Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/
Volume 1, Issue 1, Article 9, 2000

ON HADAMARD'S INEQUALITY FOR THE CONVEX MAPPINGS DEFINED ON A CONVEX DOMAIN IN THE SPACE

 BOGDAN GAVREABabeş-Bolyai University Cluj-Napoca, Department of Mathematics and Computers, Str. Mihail Kogălniceanu 1, 3400 Cluj-Napoca, Romania
gb7581@math.ubbcluj.ro

Received 28 September, 1999; accepted 31 January, 2000
Communicated by S.S. Dragomir

Abstract

In this paper we obtain some Hadamard type inequalities for triple integrals. The results generalize those obtained in (S.S. DRAGOMIR, On Hadamard's inequality for the convex mappings defined on a ball in the space and applications, RGMIA (preprint), 1999).

Key words and phrases: Hadamard's inequality
2000 Mathematics Subject Classification 26D15.

1. INTRODUCTION

Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex mapping defined on the interval $[a, b]$. The following double inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is known in the literature as Hadamard's inequality for convex mappings.
In [1] S.S. Dragomir considered the following mapping naturally connected to Hadamard's inequality

$$
H:[0,1] \rightarrow \mathbb{R}, \quad H(t)=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x
$$

and proved the following properties of this function
(i) H is convex and monotonic nondecreasing.
(ii) H has the bounds

$$
\sup _{t \in[0,1]} H(t)=H(1)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

[^0]and
$$
\inf _{t \in[0,1]} H(t)=H(0)=f\left(\frac{a+b}{2}\right)
$$

In the recent paper [2], S.S. Dragomir gave some inequalities of Hadamard's type for convex functions defined on the ball $\bar{B}(C, R)$, where

$$
C=(a, b, c) \in \mathbb{R}^{3}, \quad R>0
$$

and

$$
\bar{B}(C, R):=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x-a) r+(y-b)^{2}+(z-c)^{2} \leq R^{2}\right\}
$$

More precisely he proved the following theorem.
Theorem 1.1. Let $f: \bar{B}(C, R) \rightarrow \mathbb{R}$ be a convex mapping on the ball $\bar{B}(C, R)$. Then we have the inequality

$$
\begin{align*}
f(a, b, c) & \leq \frac{1}{v(\bar{B}(C, R))} \iiint_{\bar{B}(C, R)} f(x, y, z) d x d y d z \tag{1.2}\\
& \leq \frac{1}{\sigma(\bar{B}(C, R))} \iint_{S(C, R)} f(x, y, z) d \sigma
\end{align*}
$$

where

$$
S(C, R):=\left\{(x, y, z) \in \mathbb{R}^{2} \mid(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=R^{2}\right\}
$$

and

$$
v(\bar{B}(C, R))=\frac{4 \pi R^{3}}{3}, \quad \sigma(\bar{B}(C, R))=4 \pi R^{2}
$$

In [2] S.S. Dragomir considers, for a convex mapping f defined on the ball $\bar{B}(C, R)$, the mapping $H:[0,1] \rightarrow \mathbb{R}$ given by

$$
H(t)=\frac{1}{v(\bar{B}(C, R))} \iiint_{\bar{B}(C, R)} f(t(x, y, z)+(1-t) C) d x d y d z
$$

The main properties of this mapping are contained in the following theorem.
Theorem 1.2. With the above assumption, we have
(i) The mapping H is convex on $[0,1]$.
(ii) H has the bounds

$$
\begin{equation*}
\inf _{t \in[0,1]} H(t)=H(0)=f(C) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{t \in[0,1]} H(t)=H(1)=\frac{1}{v(\bar{B}(C, R))} \iiint_{\bar{B}(C, R)} f(x, y, z) d x d y d z \tag{1.4}
\end{equation*}
$$

(iii) The mapping H is monotonic nondecreasing on $[0,1]$.

In this paper we shall give a generalization of the Theorem 1.2 for a positive linear functional defined on $C(D)$, where $D \subset \mathbb{R}^{m}\left(m \in \mathbb{N}^{*}\right)$ is a convex domain. We shall give also a generalization of the Theorem 1.1.

