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Abstract

In this short note, an algebraic inequality related to those of Alzer, Minc and
Sathre is proved by using analytic arguments and Cauchy’s mean-value theo-
rem. An open problem is proposed.
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1. An Algebraic Inequality
In this note, we prove the following algebraic inequality

Theorem 1.1. Let b > a > 0 andδ > 0 be real numbers. Then for any given
positiver ∈ R, we have

(1.1)

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

>
b

b + δ
.

The lower bound in(1.1) is best possible.

Proof. The inequality (1.1) is equivalent to

br+1 − ar+1

b− a

/
(b + δ)r+1 − ar+1

b + δ − a
>

(
b

b + δ

)r

,

that is,

(1.2)
br+1 − ar+1

br(b− a)
>

(b + δ)r+1 − ar+1

(b + δ)r(b + δ − a)
.

Therefore, it is sufficient to prove that the function(sr+1 − ar+1)/sr(s− a) is
decreasing fors > a. By direct computation, we have(

sr+1 − ar+1

sr(s− a)

)′
s

=
(r + 1)(s− a)s2r − sr−1(sr+1 − ar+1)[(r + 1)s− ra]

[sr(s− a)]2
.

So, it suffices to prove

(1.3) (r + 1)(s− a)sr+1 − [(r + 1)s− ra](sr+1 − ar+1) 6 0.
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A straightforward calculation shows that the inequality (1.3) reduces to

sr − ar

r(s− a)
>

ar

s
.(1.4)

From Cauchy’s mean-value theorem, there exists a pointξ ∈ (a, s) such that

sr − ar

r(s− a)
= ξr−1 =

ξr

ξ
>

ar

ξ
>

ar

s
.

Hence, the inequality (1.4) holds.
The L’Hospital rule yields

(1.5) lim
r→+∞

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

=
b

b + δ
,

so the lower bound in (1.1) is best possible. The proof is complete.

Remark 1.1. The inequality(1.1) can be rewritten as

(1.6)
b

b + δ
<

(
1

b− a

∫ b

a

xrdx

/
1

b + δ − a

∫ b+δ

a

xrdx

)1/r

.

It is easy to see that inequality(1.6) is indeed an integral analogue of the fol-
lowing inequality

(1.7)
n + k

n + m + k
<

(
1

n

n+k∑
i=k+1

ir
/

1

n + m

n+m+k∑
i=k+1

ir

)1/r

,

wherer is a given positive real number,n andm are natural numbers, andk is
a nonnegative integer. The lower bound in(1.7) is best possible.
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The inequality (1.7) was presented in [5] by the author using Cauchy’s mean-
value theorem and mathematical induction. It generalizes the inequality of
Alzer in [1].

Using the same method as in [5], the author in [9] further generalized the
inequality of Alzer and obtained that, ifa = (a1, a2, . . . ) is a positive and in-
creasing sequence satisfying

a2
k+1 > akak+2,(1.8)

ak+1 − ak

a2
k+1 − akak+2

> max

{
k + 1

ak+1

,
k + 2

ak+2

}
(1.9)

for k ∈ N, then we have

(1.10)
an

an+m

<

(
1

n

n∑
i=1

ar
i

/
1

n + m

n+m∑
i=1

ar
i

)1/r

,

wheren andm are natural numbers. The lower bound in (1.10) is best possible.
Recently, some new inequalities related to those of Alzer, Minc and Sathre

were obtained by many mathematician. These inequalities involve ratios for the
sum of powers of positive numbers (see [2, 12]) and for the geometric mean
of natural numbers (see [4, 6, 7, 10, 11]). Many of them can be deduced from
monotonicity and convexity considerations (see [8]). Moreover, inequality (1.1)
has been generalised to an inequality for linear positive functionals in [3].

Here L’Hospital’s rule yields

(1.11) lim
r→0+

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

=
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
.
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Hence, we propose the following
Open Problem. Let b > a > 0 and δ > 0 be real numbers. Then for any

positiver ∈ R, we have

(1.12)

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

<
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
.

The upper bound in(1.12) is best possible.

Remark 1.2. The inequalities in this paper are related to the study of mono-
tonicity of the ratios and differences of mean values.
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