≤ 2u3v(v2 − u2)

(
f(−v) + f(v)

)
+ 4uv(v2 − u2)2f(0),

from which, by2uv(v2 − u2) > 0, the lemma follows. �

Proposition 2.2. If f : [−1, 1] → R is 3–convex, thenG2(f) ≤ G3(f) ≤ S(f) andL(f) ≤
S(f).

Proof. Setting in Lemma 2.1u =
√

5
5

, v = 1 we obtain

f
(
−
√

5
5

)
+ f

(√
5

5

)
≤ 1

5

(
f(−1) + f(1)

)
+

8

5
f(0).

Then
5
(
f
(
−
√

5
5

)
+ f

(√
5

5

))
≤ f(−1) + f(1) + 8f(0),

whence

f(−1) + f(1) + 5
(
f
(
−
√

5
5

)
+ f

(√
5

5

))
≤ 2 (f(−1) + f(1)) + 8f(0).

Dividing both sides of this inequality by 12 we getL(f) ≤ S(f). The proofs of the inequalities
G2(f) ≤ G3(f) andG3(f) ≤ S(f) are similar. �
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3. ERROR BOUNDS FOR QUADRATURE RULES

In this section we assume thatf ∈ C4
(
[−1, 1]

)
. Then

M4(f) := sup
−1≤x≤1

∣∣f (4)(x)
∣∣ < ∞.

The classical error bound for the Gauss–Legendre quadrature ruleG3(f) holds for the six times
differentiable functionf . This is also the case for the Lobatto quadrature formulaL(f). We
prove the error bounds for these quadratures for less regular functions, i.e. for four times differ-
entiable functions. We start with the result for 3–convex functions.

Theorem 3.1. If f ∈ C4
(
[−1, 1]

)
is 3–convex then|G3(f)− I(f)| ≤ M4(f)

180
.

Proof. On account of Theorem A,f (4) ≥ 0 on (−1, 1). Therefore we conclude from (1.2) that
(for someξ ∈ (−1, 1))

(3.1) G2(f)− I(f) = −f (4)(ξ)

270
≥ −f (4)(ξ)

180
≥ −M4(f)

180
.

By Proposition 2.2

(3.2) G2(f) ≤ G3(f) ≤ S(f).

Next, by (1.5) there exists anη ∈ (−1, 1) such that

(3.3) S(f)− I(f) =
f (4)(η)

180
≤ M4(f)

180
.

By (3.1), (3.2) and (3.3) we obtain

−M4(f)

180
≤ G2(f)− I(f) ≤ G3(f)− I(f) ≤ S(f)− I(f) ≤ M4(f)

180
,

from which the result follows. �

To prove the next two results we need to make some observations.

Remark 3.2. Forf ∈ C4
(
[−1, 1]

)
we consider the functiong(x) = M4(f)

24
x4. Then

(3.4)
∣∣f (4)(x)

∣∣ ≤ M4(f) = g(4)(x), −1 ≤ x ≤ 1.

Hence(g− f)(4) ≥ 0 and(g + f)(4) ≥ 0. Thus Theorem B implies that the functionsg− f and
g + f are 3–convex. Moreover, using (3.4) we obtain

(g − f)(4)(x) = g(4)(x)− f (4)(x) = M4(f)− f (4)(x) ≤ 2M4(f)

and
(g + f)(4)(x) = M4(f) + f (4)(x) ≤ 2M4(f).

Then

(3.5) M4(g − f) ≤ 2M4(f) and M4(g + f) ≤ 2M4(f).

By (1.3) and (1.4) we have alsoG3(g) = L(g) = I(g).

Corollary 3.3. If f ∈ C4
(
[−1, 1]

)
then|G3(f)− I(f)| ≤ M4(f)

90
.

Proof. By Remark 3.2 the functiong+f is 3–convex andG3(g) = I(g), whereg(x) = M4(f)
24

x4.
Theorem 3.1 and the linearity of the operatorsG3 andI now imply

|G3(f)− I(f)| = |G3(g) + G3(f)− I(g)− I(f)|

= |G3(g + f)− I(g + f)| ≤ M4(g + f)

180
.
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This inequality together with (3.5) concludes the proof. �

Before we prove the error bound for the Lobatto quadrature rule we make the following
simple observation.

