ON APPLICATION OF DIFFERENTIAL SUBORDINATION FOR CERTAIN SUBCLASS OF MEROMORPHICALLY p-VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS DEFINED BY LINEAR OPERATOR

WAGGAS GALIB ATSHAN AND S. R. KULKARNI
Department of Mathematics
College of Computer Science And Mathematics
University of Al-Qadisiya
DIWANIYA - IRAQ
waggashnd@yahoo.com
Department of Mathematics
Fergusson College, Pune - 411004, India
kulkarni_ferg@yahoo.com
Received 06 January, 2008; accepted 02 May, 2009
Communicated by S.S. Dragomir

Abstract

This paper is mainly concerned with the application of differential subordinations for the class of meromorphic multivalent functions with positive coefficients defined by a linear operator satisfying the following: $$
-\frac{z^{p+1}\left(L^{n} f(z)\right)^{\prime}}{p} \prec \frac{1+A z}{1+B z}\left(n \in \mathbb{N}_{0} ; z \in U\right)
$$

In the present paper, we study the coefficient bounds, δ-neighborhoods and integral representations. We also obtain linear combinations, weighted and arithmetic means and convolution properties.

Key words and phrases: Meromorphic functions, Differential subordination, convolution (or Hadamard product), p-valent functions, Linear operator, δ-Neighborhood, Integral representation, Linear combination, Weighted mean and Arithmetic mean.
2000 Mathematics Subject Classification. 30C45.

1. Introduction

Let $L(p, m)$ be a class of all meromorphic functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=m}^{\infty} a_{k} z^{k} \text { for any } m \geq p, \quad p \in \mathbb{N}=\{1,2, \ldots\}, \quad a_{k} \geq 0 \tag{1.1}
\end{equation*}
$$

which are p-valent in the punctured unit disk

$$
U^{*}=\{z: z \in \mathbb{C}, 0<|z|<1\}=U /\{0\} .
$$

[^0]Definition 1.1. Let f, g be analytic in U. Then g is said to be subordinate to f, written $g \prec f$, if there exists a Schwarz function $w(z)$, which is analytic in U with $w(0)=0$ and $|w(z)|<$ $1(z \in U)$ such that $g(z)=f(w(z))(z \in U)$. Hence $g(z) \prec f(z)(z \in U)$, then $g(0)=f(0)$ and $g(U) \subset f(U)$. In particular, if the function $f(z)$ is univalent in U, we have the following (e.g. [6]; [7]):

$$
g(z) \prec f(z)(z \in U) \text { if and only if } g(0)=f(0) \quad \text { and } \quad g(U) \subset f(U)
$$

Definition 1.2. For functions $f(z) \in L(p, m)$ given by 1.1 and $g(z) \in L(p, m)$ defined by

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{k=m}^{\infty} b_{k} z^{k}, \quad\left(b_{k} \geq 0, p \in \mathbb{N}, m \geq p\right) \tag{1.2}
\end{equation*}
$$

we define the convolution (or Hadamard product) of $f(z)$ and $g(z)$ by

$$
\begin{equation*}
(f * g)(z)=z^{-p}+\sum_{k=m}^{\infty} a_{k} b_{k} z^{k}, \quad(p \in \mathbb{N}, m \geq p, z \in U) \tag{1.3}
\end{equation*}
$$

Definition 1.3 ([9]). Let $f(z)$ be a function in the class $L(p, m)$ given by (1.1). We define a linear operator L^{n} by

$$
\begin{aligned}
L^{0} f(z) & =f(z), \\
L^{1} f(z) & =z^{-p}+\sum_{k=m}^{\infty}(p+k+1) a_{k} z^{k}=\frac{\left(z^{p+1} f(z)\right)^{\prime}}{z^{p}}
\end{aligned}
$$

and in general

$$
\begin{align*}
L^{n} f(z) & =L\left(L^{n-1} f(z)\right) \tag{1.4}\\
& =z^{-p}+\sum_{k=m}^{\infty}(p+k+1)^{n} a_{k} z^{k} \\
& =\frac{\left(z^{p+1} L^{n-1} f(z)\right)^{\prime}}{z^{p}}, \quad(n \in \mathbb{N}) .
\end{align*}
$$