2. Results

Let $D \subset \mathbb{R}^{m}$ be a convex domain and $A: C(D) \rightarrow \mathbb{R}$ be a given positive linear functional such that $A\left(e_{0}\right)=1$, where $e_{0}(x)=1, x \in D$. Let $x=\left(x_{1}, \ldots, x_{m}\right)$ be a point from D we note by $p_{i}, i=1,2, \ldots, m$ the function defined on D by

$$
p_{i}(x)=x_{i}, \quad i=1,2, \ldots, m
$$

and by $a_{i}, i=1,2, \ldots, m$ the value of the functional A in p_{i}, i.e.

$$
A\left(p_{i}\right)=a_{i}, \quad i=1,2, \ldots, m
$$

In addition, let f be a convex mapping on D. We consider the mapping $H:[0,1] \rightarrow \mathbb{R}$ associated with the function f and given by

$$
H(t)=A(f(t x+(1-t) a))
$$

where $a=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and the functional A acts analagous to the variable x.
Theorem 2.1. With above assumption, we have
(i) The mapping H is convex on $[0,1]$.
(ii) The bounds of the function H are given by

$$
\begin{equation*}
\inf _{t \in[0,1]} H(t)=H(0)=f(a) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{t \in[0,1]} H(t)=H(1)=A(f) . \tag{2.2}
\end{equation*}
$$

(iii) The mapping H is monotonic nondecreasing on $[0,1]$.

Proof. (i) Let $t_{1}, t_{2} \in[0,1]$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. Then we have

$$
\begin{aligned}
H\left(\alpha t_{1}+\beta t_{2}\right) & =A\left[f\left(\left(\alpha t_{1}+\beta t_{2}\right) x+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) a\right)\right] \\
& =A\left[f\left(\alpha\left(t_{1} x+\left(1-t_{1}\right) a\right)+\beta\left(t_{2} x+\left(1-t_{2}\right) a\right)\right)\right] \\
& \leq \alpha A\left[f\left(t_{1} x+\left(1-t_{1}\right) a\right)\right]+B A\left[f\left(t_{2} x+\left(1-t_{2}\right) a\right)\right] \\
& =\alpha H\left(t_{1}\right)+\beta H\left(t_{2}\right)
\end{aligned}
$$

which proves the convexity of H on $[0,1]$.
(ii) Let g be a convex function on D. Then there exist the real numbers $A_{1}, A_{2}, \ldots, A_{m}$ such that

$$
\begin{equation*}
g(x) \geq g(a)+\left(x_{1}-a_{1}\right) A_{1}+\left(x_{2}-a_{2}\right) A_{2}+\cdots+\left(x_{m}-a_{m}\right) A_{m} \tag{2.3}
\end{equation*}
$$

for any $x=\left(x_{1}, \ldots, x_{m}\right) \in D$.
Using the fact that the functional A is linear and positive, from the inequality (2.3) we obtain the inequality

$$
\begin{equation*}
A(g) \geq g(a) \tag{2.4}
\end{equation*}
$$

Now, for a fixed number $t, t \in[0,1]$ the function $g: D \rightarrow \mathbb{R}$ defined by

$$
g(x)=f(t x+(1-t) a)
$$

is a convex function. From the inequality (2.4) we obtain

$$
A(f(t x+(1-t) a)) \geq f(t a+(1-t) a)=f(a)
$$

or

$$
H(t) \geq H(0)
$$

for every $t \in[0,1]$, which proves the equality (2.1).

Let $0 \leq t_{1}<t_{2} \leq 1$. By the convexity of the mapping H we have

$$
\frac{H\left(t_{2}\right)-H\left(t_{1}\right)}{t_{2}-t_{1}} \geq \frac{H\left(t_{1}\right)-H(0)}{t_{1}} \geq 0
$$

