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The starting point of this note was an inequality,
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for all pairs of integer$ < d < n, in [5, Lemma 2.1]. Note that the left hand

side of this inequality is an immediate consequence of the logarithmic convexity

of theI'-function; see ]. Looking for a stream-lined proof of inequalityL),

we first found a proof of the more general inequality
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valid for all 0 < ¢ < p, and finally showed
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forall =1 < ¢ < p. These inequalities will be immediate consequences of the « dd
following result. < >
Theorem 1. The functionf(z) := 1 4+ 2InT'(z + 1) — In(z + 1) is strictly e
completely monotone gr-1, o),
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(Here, ~ is the Euler-Mascheroni constant, amstrictly completely monotone —
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Proof. The main ingredient of the proof is the integral representation
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e ™) dt,

which is an immediate consequence of formula 1.9 (2) (p. 21)] andd] for-
mula 1.7.2 (18) (p. 17)]. We obtain

The function .
1
o) = (1) = [Feras
0

is strictly completely monotone oR. Since; — -+ > 0 forall ¢ > 0, we

conclude thatf is strictly completely monotone. Ag — oo, ¢(y) tends to
zero, and hencBm,_ .., f(z) = 0. The definition off showslim, ., f(x) =
1+ (1) =1—~;cf. [6, formula 1.7 (4) (p. 15)]. Finally,

lim f(z) =1+ lim (l(lnf‘(:c +2) —In(z + 1)) — In(z + 1)) =1
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]
Corollary 2. Inequalities(3), (2) and (1) are valid for the indicated ranges.

Proof. Inequality @) is just a reformulation of the monotonicity of the function
f from Theoreml. Continuing @) to the right,
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we obtain ). Settingg = 3¢, p = 2 we get (). O

Remark 1.

3
(@) In [4] it was shown that the functiof — ¢ (F (1 + %)) IS increasing
on (0, o0). This fact follows immediately from our Theorérrbecause of

1 1 1
In (—F(QJ + 1) z) +1=—Inz+ _F($+ 1) +1 = ln((l;—l— 1) —Inz+ f(SC) Integral Means Inequalities for
X X Fractional Derivatives of Some
. ) ) General Subclasses of Analytic
(In fact, the latter function even is strictly completely monotone as well.) Functions
(b) For other recent results on (complete) monotonicity properties ofithe Hendrik Vogt and Jrgen Voigt
function we refer to ], 2, 3].
Title Page
Contents
<4 >
< 4
Go Back
Close
Quit
Page 4 of 5

J. Ineq. Pure and Appl. Math. 3(5) Art. 73, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:vogt@math.tu-dresden.de
mailto:voigt@math.tu-dresden.de
http://jipam.vu.edu.au/

[1] H. ALZER, On some inequalities for the gamma and psi functidesth.
Comp, 66(217) (1997), 373—-389.

[2] G.D. ANDERSONAND S.-L. QIU, A monotoneity property of the gamma
function,Proc. Amer. Math. Sog12511) (1997), 3355-3362.

[3] A. ELBERT AND A. LAFORGIA, On some properties of the gamma func-
tion, Proc. Amer. Math. Soc1,289) (2000), 2667—2673.

[4] D. KERSHAW AND A. LAFORGIA, Monotonicity results for the gamma
function, Atti Accad. Sci. Torino, CI. Sci. Fis. Mat. Natut193-4) (1985),
127-133.

[5] A. KOLDOBSKY AND M. LIFSHITS, Average volume of sections of star
bodies, In: Geometric Aspects of Functional AnalysisD. Milman and
G. Schechtmann (edslect. Notes Math.1745 Springer, Berlin, 2000,
119-146.

[6] A. ERDELYI, W. MAGNUS, F. OBERHETTINGERAND F. TRICOMI,
Higher Trancscendental FunctiondicGraw-Hill Book Company, New
York-Toronto-London, 1953.

Integral Means Inequalities for

Fractional Derivatives of Some

General Subclasses of Analytic
Functions

Hendrik Vogt and Jirgen Voigt

Title Page
Contents
44
<
Go Back
Close
Quit
Page 5 of 5

J. Ineq. Pure and Appl. Math. 3(5) Art. 73, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:vogt@math.tu-dresden.de
mailto:voigt@math.tu-dresden.de
http://jipam.vu.edu.au/

