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ABSTRACT. The error bounds for Gauss—Legendre and Lobatto quadratures are proved for four
times differentiable functions (instead of six times differentiable functions as in the classical
results). Auxiliarily we establish some inequalities for 3—convex functions.
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1. INTRODUCTION

The classical error bounds for the Gauss—Legendre quadrature rule (with three knots) and for
the Lobatto quadrature rule (with four knots) hold for six times differentiable functions. In this
paper we obtain error bounds for these rules for four times differentiable functions. To prove
our main results we establish some inequalities for so—called 3—convex functions. In [7] using
the same technique the error bounds for Midpoint, Trapezoidal, Simpson and Radau quadrature
rules were reproved. We prove our results for functions definde-onl] and next we translate
them to the intervala, b].

Now we would like to recall the notions and results needed in this paper (cf. also the Intro-
duction to [ 7]).

1.1. Convex functions of higher orders. Hopf's thesis|[2] is probably the first work devoted
to higher—order convexity. This concept was also studied among others by Popoviciu [4]. Let
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I C R be aninterval and let € N. Recall that the functiorf : I — R is calledn—convexf

1 1 .. 1
Xq T - Tyl
(1.1) D(zg,x1, ..., Tps1; f) = ¢ : - : >0
Vi ry . Ty
f(xo) fz1) - [f(Tnt1)
foranyzg, zq,..., 2,41 € I suchthatey < z; < --- < x,41. Obviouslyl—convex functions

are convex in the classical sense. More information on the definition and properties of convex
functions of higher orders can be found|in[2, 3, 4, 6].

The following theorem (cf[[2,/3,/14]) characterizesconvexity of(n+1)—times differentiable
functions.

Theorem A. Assume that : (a,b) — R is an(n + 1)-times differentiable function. Themis
n—convex if and only if ") (z) > 0, z € (a,b).

The next result holds for the intervial, b].

Theorem B. [[7, Theorem 1.3Assume thaf : [a,b] — R is (n + 1)-times differentiable on
(a,b) and continuous ofu, b]. If f+1)(z) >0,z € (a,b), thenf is n—convex.

1.2. Quadrature Rules. For a functionf : [-1,1] — R we define some operators connected
with the quadrature rules:

G:(1) = 5 (f (—?) + (?)) ,
Gy(f) = 15/ (—@) 50+ 25 (@) ,

f—2f<—1> + o (—?) v f (?) o),
S(f) = L U(=1) +4£(0) + F(1).

/ fla

The operatorgj, andgs are connected with Gauss—Legendre quadrature rules. The operators
L andS concern Lobatto and Simpson’s quadrature rules, respectively. The ofdeistaonds
for the integral mean value. Obviously all these operators are linear.

Next we recall the well known quadrature rules (cf. €.9. [S], [8], [9]) [10]).

5

s

S~—
Il

Gauss-Legendre quadratureslf f € C*([-1,1]) then

_ S N
(1.2) I(f) = Gao(f) + =5y~ forsomet € (=1, 1).
If f € CO([—1,1]) then
(1.3) Z(f)=Gs(f) + % for somef € (—1,1).
31500 ’

Lobatto quadrature. If f € C%([—1, 1]) then
(1.4) I(f)=L(f)— % for somef € (—1,1)

' B 23625 o
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Simpson’s Rule.If f € C*([—1,1]) then

(1.5) Z(f)=S(f) -

for somet € (—1,1).

2. INEQUALITIES FOR 3—CONVEX FUNCTIONS
LetV(xy,...,x,) be the Vandermonde determinant of the terms involved.
Lemma 2.1.If f: [-1,1] — R is 3—convex, then the inequality
v (f(=u) + f(u) < w?(f(=v) + f(v)) +2(0* = u*) £(0)
holds for any0 < u < v < 1.