It is easily verified from (1.4) that

$$
\begin{align*}
& z\left(L^{n} f(z)\right)^{\prime}=L^{n+1} f(z)-(p+1) L^{n} f(z) \tag{1.5}\\
& \quad\left(f \in L(p, m), \quad n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)
\end{align*}
$$

(1) Liu and Srivastava [4] introduced recently the linear operator when $m=0$, investigating several inclusion relationships involving various subclasses of meromorphically p-valent functions, which they defined by means of the linear operator L^{n} (see [4]).
(2) Uralegaddi and Somanatha [10] introduced the linear operator L^{n} when $p=1$ and $m=0$.
(3) Aouf and Hossen [2] obtained several results involving the linear operator L^{n} when $m=0$ and $p \in \mathbb{N}$.
We introduce a subclass of the function class $L(p, m)$ by making use of the principle of differential subordination as well as the linear operator L^{n}.
Definition 1.4. Let A and $B(-1 \leq B<A \leq 1)$ be fixed parameters. We say that a function $f(z) \in L(p, m)$ is in the class $L(p, m, n, A, B)$, if it satisfies the following subordination condition:

$$
\begin{equation*}
\frac{z^{p+1}\left(L^{n} f(z)\right)^{\prime}}{p} \prec \frac{1+A z}{1+B z} \quad\left(n \in \mathbb{N}_{0} ; z \in U\right) . \tag{1.6}
\end{equation*}
$$

By the definition of differential subordination, (1.6) is equivalent to the following condition:

$$
\left|\frac{z^{p+1}\left(L^{n} f(z)\right)^{\prime}+p}{B z^{p+1}\left(L^{n} f(z)\right)^{\prime}+p A}\right|<1, \quad(z \in U)
$$

We can write

$$
L\left(p, m, n, 1-\frac{2 \beta}{p},-1\right)=L(p, m, n, \beta)
$$

where $L(p, m, n, \beta)$ denotes the class of functions in $L(p, m)$ satisfying the following:

$$
\operatorname{Re}\left\{-z^{p+1}\left(L^{n} f(z)\right)^{\prime}\right\}>\beta \quad(0 \leq \beta<p ; z \in U)
$$

2. Coefficient Bounds

Theorem 2.1. Let the function $f(z)$ of the form (1.1), be in $L(p, m)$. Then the function $f(z)$ belongs to the class $L(p, m, n, A, B)$ if and only if

$$
\begin{equation*}
\sum_{k=m}^{\infty} k(1-B)(p+k+1)^{n} a_{k}<(A-B) p \tag{2.1}
\end{equation*}
$$

where $-1 \leq B<A \leq 1, p \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq p$.
The result is sharp for the function $f(z)$ given by

$$
f(z)=z^{-p}+\frac{(A-B) p}{k(1-B)(p+k+1)^{n}} z^{m}, \quad m \geq p
$$

Proof. Assume that the condition $\sqrt[2.1]{ }$ is true. We must show that $f \in L(p, m, n, A, B)$, or equivalently prove that

$$
\begin{equation*}
\left|\frac{z^{p+1}\left(L^{n} f(z)\right)^{\prime}+p}{B z^{p+1}\left(L^{n} f(z)\right)^{\prime}+A p}\right|<1 \tag{2.2}
\end{equation*}
$$

We have

$$
\begin{aligned}
\left|\frac{z^{p+1}\left(L^{n} f(z)\right)^{\prime}+p}{B z^{p+1}\left(L^{n} f(z)\right)^{\prime}+A p}\right| & =\left|\frac{z^{p+1}\left(-p z^{-(p+1)}+\sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k} z^{k-1}\right)+p}{B z^{p+1}\left(-p z^{-(p+1)}+\sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k} z^{k-1}\right)+A p}\right| \\
& =\left|\frac{\sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k} z^{k+p}}{(A-B) p+B \sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k} z^{k+p}}\right| \\
& \leq\left\{\frac{\sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k}}{(A-B) p+B \sum_{k=m}^{\infty} k(k+p+1)^{n} a_{k}}\right\}<1
\end{aligned}
$$

