Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 3, Issue 1, Article 10, 2002

SOME RESULTS ON L^{1}-APPROXIMATION OF THE r-TH DERIVATE OF FOURIER SERIES

ŽIVORAD TOMOVSKI

Faculty of Mathematical and Natural Sciences P.O. Box 162, 91000 SKOpJe, MACEDONIA.
tomovski@iunona.pmf.ukim.edu.mk
Received 22 September, 1999; accepted 18 October, 2001. Communicated by A. Babenko

Abstract

In this paper we obtain the conditions for L^{1}-convergence of the r-th derivatives of the cosine and sine trigonometric series. These results are extensions of corresponding Sidon's and Telyakovskii's theorems for trigonometric series (case: $r=0$).

Key words and phrases: L^{1}-approximation, Fourier series, Sidon-Telyakovskii class, Telyakovskii inequality.

2000 Mathematics Subject Classification. 26D15, 42A20.

1. Introduction

Let

$$
\begin{align*}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x, \tag{1.1}\\
& g(x)=\sum_{n=1}^{\infty} a_{n} \sin n x \tag{1.2}
\end{align*}
$$

be the cosine and sine trigonometric series with real coefficients.
Let $\Delta a_{n}=a_{n}-a_{n+1}, n \in\{0,1,2,3, \ldots\}$. The Dirichlet's kernel, conjugate Dirichlet's kernel and modified Dirichlet's kernel are denoted respectively by

$$
\begin{gathered}
D_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} \cos k t=\frac{\sin \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \\
\tilde{D}_{n}(t)=\sum_{k=1}^{n} \sin k t=\frac{\cos \frac{t}{2}-\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}
\end{gathered}
$$

ISSN (electronic): 1443-5756
(C) 2002 Victoria University. All rights reserved.

The author would like to thank the referee for his suggestions and encouragement.
005-99

$$
\bar{D}_{n}(t)=-\frac{1}{2} \operatorname{ctg} \frac{t}{2}+\tilde{D}_{n}(t)=-\frac{\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} .
$$

Let

$$
E_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{i k t} \text { and } E_{-n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{-i k t}
$$

Then the r-th derivatives $D_{n}^{(r)}(t)$ and $\tilde{D}_{n}^{(r)}(t)$ can be written as

$$
\begin{align*}
2 D_{n}^{(r)}(t) & =E_{n}^{(r)}(t)+E_{-n}^{(r)}(t), \tag{1.3}\\
2 i \tilde{D}_{n}^{(r)}(t) & =E_{n}^{(r)}(t)-E_{-n}^{(r)}(t) . \tag{1.4}
\end{align*}
$$

In [2], Sidon proved the following theorem.
Theorem 1.1. Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{p_{n}\right\}_{n=1}^{\infty}$ be sequences such that $\left|\alpha_{n}\right| \leq 1$, for every n and let $\sum_{n=1}^{\infty}\left|p_{n}\right|$ converge. If

$$
\begin{equation*}
a_{n}=\sum_{k=n}^{\infty} \frac{p_{k}}{k} \sum_{l=n}^{k} \alpha_{l}, n \in \mathbb{N} \tag{1.5}
\end{equation*}
$$

then the cosine series (1.1) is the Fourier series of its sum f.
Several authors have studied the problem of L^{1}-convergence of the series (1.1) and 1.2$)$.
In [4] Telyakovskii defined the following class of L^{1}-convergence of Fourier series. A sequence $\left\{a_{k}\right\}_{k=0}^{\infty}$ belongs to the class S, or $\left\{a_{k}\right\} \in S$ if $a_{k} \rightarrow 0$ as $k \rightarrow \infty$ and there exists a monotonically decreasing sequence $\left\{A_{k}\right\}_{k=0}^{\infty}$ such that $\sum_{k=0}^{\infty} A_{k}<\infty$ and $\left|\Delta a_{k}\right| \leq A_{k}$ for all k.

The importance of Telyakovskii's contributions are twofold. Firstly, he expressed Sidon's conditions (1.5) in a succinct equivalent form, and secondly, he showed that the class S is also a class of L^{1}-convergence. Thus, the class S is usually called the Sidon-Telyakovskii class.