Proof. Let0 < u < v < 1. Sincef is 3—convex and-1 < —v < —u < 0 < u < v < 1, then

by (£.1)

1 1 1 1 1

—v —u 0 U v

0 < D(—v,—u,0,u,v; f) =| v? u? 0 u? 02
v —ud 0 w0
f(=v) f(=u) f(O) f(u) f(v)

Expanding this determinant by the last row we obtain
V(—=u,0,u,v)f(—=v) = V(=v,0,u,v) f(—u) + V(—v, —u,u,v) f(0)
—V(—v,—u,0,v)f(u) + V(—v, —u,0,u) f(v) > 0.

Computing the Vandermonde determinants

V(—u,0,u,v) = V(—v, —u,0,u) = 2udv(v? — u?),

V(—v,0,u,v) = V(—v, —u,0,v) = 2uv®(v? — u?),

V(—v, —u,u,v) = duv(v? — u?)?
and rearranging the above inequality we obtain
2uv® (v* — ) (f(—u) + f(u) < 2uv(v* —u?) (f(—v) + f(v)) + duv(v® — u®)* £(0),
from which, by2uv(v? — u?) > 0, the lemma follows. O
<

Proposition 2.2. If f : [-1,1] — R is 3—convex, thed,(f) < G3(f) < S(f) and L(f)
S(f)-

Proof. Setting in Lemmh = ‘/Tg v = 1 we obtain

F(=8) 47 (£) < $(F-1) + F) + 5 £0)
Then

5(F(=2) + £ (32)) < F(-1) + £(1) +87(0),
whence

PN+ +5(F (=€) + £ (4£)) <2(/(=1) + £(1)) +87(0).

Dividing both sides of this inequality by 12 we gétf) < S(f). The proofs of the inequalities
Go(f) < Gs(f) andGs(f) < S(f) are similar. .
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3. ERROR BOUNDS FOR QUADRATURE RULES

In this section we assume thats C*([—1,1]). Then
My(f) = sup |/ ()] < oo.
—1<z<1

The classical error bound for the Gauss—Legendre quadraturgsigholds for the six times
differentiable functionf. This is also the case for the Lobatto quadrature forndl{la). We

prove the error bounds for these quadratures for less regular functions, i.e. for four times differ-
entiable functions. We start with the result for 3—convex functions.

Theorem 3.1.1f f € C*([~1,1]) is 3—convex thefGs(f) — Z(f)| < 2,

Proof. On account of Theore@Af,(‘*) > 0on(—1,1). Therefore we conclude frorp (1.2) that
(for somet € (—1,1))

TO® 90 M)

S G =T =357 2 " 450 2 " 1s0
By Proposition 2.2
(3.2) Ga(f) < Gs(f) < S(f).
Next, by [1.5) there exists ape (—1, 1) such that
_ W) _ Mu(f)
(3.3) S =T = 155" < a0
By (3.), [3.2) and (3]3) we obtain
) < gy -2y < 6u() - 7)< 8~ 1) < D).
from which the result follows. O

To prove the next two results we need to make some observations.

Remark 3.2. For f € C*([~1, 1]) we consider the functiog(z) = 2224 Then

(3.4) fD(@)] < My(f) = gW(x), —1<z<1.

Hence(g — f)® > 0and(g + f)® > 0. Thus Theorer B implies that the functiops- f and
g + f are 3—convex. Moreover, usirg (B.4) we obtain

(9= HNW() = gW(@) = fD(2) = Mu(f) = f(2) < 2M(f)

and

(9+ NW(x) = Ma(f) + [ (x) <2Ma(f).
Then
(3.5) My(g — f) < 2Mu(f) and Mg+ f) < 2Mu(f).