The last inequality by (2.1) is true.
Conversely, suppose that $f(z) \in L(p, m, n, A, B)$. We must show that the condition 2.1) holds true. We have

$$
\left|\frac{z^{p+1}\left(L^{n} f(z)\right)^{\prime}+p}{B z^{p+1}\left(L^{n} f(z)\right)^{\prime}+A p}\right|<1
$$

hence we get

$$
\left|\frac{\sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k} z^{k+p}}{(A-B) p+B \sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k} z^{k+p}}\right|<1
$$

Since $\operatorname{Re}(z)<|z|$, so we have

$$
\operatorname{Re}\left\{\frac{\sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k} z^{k+p}}{(A-B) p+B \sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k} z^{k+p}}\right\}<1
$$

We choose the values of z on the real axis and letting $z \rightarrow 1^{-}$, then we obtain

$$
\left\{\frac{\sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k}}{(A-B) p+B \sum_{k=m}^{\infty} k(p+k+1)^{n} a_{k}}\right\}<1
$$

then

$$
\sum_{k=m}^{\infty} k(1-B)(p+k+1)^{n} a_{k}<(A-B) p
$$

and the proof is complete.
Corollary 2.2. Let $f(z) \in L(p, m, n, A, B)$, then we have

$$
a_{k} \leq \frac{(A-B) p}{k(1-B)(p+k+1)^{n}}, k \geq m
$$

Corollary 2.3. Let $0 \leq n_{2}<n_{1}$, then $L\left(p, m, n_{2}, A, B\right) \subseteq L\left(p, m, n_{1}, A, B\right)$.

3. Neighbourhoods and Partial Sums

Definition 3.1. Let $-1 \leq B<A \leq 1, m \geq p, n \in \mathbb{N}_{0}, p \in \mathbb{N}$ and $\delta \geq 0$. We define the δ neighbourhood of a function $f \in L(p, m)$ and denote $N_{\delta}(f)$ such that

$$
\begin{align*}
N_{\delta}(f)=\left\{g \in L(p, m): g(z)=z^{-p}+\right. & \sum_{k=m}^{\infty} b_{k} z^{k}, \text { and } \tag{3.1}\\
& \left.\sum_{k=m}^{\infty} \frac{k(1-B)(p+k+1)^{n}}{(A-B) p}\left|a_{k}-b_{k}\right| \leq \delta\right\}
\end{align*}
$$

Goodman [3], Ruscheweyh [8] and Altintas and Owa [1] have investigated neighbourhoods for analytic univalent functions, we consider this concept for the class $L(p, m, n, A, B)$.
Theorem 3.1. Let the function $f(z)$ defined by (1.1) be in $L(p, m, n, A, B)$. For every complex number μ with $|\mu|<\delta, \delta \geq 0$, let $\frac{f(z)+\mu z^{-p}}{1+\mu} \in L(p, m, n, A, B)$, then $N_{\delta}(f) \subset L(p, m, n, A, B)$, $\delta \geq 0$.
Proof. Since $f \in L(p, m, n, A, B)$, f satisfies 2.1) and we can write for $\gamma \in \mathbb{C},|\gamma|=1$, that

$$
\begin{equation*}
\left[\frac{z^{p+1}\left(L^{n} f(z)\right)^{\prime}+p}{B z^{p+1}\left(L^{n} f(z)\right)^{\prime}+p A}\right] \neq \gamma \tag{3.2}
\end{equation*}
$$

Equivalently, we must have

$$
\begin{equation*}
\frac{(f * Q)(z)}{z^{-p}} \neq 0, \quad z \in U^{*} \tag{3.3}
\end{equation*}
$$

where

$$
Q(z)=z^{-p}+\sum_{k=m}^{\infty} e_{k} z^{k},
$$

such that $e_{k}=\frac{\gamma k(1-B)(p+k+1)^{n}}{(A-B) p}$, satisfying $\left|e_{k}\right| \leq \frac{k(1-B)(p+k+1)^{n}}{(A-B) p}$ and $k \geq m, p \in \mathbb{N}, n \in \mathbb{N}_{0}$.
Since $\frac{f(z)+\mu z^{-p}}{1+\mu} \in L(p, m, n, A, B)$, by 3.3.,

$$
\frac{1}{z^{-p}}\left(\frac{f(z)+\mu z^{-p}}{1+\mu} * Q(z)\right) \neq 0
$$

and then

$$
\begin{equation*}
\frac{1}{z^{-p}}\left(\frac{(f * Q)(z)+\mu z^{-p}}{1+\mu}\right) \neq 0 \tag{3.4}
\end{equation*}
$$