In the same paper, Telyakovskii proved the following two theorems.
Theorem 1.2 [4]. Let the coefficients of the series $f(x)$ belong to the class S. Then the series is a Fourier series and the following inequality holds:

$$
\int_{0}^{\pi}|f(x)| d x \leq M \sum_{n=0}^{\infty} A_{n}
$$

where M is a positive constant, independent on f.
Theorem 1.3. [4]. Let the coefficients of the series $g(x)$ belong to the class S. Then the following inequality holds for $p=1,2,3, \ldots$

$$
\int_{\pi /(p+1)}^{\pi}|g(x)| d x=\sum_{n=1}^{p} \frac{\left|a_{n}\right|}{n}+O\left(\sum_{n=1}^{\infty} A_{n}\right) .
$$

In particular, $g(x)$ is a Fourier series iff $\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|}{n}<\infty$.
In [5], we extended the Sidon-Telyakovskii class $S=S_{0}$, i.e., we defined the class S_{r}, $r=1,2,3, \ldots$ as follows: $\left\{a_{k}\right\}_{k=1}^{\infty} \in S_{r}$ if $a_{k} \rightarrow 0$ as $k \rightarrow \infty$ and there exists a monotonically decreasing sequence $\left\{A_{k}\right\}_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty} k^{r} A_{k}<\infty$ and $\left|\Delta a_{k}\right| \leq A_{k}$ for all k.

We note that by $A_{k} \downarrow 0$ and $\sum_{k=1}^{\infty} k^{r} A_{k}<\infty$, we get

$$
\begin{equation*}
k^{r+1} A_{k}=o(1), \quad k \rightarrow \infty . \tag{1.6}
\end{equation*}
$$

It is trivially to see that $S_{r+1} \subset S_{r}$ for all $r=1,2,3, \ldots$. Now, let $\left\{a_{n}\right\}_{n=1}^{\infty} \in S_{1}$. For arbitrary real number a_{0}, we shall prove that sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ belongs to S_{0}. We define $A_{0}=$
$\max \left(\left|\Delta a_{0}\right|, A_{1}\right)$. Then $\left|\Delta a_{0}\right| \leq A_{0}$, i.e. $\left|\Delta a_{n}\right| \leq A_{n}$, for all $n \in\{0,1,2, \ldots\}$ and $\left\{A_{n}\right\}_{n=0}^{\infty}$ is monotonically decreasing sequence.

On the other hand,

$$
\sum_{n=0}^{\infty} A_{n} \leq A_{0}+\sum_{n=1}^{\infty} n A_{n}<\infty
$$

Thus, $\left\{a_{n}\right\}_{n=0}^{\infty} \in S_{0}$, i.e. $S_{r+1} \subset S_{r}$, for all $r=0,1,2, \ldots$ The next example verifies that the implication

$$
\left\{a_{n}\right\} \in S_{r+1} \Rightarrow\left\{a_{n}\right\} \in S_{r}, \quad r=0,1,2, \ldots
$$

is not reversible.
Example 1.1. For $n=0,1,2,3, \ldots$ define $a_{n}=\sum_{k=n+1}^{\infty} \frac{1}{k^{2}}$. Then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ and for $n=0,1,2,3, \ldots, \Delta a_{n}=\frac{1}{(n+1)^{2}}$. Firstly we shall show that $\left\{a_{n}\right\}_{n=1}^{\infty} \notin S_{1}$.

Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ is an arbitrary positive sequence such that $A \downarrow 0$ and $\Delta a_{n}=\left|\Delta a_{n}\right| \leq A_{n}$. However, $\sum_{n=1}^{\infty} n A_{n} \geq \sum_{n=1}^{\infty} \frac{n}{(n+1)^{2}}$ is divergent, i.e. $\left\{a_{n}\right\} \notin S_{1}$.

Now, for all $n=0,1,2, \ldots$ let $A_{n}=\frac{1}{(n+1)^{2}}$. Then $A_{n} \downarrow 0,\left|\Delta a_{n}\right| \leq A_{n}$ and $\sum_{n=0}^{\infty} A_{n}=$ $\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$, i.e. $\left\{a_{n}\right\}_{n=0}^{\infty} \in S_{0}$.

Our next example will show that there exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $\left\{a_{n}\right\}_{n=1}^{\infty} \in S_{r}$ but $\left\{a_{n}\right\}_{n=1}^{\infty} \notin S_{r+1}$, for all $r=1,2,3, \ldots$

Namely, for all $n=1,2,3, \ldots$ let $a_{n}=\sum_{k=n}^{\infty} \frac{1}{k^{r+2}}$. Then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ and for $n=1,2,3, \ldots, \Delta a_{n}=\frac{1}{n^{r+2}}$. Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ is an arbitrary positive sequence such that $A_{n} \downarrow 0$ and $\Delta a_{n}=\left|\Delta a_{n}\right| \leq A_{n}$. However,

$$
\sum_{n=1}^{\infty} n^{r+1} A_{n} \geq \sum_{n=1}^{\infty} n^{r+1} \frac{1}{n^{r+2}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

is divergent, i.e. $\left\{a_{n}\right\} \notin S_{r+1}$. On the other hand, for all $n=1,2, \ldots$ let $A_{n}=\frac{1}{n^{r+2}}$. Then $A_{n} \downarrow 0,\left|\Delta a_{n}\right| \leq A_{n}$ and $\sum_{n=1}^{\infty} n^{r} A_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$, i.e. $\left\{a_{n}\right\} \in S_{r}$.

