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ABSTRACT. In this paper we obtain some Hadamard type inequalities for triple integrals. The
results generalize those obtained in (S.S. DRAGOMIR, On Hadamard’s inequality for the convex
mappings defined on a ball in the space and applications,RGMIA(preprint), 1999).
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1. I NTRODUCTION

Let f : [a, b] → R be a convex mapping defined on the interval[a, b]. The following
double inequality

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2

is known in the literature as Hadamard’s inequality for convex mappings.
In [1] S.S. Dragomir considered the following mapping naturally connected to Hadamard’s

inequality

H : [0, 1] → R, H(t) =
1

b− a

∫ b

a

f

(
tx + (1− t)

a + b

2

)
dx

and proved the following properties of this function

(i) H is convex and monotonic nondecreasing.
(ii) H has the bounds

sup
t∈[0,1]

H(t) = H(1) =
1

b− a

∫ b

a

f(x) dx
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and

inf
t∈[0,1]

H(t) = H(0) = f

(
a + b

2

)
.

In the recent paper [2], S.S. Dragomir gave some inequalities of Hadamard’s type for convex
functions defined on the ballB(C, R), where

C = (a, b, c) ∈ R3, R > 0

and

B(C, R) := {(x, y, z) ∈ R3| (x− a)r + (y − b)2 + (z − c)2 ≤ R2}

More precisely he proved the following theorem.

Theorem 1.1. Let f : B(C, R) → R be a convex mapping on the ballB(C, R). Then we have
the inequality

f(a, b, c) ≤ 1

v(B(C, R))

∫∫∫
B(C,R)

f(x, y, z) dxdydz(1.2)

≤ 1

σ(B(C, R))

∫∫
S(C,R)

f(x, y, z) dσ

where

S(C, R) := {(x, y, z) ∈ R2| (x− a)2 + (y − b)2 + (z − c)2 = R2}

and

v(B(C, R)) =
4πR3

3
, σ(B(C, R)) = 4πR2.

In [2] S.S. Dragomir considers, for a convex mappingf defined on the ballB(C, R), the
mappingH : [0, 1] → R given by

H(t) =
1

v(B(C, R))

∫∫∫
B(C,R)

f(t(x, y, z) + (1− t)C) dxdydz.

The main properties of this mapping are contained in the following theorem.

Theorem 1.2.With the above assumption, we have

(i) The mappingH is convex on[0, 1].
(ii) H has the bounds

(1.3) inf
t∈[0,1]

H(t) = H(0) = f(C)

and

(1.4) sup
t∈[0,1]

H(t) = H(1) =
1

v(B(C, R))

∫∫∫
B(C,R)

f(x, y, z) dxdydz.

(iii) The mappingH is monotonic nondecreasing on[0, 1].

In this paper we shall give a generalization of the Theorem 1.2 for a positive linear func-
tional defined onC(D), whereD ⊂ Rm (m ∈ N∗) is a convex domain. We shall give also a
generalization of the Theorem 1.1.
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2. RESULTS

Let D ⊂ Rm be a convex domain andA : C(D) → R be a given positive linear functional
such thatA(e0) = 1, wheree0(x) = 1, x ∈ D. Let x = (x1, . . . , xm) be a point fromD we
note bypi, i = 1, 2, . . . ,m the function defined onD by

pi(x) = xi, i = 1, 2, . . . ,m

and byai, i = 1, 2, . . . ,m the value of the functionalA in pi, i.e.

A(pi) = ai, i = 1, 2, . . . ,m.

In addition, letf be a convex mapping onD. We consider the mappingH : [0, 1] → R
associated with the functionf and given by

H(t) = A(f(tx + (1− t)a))

wherea = (a1, a2, . . . , am) and the functionalA acts analagous to the variablex.
Theorem 2.1.With above assumption, we have

(i) The mappingH is convex on[0, 1].
(ii) The bounds of the functionH are given by

(2.1) inf
t∈[0,1]

H(t) = H(0) = f(a)

and

(2.2) sup
t∈[0,1]

H(t) = H(1) = A(f).

(iii) The mappingH is monotonic nondecreasing on[0, 1].

Proof. (i) Let t1, t2 ∈ [0, 1] andα, β ≥ 0 with α + β = 1. Then we have

H(αt1 + βt2) = A[f((αt1 + βt2)x + (1− (αt1 + βt2))a)]

= A[f(α(t1x + (1− t1)a) + β(t2x + (1− t2)a))]

≤ αA[f(t1x + (1− t1)a)] + BA[f(t2x + (1− t2)a)]

= αH(t1) + βH(t2)

which proves the convexity ofH on [0, 1].
(ii) Let g be a convex function onD. Then there exist the real numbersA1, A2, . . . , Am such
that

(2.3) g(x) ≥ g(a) + (x1 − a1)A1 + (x2 − a2)A2 + · · ·+ (xm − am)Am

for anyx = (x1, . . . , xm) ∈ D.
Using the fact that the functionalA is linear and positive, from the inequality (2.3) we obtain

the inequality

(2.4) A(g) ≥ g(a).