Now assume that $\left|\frac{(f * Q)(z)}{z^{-p}}\right|<\delta$. Then, by 3 , 4 , we have

$$
\left|\frac{1}{1+\mu} \frac{f * Q}{z^{-p}}+\frac{\mu}{1+\mu}\right| \geq \frac{|\mu|}{|1+\mu|}-\frac{1}{|1+\mu|}\left|\frac{(f * Q)(z)}{z^{-p}}\right|>\frac{|\mu|-\delta}{|1+\mu|} \geq 0 .
$$

This is a contradiction as $|\mu|<\delta$. Therefore $\left|\frac{(f * Q)(z)}{z^{-p}}\right| \geq \delta$.
Letting

$$
g(z)=z^{-p}+\sum_{k=m}^{\infty} b_{k} z^{k} \in N_{\delta}(f),
$$

then

$$
\begin{aligned}
\delta-\left|\frac{(g * Q)(z)}{z^{-p}}\right| & \leq\left|\frac{((f-g) * Q)(z)}{z^{-p}}\right| \\
& \leq\left|\sum_{k=m}^{\infty}\left(a_{k}-b_{k}\right) e_{k} z^{k}\right| \\
& \leq \sum_{k=m}^{\infty}\left|a_{k}-b_{k}\right|\left|e_{k}\right||z|^{k} \\
& <|z|^{m} \sum_{k=m}^{\infty}\left[\frac{k(1-B)(p+k+1)^{n}}{(A-B) p}\right]\left|a_{k}-b_{k}\right| \\
& \leq \delta,
\end{aligned}
$$

therefore $\frac{(g * Q)(z)}{z^{-p}} \neq 0$, and we get $g(z) \in L(p, m, n, A, B)$, so $N_{\delta}(f) \subset L(p, m, n, A, B)$.
Theorem 3.2. Let $f(z)$ be defined by (1.1) and the partial sums $S_{1}(z)$ and $S_{q}(z)$ be defined by $S_{1}(z)=z^{-p}$ and

$$
S_{q}(z)=z^{-p}+\sum_{k=m}^{m+q-2} a_{k} z^{k}, \quad q>m, m \geq p, p \in \mathbb{N} .
$$

Also suppose that $\sum_{k=m}^{\infty} C_{k} a_{k} \leq 1$, where

$$
C_{k}=\frac{k(1-B)(p+k+1)^{n}}{(A-B) p}
$$

Then
(i)

$$
\begin{equation*}
f \in L(p, m, n, A, B) \tag{3.5}
\end{equation*}
$$

(ii) $\quad \operatorname{Re}\left\{\frac{f(z)}{S_{q}(z)}\right\}>1-\frac{1}{C_{q}}$,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{S_{q}(z)}{f(z)}\right\}>\frac{C_{q}}{1+C_{q}}, \quad z \in U, q>m \tag{3.6}
\end{equation*}
$$

Proof.
(i) Since $\frac{z^{-p}+\mu z^{-p}}{1+\mu}=z^{-p} \in L(p, m, n, A, B),|\mu|<1$, then by Theorem 3.1, we have $N_{1}\left(z^{-p}\right) \subset L(p, m, n, A, B), p \in \mathbb{N}\left(N_{1}\left(z^{-p}\right)\right.$ denoting the 1-neighbourhood). Now since

$$
\sum_{k=m}^{\infty} C_{k} a_{k} \leq 1
$$

then $f \in N_{1}\left(z^{-p}\right)$ and $f \in L(p, m, n, A, B)$.
(ii) Since $\left\{C_{k}\right\}$ is an increasing sequence, we obtain

$$
\begin{equation*}
\sum_{k=m}^{m+q-2} a_{k}+C_{q} \sum_{k=q+m-1}^{\infty} a_{k} \leq \sum_{k=m}^{\infty} C_{k} a_{k} \leq 1 \tag{3.7}
\end{equation*}
$$