In the same paper [5] we proved the following theorem.
Theorem 1.4. [5]. Let the coefficients of the series (1.1) belong to the class $S_{r}, r=0,1,2, \ldots$. Then the $r-$ th derivative of the series (1.1) is a Fourier series of some $f^{(r)} \in L^{1}(0, \pi)$ and the following inequality holds:

$$
\int_{0}^{\pi}\left|f^{(r)}(x)\right| d x \leq M \sum_{n=1}^{\infty} n^{r} A_{n}
$$

where $0<M=M(r)<\infty$.
This is an extension of the Telyakovskii Theorem 1.2

2. RESULTS

In this paper, we shall prove the following main results.
Theorem 2.1. A null sequence $\left\{a_{n}\right\}$ belongs to the class $S_{r}, r=0,1,2, \ldots$ if and only if it can be represented as

$$
\begin{equation*}
a_{n}=\sum_{k=n}^{\infty} \frac{p_{k}}{k} \sum_{l=n}^{k} \alpha_{l}, n \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{p_{n}\right\}_{n=1}^{\infty}$ are sequences such that $\left|\alpha_{n}\right| \leq 1$, for all n and

$$
\sum_{n=1}^{\infty} n^{r}\left|p_{n}\right|<\infty
$$

Corollary 2.2. Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{p_{n}\right\}_{n=1}^{\infty}$ be sequences such that $\left|\alpha_{n}\right| \leq 1$, for every n and let $\sum_{n=1}^{\infty} n^{r}\left|p_{n}\right|<\infty, r=0,1,2, \ldots$ If

$$
a_{n}=\sum_{k=n}^{\infty} \frac{p_{k}}{k} \sum_{l=n}^{k} \alpha_{l}, n \in \mathbb{N}
$$

then the $r-$ th derivate of the series (1.1) is a Fourier series of some $f^{(r)} \in L^{1}$.
Theorem 2.3. Let the coefficients of the series $g(x)$ belong to the class $S_{r}, r=0,1,2, \ldots$ Then the r-th derivate of the series (I.2) converges to a function and for $m=1,2,3, \ldots$ the following inequality holds:

$$
\begin{equation*}
\int_{\pi /(m+1)}^{\pi}\left|g^{(r)}(x)\right| d x \leq M\left(\sum_{n=1}^{m}\left|a_{n}\right| \cdot n^{r-1}+\sum_{n=1}^{\infty} n^{r} A_{n}\right) \tag{*}
\end{equation*}
$$

where

$$
0<M=M(r)<\infty .
$$

Moreover, if $\sum_{n=1}^{\infty} n^{r-1}\left|a_{n}\right|<\infty$, then the r-th derivate of the series (1.2) is a Fourier series of some $g^{(r)} \in L^{1}(0, \pi)$ and

$$
\int_{0}^{\pi}\left|g^{(r)}(x)\right| d x \leq M\left(\sum_{n=1}^{\infty}\left|a_{n}\right| \cdot n^{r-1}+\sum_{n=1}^{\infty} n^{r} A_{n}\right)
$$

Corollary 2.4. Let the coefficients of the series $g(x)$ belong to the class $S_{r}, r \geq 1$. Then the following inequality holds:

$$
\int_{0}^{\pi}\left|g^{(r)}(x)\right| d x \leq M \sum_{n=1}^{\infty} n^{r} A_{n}
$$

where $0<M=M(r)<\infty$.

3. Lemmas

For the proof of our new theorems we need the following lemmas.
The following lemma proved by Sheng, can be reformulated in the following way.
Lemma 3.1. [1] Let r be a nonnegative integer and $x \in(0, \pi]$, where $n \geq 1$. Then

$$
D_{n}^{(r)}(x)=\sum_{k=0}^{r} \frac{\left(n+\frac{1}{2}\right)^{k} \sin \left[\left(n+\frac{1}{2}\right) x+\frac{k \pi}{2}\right]}{\left(\sin \left(\frac{x}{2}\right)\right)^{r+1-k}} \varphi_{k}(x),
$$

where $\varphi_{r} \equiv \frac{1}{2}$ and $\varphi_{k}, k=0,1,2, \ldots, r-1$ denotes various entire 4π-periodic functions of x, independent of n. More precisely, $\varphi_{k}, k=0,1,2, \ldots, r$ are trigonometric polynomials of $\frac{x}{2}$.