Now, for a fixed numbert, t ∈ [0, 1] the functiong : D → R defined by

g(x) = f(tx + (1− t)a)

is a convex function. From the inequality (2.4) we obtain

A(f(tx + (1− t)a)) ≥ f(ta + (1− t)a) = f(a)

or
H(t) ≥ H(0)

for everyt ∈ [0, 1], which proves the equality (2.1).
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Let 0 ≤ t1 < t2 ≤ 1. By the convexity of the mappingH we have

H(t2)−H(t1)

t2 − t1
≥ H(t1)−H(0)

t1
≥ 0.

So the functionH is a nondecreasing function andH(t) ≤ H(1). The theorem is proved.�

Remark2.1. Form = 1, D = [a, b] and

A(f) =
1

b− a

∫ b

a

f(x) dx

the functionH is the function which was considered in the paper [1].
Remark2.2. Form = 3 andD = B(C, R) and

A(f) =
1

v(B(C, R))

∫∫∫
B(C,R)

f(x, y, z) dxdydz

a beingC, the functionH is the functional from the Theorem 1.2.
Let D be a bounded convex domain fromR3 with a piecewise smooth boundaryS. We define

the notation

σ :=

∫∫
S

dS,

a1 :=
1

σ

∫∫
S

x dS,

a2 :=
1

σ

∫∫
S

y dS,

a3 :=

∫∫
S

z dS,

v :=

∫∫∫
V

f(x, y, z) dxdydz.

Let us assume that the surfaceS is oriented with the aid of the unit normalh directed to the
exterior ofD

h = (cos α, cos β, cos γ).

The following theorem is a generalization of the Theorem 1.1.

Theorem 2.2.Letf be a convex function onD. With the above assumption we have the follow-
ing inequalities

(2.5) v

∫∫
S

fds− σ

∫∫
S

[(a1 − x) cos α + (a2 − y) cos β + (a3 − z) cos γ]f(x, y, z)dS

≥ 4σ

∫∫∫
D

f(x, y, z) dxdydz

and

(2.6)
∫∫∫

D

f(x, y, z) dxdydz ≥ f(xσ, yσ, zσ)v,

where

xσ =
1

v

∫∫∫
D

x dxdydz, yσ =
1

v

∫∫∫
D

y dxdydz, zσ =
1

v

∫∫∫
D

z dxdydz.
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Proof. We can suppose that the functionf has the partial derivatives
∂f

∂x
,
∂f

∂y
,
∂f

∂z
and these are

continuous onD.
For every point(u, v, w) ∈ S and(x, y, z) ∈ D the following inequality holds:

(2.7) f(u, v, w) ≥ f(x, y, z)+
∂f

∂x
(x, y, z)(u−x)+

∂f

∂y
(x, y, z)(v−y)+

∂f

∂z
(x, y, z)(w−z).

From the inequality (2.7) we have

(2.8)
∫∫

S

f(x, y, z) dS ≥ f(x, y, z)σ +
∂f

∂x
(x, y, z)(a1 − x)σ

+
∂f

∂y
(x, y, z)(a2 − y)σ +

∂f

∂z
(x, y, z)(a3 − z)σ.

The above inequality leads us to the inequality

(2.9) v

∫∫
S

f(x, y, z) dS ≥ σ

∫∫∫
D

f(x, y, z) dxdydz

+σ

∫∫∫
D

[
∂

∂x
((a1−x)f(x, y, z))+

∂

∂y
((a2−y)f(x, y, z))+

∂

∂z
((a3−z)f(x, y, z))

]
dxdydz

+ 3σ

∫∫∫
D

f(x, y, z) dxdydz.

Using the Gauss-Ostrogradsky’ theorem we obtain the equality

(2.10)
∫∫∫

D

[
∂

∂x
((a1 − x)f(x, y, z) +

∂

∂y
((a2 − y)f(x, y, z))

+
∂

∂z
((a3 − z)f(z, y, z)

]
dxdydz

=

∫∫
S

[(a1 − x) cos α + (a2 − y) cos β + (a3 − z) cos γ]f(x, y, z) dS.

From the relations (2.9) and (2.10) we obtain the inequality (2.4). The inequality (2.6) is the
inequality (2.4) for the functional

A(f) =

∫∫∫
D

f(x, y, z) dxdydz∫∫∫
D

dxdydz

.

�

Remark2.3. ForD = B(C, R) we have

(a1, a2, a3) = C

and

cos α =
x− a1

R
, cos β =

y − a2

R
, cos γ =

z − a3

R
.

In this case the inequality (2.4) becomes

σ

∫∫∫
B(C,R)

f(x, y, z) dxdydz ≤ v

∫∫
S(C,R)

f(x, y, z) dσ.
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