Setting

$$
G_{1}(z)=C_{q}\left(\frac{f(z)}{S_{q}(z)}-\left(1-\frac{1}{C_{q}}\right)\right)=\frac{C_{q} \sum_{k=q+m-1}^{\infty} a_{k} z^{k+p}}{1+\sum_{k=m}^{m+q-2} a_{k} z^{k+p}}+1
$$

from (3.7) we get

$$
\begin{aligned}
\left|\frac{G_{1}(z)-1}{G_{1}(z)+1}\right| & =\left|\frac{C_{q} \sum_{k=q+m-1}^{\infty} a_{k} z^{k+p}}{2+2 \sum_{k=m}^{m+q-2} a_{k} z^{k+p}+C_{q} \sum_{k=q+m-1}^{\infty} a_{k} z^{k+p}}\right| \\
& \leq \frac{C_{q} \sum_{k=q+m-1}^{\infty} a_{k}}{2-2 \sum_{k=m}^{m+q-2} a_{k}-C_{q} \sum_{k=q+m-1}^{\infty} a_{k}} \leq 1 .
\end{aligned}
$$

This proves 3.5. Therefore, $\operatorname{Re}\left(G_{1}(z)\right)>0$ and we obtain $\operatorname{Re}\left\{\frac{f(z)}{S_{q}(z)}\right\}>1-\frac{1}{C_{q}}$. Now, in the same manner, we can prove the assertion (3.6), by setting

$$
G_{2}(z)=\left(1+C_{q}\right)\left(\frac{S_{q}(z)}{f(z)}-\frac{C_{q}}{1+C_{q}}\right) .
$$

This completes the proof.

4. Integral Representation

In the next theorem we obtain an integral representation for $L^{n} f(z)$.
Theorem 4.1. Let $f \in L(p, m, n, A, B)$, then

$$
L^{n} f(z)=\int_{0}^{z} \frac{p(A \psi(t)-1)}{t^{p+1}(1-B \psi(t))} d t
$$

where $|\psi(z)|<1, z \in U^{*}$.
Proof. Let $f(z) \in L(p, m, n, A, B)$. Letting $-\frac{z^{p+1}\left(L^{n} f(z)\right)^{\prime}}{p}=y(z)$, we have

$$
y(z) \prec \frac{1+A z}{1+B z}
$$

or we can write $\left|\frac{y(z)-1}{B y(z)-A}\right|<1$, so that consequently we have

$$
\frac{y(z)-1}{B y(z)-A}=\psi(z),|\psi(z)|<1, z \in U
$$

We can write

$$
\frac{-z^{p+1}\left(L^{n} f(z)\right)^{\prime}}{p}=\frac{1-A \psi(z)}{1-B \psi(z)}
$$

which gives

$$
\left(L^{n} f(z)\right)^{\prime}=\frac{p(A \psi(z)-1)}{z^{p+1}(1-B \psi(z))}
$$

Hence

$$
L^{n} f(z)=\int_{0}^{z} \frac{p(A \psi(t)-1)}{t^{p+1}(1-B \psi(t))} d t
$$

and this gives the required result.

5. Linear Combination

In the theorem below, we prove a linear combination for the class $L(p, m, n, A, B)$.
Theorem 5.1. Let

$$
f_{i}(z)=z^{-p}+\sum_{k=m}^{\infty} a_{k, i} z^{k}, \quad\left(a_{k, i} \geq 0, i=1,2, \ldots, \ell, k \geq m, m \geq p\right)
$$

belong to $L(p, m, n, A, B)$, then

$$
F(z)=\sum_{i=1}^{\ell} c_{i} f_{i}(z) \in L(p, m, n, A, B)
$$

where $\sum_{i=1}^{\ell} c_{i}=1$.
Proof. By Theorem 2.1, we can write for every $i \in\{1,2, \ldots, \ell\}$

$$
\sum_{k=m}^{\infty} \frac{k(1-B)(p+k+1)^{n}}{(A-B) p} a_{k, i}<1
$$

therefore

$$
F(z)=\sum_{i=1}^{\ell} c_{i}\left(z^{-p}+\sum_{k=m}^{\infty} a_{k, i} z^{k}\right)=z^{-p}+\sum_{k=m}^{\infty}\left(\sum_{i=1}^{\ell} c_{i} a_{k, i}\right) z^{k} .
$$