Lemma 3.2. Let $\left\{\alpha_{j}\right\}_{j=0}^{k}$ be a sequence of real numbers. Then the following relation holds for $\nu=0,1,2, \ldots, r$ and $r=0,1,2, \ldots$

$$
\begin{aligned}
U_{k} & =\int_{\pi /(k+1)}^{\pi}\left|\sum_{j=0}^{k} \alpha_{j} \frac{\left(j+\frac{1}{2}\right)^{\nu} \sin \left[\left(j+\frac{1}{2}\right) x+\frac{\nu+3}{2} \pi\right]}{\left(\sin \left(\frac{x}{2}\right)\right)^{r+1-\nu}}\right| d x \\
& =O\left((k+1)^{r-\nu+\frac{1}{2}}\left(\sum_{j=0}^{k} \alpha_{j}^{2}(j+1)^{2 \nu}\right)^{1 / 2}\right) .
\end{aligned}
$$

Proof. Applying first Cauchy-Buniakowski inequality, yields

$$
\begin{aligned}
U_{k} \leq\left[\int_{\pi /(k+1)}^{\pi}\right. & \left.\frac{d x}{\left(\sin \left(\frac{x}{2}\right)\right)^{2(r+1-\nu)}}\right]^{1 / 2} \\
& \times\left\{\int_{\pi /(k+1)}^{\pi}\left[\sum_{j=0}^{k} \alpha_{j}\left(j+\frac{1}{2}\right)^{\nu} \sin \left[\left(j+\frac{1}{2}\right) x+\frac{(\nu+3) \pi}{2}\right]\right]^{2} d x\right\}^{1 / 2}
\end{aligned}
$$

Since

$$
\begin{aligned}
\int_{\pi /(k+1)}^{\pi} \frac{d x}{\left(\sin \left(\frac{x}{2}\right)\right)^{2(r+1-\nu)}} & \leq \pi^{2(r+1-\nu)} \int_{\pi /(k+1)}^{\pi} \frac{d x}{x^{2(r+1-\nu)}} \\
& \leq \frac{\pi(k+1)^{2(r+1-\nu)-1}}{2(r+1-\nu)-1} \\
& \leq \pi(k+1)^{2(r+1-\nu)-1}
\end{aligned}
$$

we have

$$
\begin{aligned}
U_{k} \leq & {\left[\pi(k+1)^{2(r+1-\nu)-1}\right]^{1 / 2} } \\
& \times\left\{\int_{0}^{\pi}\left[\sum_{j=0}^{k} \alpha_{j}\left(j+\frac{1}{2}\right)^{\nu} \sin \left[\left(j+\frac{1}{2}\right) x+\frac{\nu+3}{2} \pi\right]\right]^{2} d x\right\}^{1 / 2} \\
\leq & {\left[2 \pi(k+1)^{2(r+1-\nu)-1}\right]^{1 / 2}\left\{\int_{0}^{2 \pi}\left[\sum_{j=0}^{k} \alpha_{j}\left(j+\frac{1}{2}\right)^{\nu} \sin \left[(2 j+1) t+\frac{\nu+3}{2} \pi\right]^{2} d t\right\}^{1 / 2} .\right.}
\end{aligned}
$$

Then, applying Parseval's equality, we obtain:

$$
U_{k} \leq\left[2 \pi(k+1)^{2(r+1-\nu)-1}\right]^{1 / 2}\left[\sum_{j=0}^{k}\left|\alpha_{j}\right|^{2}(j+1)^{2 \nu}\right]^{1 / 2} .
$$

Finally,

$$
U_{k}=O\left((k+1)^{r-\nu+\frac{1}{2}}\left(\sum_{j=0}^{k} \alpha_{j}^{2}(j+1)^{2 \nu}\right)^{1 / 2}\right) .
$$

Lemma 3.3. Let $r \in\{0,1,2,3, \ldots\}$ and $\left\{\alpha_{k}\right\}_{k=0}^{n}$ be a sequence of real numbers such that $\left|\alpha_{k}\right| \leq 1$, for all k. Then there exists a finite constant $M=M(r)>0$ such that for any $n \geq 0$

$$
\begin{equation*}
\int_{\pi /(n+1)}^{\pi}\left|\sum_{k=0}^{n} \alpha_{k} \bar{D}_{k}^{(r)}(x)\right| d x \leq M \cdot(n+1)^{r+1} \tag{**}
\end{equation*}
$$

