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Abstract

In this short note, an algebraic inequality related to those of Alzer, Minc and
Sathre is proved by using analytic arguments and Cauchy’s mean-value theo-
rem. An open problem is proposed.
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In this note, we prove the following algebraic inequality

Theorem 1.1.Letb > a > 0 andé > 0 be real numbers. Then for any given
positiver € R, we have

b+6—a prl _ grtl 1/r b
(1.1) ( b—a '(b+5)r+1_ar+1> >b+5'

The lower bound itf1.1) is best possible. An Algebraic Inequality

Proof. The inequality {.1) is equivalent to e
r+1 _ r+l r+1 _ r+1 r
b “ (b+9) “ > b , Title Page
b—a b+0—a b+9o
Contents
that is,
et » A » 44 >»
T _ a’l" + T _ a7‘
(1.2) > ( ) . < >
br(b—a) (b+6)"(b+6—a)
- - . 1 1 . Go Back
Therefore, it is sufficient to prove that the functiofi™ — a" 1) /s"(s — a) is
decreasing fos > a. By direct computation, we have Close
s —a N\ (r41)(s—a)s? — s (s — @) [(r + 1)s — ra] Quit
s7(s —a) s_ [s7(s — )] : Page 3 of 8
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(1.3) (r+1)(s—a)s"™ —[(r+1)s—ra)(s"t —a"*) 0.
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A straightforward calculation shows that the inequality3| reduces to
(1.4) sF-e &
r(s—a) s

From Cauchy’s mean-value theorem, there exists a goinfa, s) such that
sT —a” 1 57“ a” a”
— = =>—>—.
r(s —a) ¢ 1 13 s

Hence, the inequalityl(4) holds.

The L'Hospital rule yields

b+6—a prl _ grtl 1/7“_ b
b—a  (b+0)+t —art! b+ s

so the lower bound inl(1) is best possible. The proof is complete. H

(1.5) lim

r—+00

Remark 1.1. The inequality(1.1) can be rewritten as

b 1 b 1 b+d 1/r
1. " _ " .
(1.6) b+(5<(b—a/a$d$/b+5—a/a xdx)

It is easy to see that inequalify.6) is indeed an integral analogue of the fol-
lowing inequality

1/r

n+k 1n+k 1 n+m-+k

1.7 — < | - " "
an (b )

i=k+1 =k+1

wherer is a given positive real number,andm are natural numbers, anklis
a nonnegative integer. The lower bound in?) is best possible.
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The inequality {.7) was presented irb] by the author using Cauchy’s mean-
value theorem and mathematical induction. It generalizes the inequality of
Alzer in [1].

Using the same method as in][ the author in ] further generalized the
inequality of Alzer and obtained that, if = (a4, ao,...) is a positive and in-
creasing sequence satisfying

2

(1.8) apyq1 = Qglgyo,

(1.9) 2ak+1—_ak > max{ k+ 1’ k+2 } An Algebraic Inequality
Apy1 — OpQi42 Ag+1  Ap42

Feng Qi

for k € N, then we have

nt+m 1r Title Page
(1.10) P ( Z /n+m > Contents

wheren andm are natural numbers. The lower boundinl() is best possible. 4 dd
Recently, some new inequalities related to those of Alzer, Minc and Sathre 4 >

were obtained by many mathematician. These inequalities involve ratios for the Go Back

sum of powers of positive numbers (seg [7]) and for the geometric mean

of natural numbers (seé,[6, 7, 10, 11]). Many of them can be deduced from Cligsr

monotonicity and convexity considerations (sé@.[Moreover, inequality {.1) Quit

has been generalised to an inequality for linear positive functionalg.in [ Page 5 of 8

Here L'Hospital’s rule yields

b+d—a . prtl _ grtl 1/r _ [bb/aa]l/(bfa) 3 |n;(:.t;;;;;:::%pl;.Z;rj\:;&l) Art. 13, 2001
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Hence, we propose the following
Open Problem. Letb > a > 0 andd > 0 be real numbers. Then for any
positiver € R, we have

b+d—a pr+l — grtl [bb/aa]l/(b—a)

1/r
1.12 . )
( ) ( b—a (b + 6)7“4-1 _ aT+1> < [(b + 6)b+6/aa]1/(b+5—a)

The upper bound i1.12) is best possible.

Remark 1.2. The inequalities in this paper are related to the study of mono-
tonicity of the ratios and differences of mean values.
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