However,

$$
\sum_{k=m}^{\infty} \frac{k(1-B)(p+k+1)^{n}}{(A-B) p}\left(\sum_{i=1}^{\ell} c_{i} a_{k, i}\right)=\sum_{i=1}^{\ell}\left[\sum_{k=m}^{\infty} \frac{k(1-B)(p+k+1)^{n}}{(A-B) p} a_{k, i}\right] c_{i} \leq 1
$$

then $F(z) \in L(p, m, n, A, B)$, so the proof is complete.

6. Weighted Mean and Arithmetic Mean

Definition 6.1. Let $f(z)$ and $g(z)$ belong to $L(p, m)$, then the weighted mean $h_{j}(z)$ of $f(z)$ and $g(z)$ is given by

$$
h_{j}(z)=\frac{1}{2}[(1-j) f(z)+(1+j) g(z)] .
$$

In the theorem below we will show the weighted mean for this class.
Theorem 6.1. If $f(z)$ and $g(z)$ are in the class $L(p, m, n, A, B)$, then the weighted mean of $f(z)$ and $g(z)$ is also in $L(p, m, n, A, B)$.
Proof. We have for $h_{j}(z)$ by Definition 6.1,

$$
\begin{aligned}
h_{j}(z) & =\frac{1}{2}\left[(1-j)\left(z^{-p}+\sum_{k=m}^{\infty} a_{k} z^{k}\right)+(1+j)\left(z^{-p}+\sum_{k=m}^{\infty} b_{k} z^{k}\right)\right] \\
& =z^{-p}+\sum_{k=m}^{\infty} \frac{1}{2}\left((1-j) a_{k}+(1+j) b_{k}\right) z^{k} .
\end{aligned}
$$

Since $f(z)$ and $g(z)$ are in the class $L(p, m, n, A, B)$ so by Theorem 2.1 we must prove that

$$
\begin{aligned}
& \sum_{k=m}^{\infty} k(1-B)(p+k+1)^{n}\left[\frac{1}{2}(1-j) a_{k}+\frac{1}{2}(1+j) b_{k}\right] \\
& =\frac{1}{2}(1-j) \sum_{k=m}^{\infty} k(1-B)(p+k+1)^{n} a_{k}+\frac{1}{2}(1+j) \sum_{k=m}^{\infty} k(1-B)(p+k+1)^{n} b_{k} \\
& \leq \frac{1}{2}(1-j)(A-B) p+\frac{1}{2}(1+j)(A-B) p
\end{aligned}
$$

The proof is complete.
Theorem 6.2. Let $f_{1}(z), f_{2}(z), \ldots, f_{\ell}(z)$ defined by

$$
\begin{equation*}
f_{i}(z)=z^{-p}+\sum_{k=m}^{\infty} a_{k, i} z^{k}, \quad\left(a_{k, i} \geq 0, i=1,2, \ldots, \ell, k \geq m, m \geq p\right) \tag{6.1}
\end{equation*}
$$

be in the class $L(p, m, n, A, B)$, then the arithmetic mean of $f_{i}(z)(i=1,2, \ldots, \ell)$ defined by

$$
\begin{equation*}
h(z)=\frac{1}{\ell} \sum_{i=1}^{\ell} f_{i}(z) \tag{6.2}
\end{equation*}
$$

is also in the class $L(p, m, n, A, B)$.
Proof. By 6.1), 6.2) we can write

$$
h(z)=\frac{1}{\ell} \sum_{i=1}^{\ell}\left(z^{-p}+\sum_{k=m}^{\infty} a_{k, i} z^{k}\right)=z^{-p}+\sum_{k=m}^{\infty}\left(\frac{1}{\ell} \sum_{i=1}^{\ell} a_{k, i}\right) z^{k} .
$$

Since $f_{i}(z) \in L(p, m, n, A, B)$ for every $i=1,2, \ldots, \ell$, so by using Theorem 2.1, we prove that

$$
\begin{aligned}
\sum_{k=m}^{\infty} k(1-B)(p+ & k+1)^{n}\left(\frac{1}{\ell} \sum_{i=1}^{\ell} a_{k, i}\right) \\
& =\frac{1}{\ell} \sum_{i=1}^{\ell}\left(\sum_{k=m}^{\infty} k(1-B)(p+k+1)^{n} a_{k, i}\right) \leq \frac{1}{\ell} \sum_{i=1}^{\ell}(A-B) p
\end{aligned}
$$

The proof is complete.