Proof. Similar to Lemma 3.1 it is not difficult to proof the following equality

$$
\bar{D}_{n}^{(r)}(x)=\sum_{k=0}^{r} \frac{\left(n+\frac{1}{2}\right)^{k} \sin \left[\left(n+\frac{1}{2}\right) x+\frac{k+3}{2} \pi\right]}{\left(\sin \left(\frac{x}{2}\right)\right)^{r+1-k}} \varphi_{k}(x),
$$

where φ_{k} denotes the same various 4π-periodic functions of x, independent of n.
Now, we have:

$$
\begin{aligned}
& \int_{\pi /(n+1)}^{\pi}\left|\sum_{k=0}^{n} \alpha_{k} \bar{D}_{k}^{(r)}(x)\right| d x \\
& \qquad \quad \leq \int_{\pi /(n+1)}^{\pi}\left|\sum_{j=0}^{n} \alpha_{j}\left(\sum_{\nu=0}^{r} \frac{\left(j+\frac{1}{2}\right)^{\nu} \sin \left[\left(j+\frac{1}{2}\right) x+\frac{\nu+3}{2} \pi\right]}{\left(\sin \left(\frac{x}{2}\right)\right)^{r+1-\nu}} \varphi_{\nu}(x)\right)\right| d x
\end{aligned}
$$

Since φ_{ν} are bounded, we have:

$$
\int_{\pi /(n+1)}^{\pi}\left|\sum_{j=0}^{n} \alpha_{j} \frac{\left(j+\frac{1}{2}\right)^{\nu} \sin \left[\left(j+\frac{1}{2}\right) x+\frac{\nu+3}{2} \pi\right]}{\left(\sin \left(\frac{x}{2}\right)\right)^{r+1-\nu}} \varphi_{\nu}(x)\right| d x \leq K U_{n}
$$

where U_{n} is the integral as in Lemma 3.2, and $K=K(r)$ is a positive constant.
Applying Lemma 3.2, to the last integral, we obtain:

$$
\begin{aligned}
& \int_{\pi /(n+1)}^{\pi}\left|\sum_{j=0}^{n} \alpha_{j} \frac{\left(j+\frac{1}{2}\right)^{\nu} \sin \left[\left(j+\frac{1}{2}\right) x+\frac{\nu+3}{2} \pi\right]}{\left(\sin \left(\frac{x}{2}\right)\right)^{r+1-\nu}} \varphi_{\nu}(x)\right| d x \\
&= O\left((n+1)^{r-\nu+\frac{1}{2}}\left(\sum_{j=0}^{n} \alpha_{j}^{2}(j+1)^{2 \nu}\right)^{1 / 2}\right) \\
&=O\left((n+1)^{r-\nu+\frac{1}{2}}(n+1)^{\nu+\frac{1}{2}}\right)=O\left((n+1)^{r+1}\right)
\end{aligned}
$$

Finally the inequality $(* *)$ is satisfied.
Remark 3.4. For $r=0$, we obtain the Telyakovskii type inequality, proved in [4].
Lemma 3.5. Let r be a non-negative integer. Then for all $0<|t| \leq \pi$ and all $n \geq 1$ the following estimates hold:
(i) $\left|E_{-n}^{(r)}(t)\right| \leq \frac{4 n^{r} \pi}{|t|}$,
(ii) $\tilde{D}_{n}^{(r)}(t) \leq \frac{4 n^{r} \pi}{|t|}$,
(iii) $\left|\bar{D}_{n}^{(r)}(t)\right| \leq \frac{4 n^{r} \pi}{|t|}+O\left(\frac{1}{|t|^{r+1}}\right)$.

Proof. (i) The case $r=0$ is trivial. Really,

$$
\begin{gathered}
\left|E_{n}(t)\right| \leq\left|D_{n}(t)\right|+\left|\tilde{D}_{n}(t)\right| \leq \frac{\pi}{2|t|}+\frac{\pi}{|t|}=\frac{3 \pi}{2|t|}<\frac{4 \pi}{|t|}, \\
\left|E_{-n}(t)\right|=\left|E_{n}(-t)\right|<\frac{4 \pi}{|t|} .
\end{gathered}
$$