By (1.3) and[(1.4) we have alsi(g) = L(g) = Z(g).
Corollary 3.3. If f € C*([~1,1]) then|Gs(f) — Z(f)| < 2l

Proof. By Remar the function+ f is 3—convex ands;(g) = Z(g), whereg(z) = Mg—ff)#.
Theorenj 3.l and the linearity of the operatgssandZ now imply

1Gs(f) = Z(f) = 195(9) + G5(f) — Z(9) — Z(/)]

— lGalo + )~ Z(g + Pl < UL
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This inequality together with (3.5) concludes the proof. O

Before we prove the error bound for the Lobatto quadrature rule we make the following
simple observation.

Remark 3.4. By Proposition[2.2 and[ (1.5) we obtain that for a 3—convex function
f € C'([-1,1]) there exists & € (—1,1) such thatl(f) < S(f) = Z(f) + L2 This
gives

My(f)
180

Theorem 3.5.1f f € C*([~1,1]) then|L(f) — Z(f)| < 2.

— 90

(3.6) L) =Z(f) <

Proof. By Remar the functiong — f andg + f are 3—convex, where(z) = Malf) 4

Then by [(3.6)
My(g — f)

— ) =TI(g-f) <
Llg— =Tl - )< =
Because ofZ(g) = Z(g) and by linearity of the operatorsandZ we have

(et -z(p) < YD ana gy -3y < LD,

These inequalities together wifh (B.5) conclude the proof. O

M4(9+f)‘

and L(g+f)—-Z(g+f) < 180

4. ERROR BOUNDS FOR QUADRATURE RULES ON [a, b]

In the next section we translate the quadrature rules and error bounds obtained in Theo-
rem/3.], Corollary 313 and Theor¢gm[3.5 to the intefwal]. To do this task we use the following
change of variables: fare [—1, 1] let

1—t 14+t

(4.2) T=——a + 5 b.
Thenz € [a, b]. For a functionf : [a,b] — R we defineF’ : [-1,1] — R by
(4.2) F(t) = f(x).

Remark 4.1.If f isn—convex ora, b] then the functiorf’ given by [4.2) isi—convex orj—1, 1]
(cf. Popoviciu[4], Chapter II, 81, point 12).

By the substitution[(4]1) we obtain

b
(4.3) I(F) = 2 i a/ f(x)dx.

Let f € C*([a,b]). Using [4:1) and considering the functidf defined by [(4.2) we have
FW(t) = (b_Ta)4f(4)(x) forz € [a,b], t € [-1,1]. Itis easy to see thdf € C*([—1,1]). Let

M (F):= sup ‘F(4)(t)| and My(f) := sup ‘f(4)(x)‘.

—1<t<1 a<x<b

Then My(F) = (’J‘T“)4M4(f). If moreover f is 3—convex then by RemaEL is also 3—
convex.
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Corollary 4.2. If f € C*([a, b]) then

@ gf(5+\/ﬁa+5—¢_5) _f<a+b>

18 10 10

5 (515 5+ V15,
+1_8f< 0 ‘T ) b—a/f

If moreoverf is 3—convex then the right hand side@f4) can be replaced b%.
Proof. By (4.1) and|[(4.R) we get

f (5 +1(\)/ﬁa 42 _1(\)/ﬁb) —F (-@) . f (a;b) — F(0)

o U a)' My(f)
- 1440

and

5—v15 54415 V15
f( 0 ‘T 10 b>:F<T>'

SinceF € C*([-1,1]) then using Corollary 3|3 anfl(3.3) we obtain

My(F)  (b—a\" My(f)
R

which proves the desired inequalify (4.4). For a 3—convex funcfiare argue similarly using
Theoren 311. O

Using Theorem 3]5 we obtain by the same reasoning

Corollary 4.3. If f € C*([a, b]) then

@5) |5 (@) + ] (5 L mfb)
+3f<5—fa 5+f> o < b= Mip)
12 10 10 1440

Remark 4.4. For six times differentiable functions inequalities similarfto|4.4) (4.5) can be
obtained using Bessenyei and Pales’ results [1, Corollary 5] and the method of convex functions
of higher orders presented in this paper (cf. also [7]). However, our results are obtained for less
regular functions.
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