7. Convolution Properties

Theorem 7.1. If $f(z)$ and $g(z)$ belong to $L(p, m, n, A, B)$ such that

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=m}^{\infty} a_{k} z^{k}, \quad g(z)=z^{-p}+\sum_{k=m}^{\infty} b_{k} z^{k}, \tag{7.1}
\end{equation*}
$$

then

$$
T(z)=z^{-p}+\sum_{k=m}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right) z^{k}
$$

is in the class $L\left(p, m, n, A_{1}, B_{1}\right)$ such that $A_{1} \geq\left(1-B_{1}\right) \mu^{2}+B_{1}$, where

$$
\mu=\frac{\sqrt{2}(A-B)}{\sqrt{m(m+2)^{n}}(1-B)} .
$$

Proof. Since $f, g \in L(p, m, n, A, B)$, Theorem 2.1 yields

$$
\sum_{k=m}^{\infty}\left(\left[\frac{k(1-B)(p+k+1)^{n}}{(A-B) p}\right] a_{k}\right)^{2} \leq 1
$$

and

$$
\sum_{k=m}^{\infty}\left(\left[\frac{k(1-B)(p+k+1)^{n}}{(A-B) p}\right] b_{k}\right)^{2} \leq 1
$$

We obtain from the last two inequalities

$$
\begin{equation*}
\sum_{k=m}^{\infty} \frac{1}{2}\left[\frac{k(1-B)(p+k+1)^{n}}{(A-B) p}\right]^{2}\left(a_{k}^{2}+b_{k}^{2}\right) \leq 1 \tag{7.2}
\end{equation*}
$$

However, $T(z) \in L\left(p, m, n, A_{1}, B_{1}\right)$ if and only if

$$
\begin{equation*}
\sum_{k=m}^{\infty}\left[\frac{k\left(1-B_{1}\right)(p+k+1)^{n}}{\left(A_{1}-B_{1}\right) p}\right]\left(a_{k}^{2}+b_{k}^{2}\right) \leq 1 \tag{7.3}
\end{equation*}
$$

where $-1 \leq B_{1}<A_{1} \leq 1$, but (7.2) implies (7.3) if

$$
\frac{k\left(1-B_{1}\right)(p+k+1)^{n}}{\left(A_{1}-B_{1}\right) p}<\frac{1}{2}\left[\frac{k(1-B)(p+k+1)^{n}}{(A-B) p}\right]^{2} .
$$

Hence, if

$$
\frac{1-B_{1}}{A_{1}-B_{1}}<\frac{k(p+k+1)^{n}}{2 p} \alpha^{2}, \quad \text { where } \alpha=\frac{1-B}{A-B}
$$

In other words,

$$
\frac{1-B_{1}}{A_{1}-B_{1}}<\frac{k(k+2)^{n}}{2} \alpha^{2}
$$

This is equivalent to

$$
\frac{A_{1}-B_{1}}{1-B_{1}}>\frac{2}{k(k+2)^{n} \alpha^{2}} .
$$

So we can write

$$
\begin{equation*}
\frac{A_{1}-B_{1}}{1-B_{1}}>\frac{2(A-B)^{2}}{m(m+2)^{n}(1-B)^{2}}=\mu^{2} . \tag{7.4}
\end{equation*}
$$