Let $r \geq 1$. Applying the Abel's transformation, we have:

$$
\begin{aligned}
E_{n}^{(r)}(t)=i^{r} & \sum_{k=1}^{n} k^{r} e^{i k t}=i^{r}\left[\sum_{k=1}^{n-1} \Delta\left(k^{r}\right)\left(E_{k}(t)-\frac{1}{2}\right)+n^{r}\left(E_{n}(t)-\frac{1}{2}\right)\right] \\
\left|E_{n}^{(r)}(t)\right| & \leq \sum_{k=1}^{n-1}\left[(k+1)^{r}-k^{r}\right]\left(\frac{1}{2}+\left|E_{k}(t)\right|\right)+n^{r}\left(\frac{1}{2}+\left|E_{n}(t)\right|\right) \\
& \leq\left(\frac{\pi}{2|t|}+\frac{3 \pi}{2|t|}\right)\left\{\sum_{k=1}^{n-1}\left[(k+1)^{r}-k^{r}\right]+n^{r}\right\}=\frac{4 \pi n^{r}}{|t|}
\end{aligned}
$$

Since $E_{-n}^{(r)}(t)=E_{n}^{(r)}(-t)$, we obtain $\left|E_{-n}^{(r)}(t)\right| \leq \frac{4 n^{r} \pi}{|t|}$.
(ii) Applying the inequality (i), we obtain

$$
\left|\tilde{D}_{n}^{(r)}(t)\right|=\left|i \tilde{D}_{n}^{(r)}(t)\right| \leq \frac{1}{2}\left|E_{n}^{(r)}(t)\right|+\frac{1}{2}\left|E_{-n}^{(r)}(t)\right| \leq \frac{4 n^{r} \pi}{|t|}
$$

(iii) We note that $\left|\left(\operatorname{ctg} \frac{t}{2}\right)^{(r)}\right|=O\left(\frac{1}{|t|^{r+1}}\right)$. Applying the inequality (ii), we obtain

$$
\left|\bar{D}_{n}^{(r)}(t)\right| \leq\left|\tilde{D}_{n}^{(r)}(t)\right|+\frac{1}{2}\left|\left(\operatorname{ctg} \frac{t}{2}\right)^{(r)}\right| \leq \frac{4 n^{r} \pi}{|t|}+O\left(\frac{1}{|t|^{r+1}}\right)
$$

4. Proofs of the Main Results

Proof of Theorem 2.1. Let (2.1) hold. Then

$$
\Delta a_{k}=\alpha_{k} \sum_{m=k}^{\infty} \frac{p_{m}}{m}
$$

and we denote

$$
A_{k}=\sum_{m=k}^{\infty} \frac{\left|p_{m}\right|}{m}
$$

Since $\left|\alpha_{k}\right| \leq 1$, we get

$$
\left|\Delta a_{k}\right| \leq\left|\alpha_{k}\right| \sum_{m=k}^{\infty} \frac{\left|p_{m}\right|}{m} \leq A_{k}, \text { for all } k .
$$

However,

$$
\sum_{k=1}^{\infty} k^{r} A_{k}=\sum_{k=1}^{\infty} k^{r} \sum_{m=k}^{\infty} \frac{\left|p_{m}\right|}{m}=\sum_{m=1}^{\infty} \frac{\left|p_{m}\right|}{m} \sum_{k=1}^{m} k^{r} \leq \sum_{m=1}^{\infty} m^{r}\left|p_{m}\right|<\infty,
$$

and $A_{k} \downarrow 0$ i.e. $\left\{a_{k}\right\} \in S_{r}$.
Now, if $\left\{a_{k}\right\} \in S_{r}$, we put $\alpha_{k}=\frac{\Delta a_{k}}{A_{k}}$ and $p_{k}=k\left(A_{k}-A_{k+1}\right)$.
Hence $\left|\alpha_{k}\right| \leq 1$, and by (1.6) we get:

$$
\sum_{k=1}^{\infty} k^{r}\left|p_{k}\right|=\sum_{k=1}^{\infty} k^{r+1}\left(A_{k}-A_{k+1}\right) \leq \sum_{k=1}^{\infty}(r+1) k^{r} A_{k}<\infty .
$$

Finally,

$$
a_{k}=\sum_{i=k}^{\infty} \Delta a_{i}=\sum_{i=k}^{\infty} \alpha_{i} A_{i}=\sum_{i=k}^{\infty} \alpha_{i} \sum_{m=i}^{\infty} \Delta A_{m}=\sum_{i=k}^{\infty} \alpha_{i} \sum_{m=i}^{\infty} \frac{p_{m}}{m}=\sum_{m=k}^{\infty} \frac{p_{m}}{m} \sum_{i=k}^{m} \alpha_{i},
$$

i.e. (2.1) holds.