Remark 3.4. By Proposition 2.2 and (1.5) we obtain that for a 3–convex function
f ∈ C4

(
[−1, 1]

)
there exists aξ ∈ (−1, 1) such thatL(f) ≤ S(f) = I(f) + f (4)(ξ)

180
. This

gives

(3.6) L(f)− I(f) ≤ M4(f)

180
.

Theorem 3.5. If f ∈ C4
(
[−1, 1]

)
then

∣∣L(f)− I(f)
∣∣ ≤ M4(f)

90
.

Proof. By Remark 3.2 the functionsg − f andg + f are 3–convex, whereg(x) = M4(f)
24

x4.
Then by (3.6)

L(g − f)− I(g − f) ≤ M4(g − f)

180
and L(g + f)− I(g + f) ≤ M4(g + f)

180
.

Because ofL(g) = I(g) and by linearity of the operatorsL andI we have

−
(
L(f)− I(f)

)
≤ M4(g − f)

180
and L(f)− I(f) ≤ M4(g + f)

180
.

These inequalities together with (3.5) conclude the proof. �

4. ERROR BOUNDS FOR QUADRATURE RULES ON [a, b]

In the next section we translate the quadrature rules and error bounds obtained in Theo-
rem 3.1, Corollary 3.3 and Theorem 3.5 to the interval[a, b]. To do this task we use the following
change of variables: fort ∈ [−1, 1] let

(4.1) x =
1− t

2
a +

1 + t

2
b.

Thenx ∈ [a, b]. For a functionf : [a, b] → R we defineF : [−1, 1] → R by

(4.2) F (t) := f(x).

Remark 4.1. If f isn–convex on[a, b] then the functionF given by (4.2) isn–convex on[−1, 1]
(cf. Popoviciu [4], Chapter II, §1, point 12).

By the substitution (4.1) we obtain

(4.3) I(F ) =
1

b− a

∫ b

a

f(x)dx.

Let f ∈ C4
(
[a, b]

)
. Using (4.1) and considering the functionF defined by (4.2) we have

F (4)(t) =
(

b−a
2

)4
f (4)(x) for x ∈ [a, b], t ∈ [−1, 1]. It is easy to see thatF ∈ C4

(
[−1, 1]

)
. Let

M4(F ) := sup
−1≤t≤1

∣∣F (4)(t)
∣∣ and M4(f) := sup

a≤x≤b

∣∣f (4)(x)
∣∣ .

ThenM4(F ) =
(

b−a
2

)4
M4(f). If moreoverf is 3–convex then by Remark 4.1F is also 3–

convex.
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Corollary 4.2. If f ∈ C4
(
[a, b]

)
then

(4.4)

∣∣∣∣∣ 5

18
f

(
5 +

√
15

10
a +

5−
√

15

10
b

)
+

4

9
f

(
a + b

2

)

+
5

18
f

(
5−

√
15

10
a +

5 +
√

15

10
b

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a)4M4(f)

1440
.

If moreoverf is 3–convex then the right hand side of(4.4)can be replaced by(b−a)4M4(f)
2880

.

Proof. By (4.1) and (4.2) we get

f

(
5 +

√
15

10
a +

5−
√

15

10
b

)
= F

(
−
√

15

5

)
, f

(
a + b

2

)
= F (0)

and

f

(
5−

√
15

10
a +

5 +
√

15

10
b

)
= F

(√
15

5

)
.

SinceF ∈ C4
(
[−1, 1]

)
then using Corollary 3.3 and (4.3) we obtain

|G3(F )− I(F )| ≤ M4(F )

90
=

(
b− a

2

)4

· M4(f)

90
,

which proves the desired inequality (4.4). For a 3–convex functionf we argue similarly using
Theorem 3.1. �

Using Theorem 3.5 we obtain by the same reasoning

Corollary 4.3. If f ∈ C4
(
[a, b]

)
then

(4.5)

∣∣∣∣∣ 1

12
f(a) +

5

12
f

(
5 +

√
5

10
a +

5−
√

5

10
b

)

+
5

12
f

(
5−

√
5

10
a +

5 +
√

5

10
b

)
+

1

12
f(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a)4M4(f)

1440
.

Remark 4.4. For six times differentiable functions inequalities similar to (4.4) and (4.5) can be
obtained using Bessenyei and Pales’ results [1, Corollary 5] and the method of convex functions
of higher orders presented in this paper (cf. also [7]). However, our results are obtained for less
regular functions.
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