Hence we get $A_{1} \geq\left(1-B_{1}\right) \mu^{2}+B_{1}$.
Theorem 7.2. Let $f(z)$ and $g(z)$ of the form (7.1) belong to $L(p, m, n, A, B)$. Then the convolution (or Hadamard product) of two functions f and g belong to the class, that is, $(f * g)(z) \in$ $L\left(p, m, n, A_{1}, B_{1}\right)$, where $A_{1} \geq\left(1-B_{1}\right) v+B_{1}$ and

$$
v=\frac{(A-B)^{2}}{m(1-B)^{2}(m+2)^{n}}
$$

Proof. Since $f, g \in L(p, m, n, A, B)$, by using the Cauchy-Schwarz inequality and Theorem 2.1, we obtain

$$
\begin{align*}
& \sum_{k=m}^{\infty} \frac{k(1-B)(p+k+1)^{n}}{(A-B) p} \sqrt{a_{k} b_{k}} \tag{7.5}\\
& \quad \leq\left(\sum_{k=m}^{\infty} \frac{k(1-B)(p+k+1)^{n}}{(A-B) p} a_{k}\right)^{\frac{1}{2}}\left(\sum_{k=m}^{\infty} \frac{k(1-B)(p+k+1)^{n}}{(A-B) p} b_{k}\right)^{\frac{1}{2}} \leq 1 .
\end{align*}
$$

We must find the values of A_{1}, B_{1} so that

$$
\begin{equation*}
\sum_{k=m}^{\infty} \frac{k\left(1-B_{1}\right)(p+k+1)^{n}}{\left(A_{1}-B_{1}\right) p} a_{k} b_{k}<1 . \tag{7.6}
\end{equation*}
$$

Therefore, by (7.5), (7.6) holds true if

$$
\begin{equation*}
\sqrt{a_{k} b_{k}} \leq \frac{(1-B)\left(A_{1}-B_{1}\right)}{\left(1-B_{1}\right)(A-B)}, \quad k \geq m, m \geq p, a_{k} \neq 0, b_{k} \neq 0 . \tag{7.7}
\end{equation*}
$$

By 7.5 , we have $\sqrt{a_{k} b_{k}}<\frac{(A-B) p}{k(1-B)(p+k+1)^{n}}$, therefore $\sqrt{7.7}$ holds true if

$$
\frac{k\left(1-B_{1}\right)(p+k+1)^{n}}{\left(A_{1}-B_{1}\right) p} \leq\left[\frac{k(1-B)(p+k+1)^{n}}{(A-B) p}\right]^{2}
$$

which is equivalent to

$$
\frac{\left(1-B_{1}\right)}{\left(A_{1}-B_{1}\right)}<\frac{k(1-B)^{2}(p+k+1)^{n}}{(A-B)^{2} p} .
$$

Alternatively, we can write

$$
\frac{\left(1-B_{1}\right)}{\left(A_{1}-B_{1}\right)}<\frac{k(1-B)^{2}(k+2)^{n}}{(A-B)^{2}}
$$

to obtain

$$
\frac{A_{1}-B_{1}}{1-B_{1}}>\frac{(A-B)^{2}}{m(1-B)^{2}(m+2)^{n}}=v
$$

Hence we get $A_{1}>v\left(1-B_{1}\right)+B_{1}$.

References

[1] O. ALTINTAS AND S. OWA, Neighborhoods of certain analytic functions with negative coefficients, IJMMS, 19 (1996), 797-800.
[2] M.K. AOUF AND H.M. HOSSEN, New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17 (1993), 481-486.
[3] A.W. GOODMAN, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc., 8 (1957), 598-601.
[4] J.-L. LIU AND H.M. SRIVASTAVA, Classes of meromorphically multivalent functions associated with the generalized hypergeometric functions, Math. Comput. Modelling, 39 (2004), 21-34.
[5] J.-L. LIU AND H.M. SRIVASTAVA, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Modelling, 39 (2004), 35-44.
[6] S.S. MILLER AND P.T. MOCANU, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[7] S.S. MILLER AND P.T. MOCANU, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
[8] St. RUSCHEWEYH, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), 521-527.
[9] H.M. SRIVASTAVA AND J. PATEL, Applications of differential subordination to certain subclasses of meromorphically multivalent functions, J. Ineq. Pure and Appl. Math., 6(3) (2005), Art. 88. [ONLINE: http://jipam.vu.edu.au/article.php?sid=561]
[10] B.A. URALEGADDI AND C. SOMANATHA, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 (1991), 137-140.

[^0]: The first author, Waggas Galib, is thankful of his wife (Hnd Hekmat Abdulah) for her support of him in his work.
 005-08