Proof of Corollary 2.2. The proof of this corollary follows from Theorems 1.4 and 2.1.
Proof of Theorem 2.3. We suppose that $a_{0}=0$ and $A_{0}=\max \left(\left|a_{1}\right|, A_{1}\right)$.
Applying the Abel's transformation, we have:

$$
\begin{equation*}
g(x)=\sum_{k=0}^{\infty} \Delta a_{k} \bar{D}_{k}(x), \quad x \in(0, \pi] . \tag{4.1}
\end{equation*}
$$

Applying Lemma 3.5 (iii), we have that the series $\sum_{k=1}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)$ is uniformly convergent on any compact subset of $[\varepsilon, \pi]$, where $\varepsilon>0$.
Thus, representation (4.1) implies that

$$
g^{(r)}(x)=\sum_{k=0}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x) .
$$

Then,

$$
\begin{aligned}
& \int_{\pi /(m+1)}^{\pi}\left|g^{(r)}(x)\right| d x \\
& \quad \leq \sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=0}^{j-1} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x+O\left(\sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=j}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x\right) .
\end{aligned}
$$

Let

$$
I_{1}=\sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=0}^{j-1} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x, \quad I_{2}=\sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=j}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x .
$$

Since $\operatorname{ctg} \frac{x}{2}=\frac{2}{x}+\sum_{n=1}^{\infty} \frac{4 x}{x^{2}-4 n^{2} \pi^{2}}$ (see [3]) it is not difficult to proof the following estimate

$$
\left(\operatorname{ctg} \frac{x}{2}\right)^{(r)}=\frac{2(-1)^{r} r!}{x^{r+1}}+O(1), x \in(0, \pi] .
$$

Thus

$$
\bar{D}_{n}^{(r)}(x)=\frac{(-1)^{r+1} r!}{x^{r+1}}+O\left((n+1)^{r+1}\right), x \in(0, \pi]
$$

Hence,

$$
\begin{aligned}
I_{1} & =r!\sum_{j=1}^{m}\left|\sum_{k=0}^{j-1} \Delta a_{k}\right| \int_{\pi /(j+1)}^{\pi / j} \frac{d x}{x^{r+1}}+O\left(\sum_{j=1}^{m}\left[\sum_{k=0}^{j-1}\left|\Delta a_{k}\right|(k+1)^{r+1}\right] \int_{\pi /(j+1)}^{\pi / j} d x\right) \\
& =O_{r}\left(\sum_{j=1}^{m}\left|a_{j}\right| j^{r-1}\right)+O\left(\sum_{j=1}^{m} \sum_{k=0}^{j-1} \frac{(k+1)^{r+1}\left|\Delta a_{k}\right|}{j(j+1)}\right),
\end{aligned}
$$

where O_{r} depends on r. But

$$
\begin{aligned}
\sum_{j=1}^{m} \sum_{k=0}^{j-1} \frac{(k+1)^{r+1}\left|\Delta a_{k}\right|}{j(j+1)} & =\sum_{j=1}^{m} \frac{1}{j(j+1)} \sum_{k=0}^{j-1}(k+1)^{r+1}\left|\Delta a_{k}\right| \\
& \leq \sum_{k=0}^{\infty}(k+1)^{r+1}\left|\Delta a_{k}\right| \sum_{j=k+1}^{\infty} \frac{1}{j(j+1)} \\
& =\sum_{k=0}^{\infty}(k+1)^{r}\left|\Delta a_{k}\right| \\
& =\left|\Delta a_{0}\right|+\sum_{k=1}^{\infty}(k+1)^{r}\left|\Delta a_{k}\right| \\
& \leq\left|a_{1}\right|+2^{r} \sum_{k=1}^{\infty} k^{r}\left|\Delta a_{k}\right| \\
& \leq \sum_{k=1}^{\infty}\left|\Delta a_{k}\right|+2^{r} \sum_{k=1}^{\infty} k^{r} A_{k} \\
& \leq\left(1+2^{r}\right) \sum_{k=1}^{\infty} k^{r} A_{k}
\end{aligned}
$$

Thus,

$$
\sum_{j=1}^{m} \sum_{k=0}^{j-1} \frac{\left|\Delta a_{k}\right|(k+1)^{r+1}}{j(j+1)}=O_{r}\left(\sum_{k=1}^{\infty} k^{r} A_{k}\right),
$$

where O_{r} depends on r.
Therefore,

$$
I_{1}=O_{r}\left(\sum_{j=1}^{m}\left|a_{j}\right| j^{r-1}\right)+O_{r}\left(\sum_{k=1}^{\infty} k^{r} A_{k}\right)
$$

Application of Abel's transformation, yields

$$
\sum_{k=j}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)=\sum_{k=j}^{\infty} \Delta A_{k} \sum_{i=0}^{k} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)-A_{j} \sum_{i=0}^{j-1} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)
$$

Let us estimate the second integral:

$$
I_{2} \leq \sum_{j=1}^{m}\left[\sum_{k=j}^{\infty}\left(\Delta A_{k}\right) \int_{\pi /(j+1)}^{\pi}\left|\sum_{i=0}^{k} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)\right|+A_{j} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{i=0}^{j-1} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)\right| d x\right] .
$$

Applying the Lemma 3.3, we have:

$$
\begin{equation*}
J_{k}=\int_{\pi /(j+1)}^{\pi}\left|\sum_{i=0}^{k} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)\right| d x=O_{r}\left((k+1)^{r+1}\right) \tag{4.2}
\end{equation*}
$$

where O_{r} depends on r. Then, by Lemma 3.5 (iii),

$$
\begin{align*}
\int_{\pi /(j+1)}^{\pi / j} \mid & \sum_{i=0}^{j-1} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)|d x| \\
& =O\left(j^{r}\left(\sum_{i=0}^{j-1} \frac{\left|\Delta a_{i}\right|}{A_{i}} \int_{\pi /(j+1)}^{\pi / j} \frac{d x}{x}\right)\right)+O\left(\sum_{i=0}^{j-1} \frac{\left|\Delta a_{i}\right|}{A_{i}} \int_{\pi /(j+1)}^{\pi / j} \frac{d x}{x^{r+1}}\right) \\
& =O\left(j^{r}\right)+O_{r}\left(j^{r}\right)=O_{r}\left(j^{r}\right) \tag{4.3}
\end{align*}
$$

r. However, by (4.2), (4.3) and (1.6), we have

$$
\begin{aligned}
I_{2} & \leq \sum_{k=1}^{\infty}\left(\Delta A_{k}\right) J_{k}+O_{r}\left(\sum_{j=1}^{\infty} j^{r} A_{j}\right) \\
& =O_{r}(1) \sum_{k=1}^{\infty}\left(\Delta A_{k}\right)(k+1)^{r+1}+O_{r}\left(\sum_{j=1}^{\infty} j^{r} A_{j}\right) \\
& =O_{r}\left(\sum_{j=1}^{\infty} j^{r} A_{j}\right) .
\end{aligned}
$$

Finally, the inequality (${ }^{*}$) is satisfied.
Proof of Corollary 2.4. By the inequalities

$$
\begin{aligned}
\sum_{n=1}^{m}\left|a_{n}\right| \cdot n^{r-1} & \leq \sum_{n=1}^{\infty} n^{r-1} \sum_{k=n}^{\infty}\left|\Delta a_{k}\right| \\
& \leq \sum_{n=1}^{\infty} n^{r-1} \sum_{k=n}^{\infty} A_{k} \\
& =\sum_{k=1}^{\infty} A_{k} \sum_{n=1}^{k} n^{r-1} \\
& \leq \sum_{k=1}^{\infty} k^{r} A_{k}
\end{aligned}
$$

and Theorem 2.3, we obtain:

$$
\int_{0}^{\pi}\left|g^{(r)}(x)\right| d x \leq M\left(\sum_{n=1}^{\infty} n^{r} A_{n}\right)
$$

where $0<M=M(r)<\infty$.

References

[1] SHENG SHUYUN, The extensions of the theorem of C. V. Stanojevic and V.B. Stanojevic, Proc. Amer. Math. Soc., 110 (1990), 895-904.
[2] S. SIDON, Hinrehichende Bedingungen fur den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc., 72 (1939), 158-160.
[3] M.R. SPIEGEL, Theory and Problems of Complex Variables, Singapore (1988), p.175, 192.
[4] S.A. TELYAKOVSKII, On a sufficient condition of Sidon for the integrability of trigonometric series, Math. Notes, 14 (1973), 742-748.
[5] Ž. TOMOVSKI, An extension of the Sidon-Fomin inequality and applications, Math. Ineq. \& Appl., 4(2) (2001), 231-238.
[6] Ž. TOMOVSKI, Some results on L^{1}-approximation of the r-th derivate of Fourier series, RGMIA Research Report Collection, 2(5) (1999), 709-717. ONLINE: http://rgmia.vu.edu.au/v2n5.html