So the function H is a nondecreasing function and $H(t) \leq H(1)$. The theorem is proved.
Remark 2.1. For $m=1, D=[a, b]$ and

$$
A(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

the function H is the function which was considered in the paper [1].
Remark 2.2. For $m=3$ and $D=\bar{B}(C, R)$ and

$$
A(f)=\frac{1}{v(\bar{B}(C, R))} \iiint_{\bar{B}(C, R)} f(x, y, z) d x d y d z
$$

a being C, the function H is the functional from the Theorem 1.2 .
Let D be a bounded convex domain from \mathbb{R}^{3} with a piecewise smooth boundary S. We define the notation

$$
\begin{gathered}
\sigma:=\iint_{S} d S \\
a_{1}:=\frac{1}{\sigma} \iint_{S} x d S, \\
a_{2}:=\frac{1}{\sigma} \iint_{S} y d S \\
a_{3}:=\iint_{S} z d S \\
v:=\iiint_{V} f(x, y, z) d x d y d z .
\end{gathered}
$$

Let us assume that the surface S is oriented with the aid of the unit normal h directed to the exterior of D

$$
h=(\cos \alpha, \cos \beta, \cos \gamma) .
$$

The following theorem is a generalization of the Theorem 1.1 .
Theorem 2.2. Let f be a convex function on D. With the above assumption we have the following inequalities

$$
\begin{align*}
v \iint_{S} f d s-\sigma \iint_{S}\left[\left(a_{1}-x\right) \cos \alpha+\left(a_{2}-y\right) \cos \beta+\right. & \left.\left(a_{3}-z\right) \cos \gamma\right] f(x, y, z) d S \tag{2.5}\\
& \geq 4 \sigma \iiint_{D} f(x, y, z) d x d y d z
\end{align*}
$$

and

$$
\begin{equation*}
\iiint_{D} f(x, y, z) d x d y d z \geq f\left(x_{\sigma}, y_{\sigma}, z_{\sigma}\right) v \tag{2.6}
\end{equation*}
$$

where

$$
x_{\sigma}=\frac{1}{v} \iiint_{D} x d x d y d z, \quad y_{\sigma}=\frac{1}{v} \iiint_{D} y d x d y d z, \quad z_{\sigma}=\frac{1}{v} \iiint_{D} z d x d y d z
$$

Proof. We can suppose that the function f has the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ and these are continuous on D.

For every point $(u, v, w) \in S$ and $(x, y, z) \in D$ the following inequality holds:
(2.7)
$f(u, v, w) \geq f(x, y, z)+\frac{\partial f}{\partial x}(x, y, z)(u-x)+\frac{\partial f}{\partial y}(x, y, z)(v-y)+\frac{\partial f}{\partial z}(x, y, z)(w-z)$.
From the inequality (2.7) we have

$$
\begin{align*}
\iint_{S} f(x, y, z) d S \geq f(x, y, z) \sigma+\frac{\partial f}{\partial x} & (x, y, z)\left(a_{1}-x\right) \sigma \tag{2.8}\\
& +\frac{\partial f}{\partial y}(x, y, z)\left(a_{2}-y\right) \sigma+\frac{\partial f}{\partial z}(x, y, z)\left(a_{3}-z\right) \sigma
\end{align*}
$$

The above inequality leads us to the inequality
(2.9) $v \iint_{S} f(x, y, z) d S \geq \sigma \iiint_{D} f(x, y, z) d x d y d z$

$$
\begin{aligned}
+\sigma \iiint_{D}\left[\frac{\partial}{\partial x}\left(\left(a_{1}-x\right) f(x, y, z)\right)+\frac{\partial}{\partial y}\left(\left(a_{2}-y\right) f(x, y, z)\right)+\right. & \left.\frac{\partial}{\partial z}\left(\left(a_{3}-z\right) f(x, y, z)\right)\right] d x d y d z \\
& +3 \sigma \iiint_{D} f(x, y, z) d x d y d z
\end{aligned}
$$

Using the Gauss-Ostrogradsky' theorem we obtain the equality

$$
\begin{align*}
& \iiint_{D}\left[\frac { \partial } { \partial x } \left(\left(a_{1}-x\right) f(x, y, z)+\frac{\partial}{\partial y}\left(\left(a_{2}-y\right) f(x, y, z)\right)\right.\right. \tag{2.10}\\
&+\frac{\partial}{\partial z}\left(\left(a_{3}-z\right) f(z, y, z)\right] d x d y d z \\
&=\iint_{S}\left[\left(a_{1}-x\right) \cos \alpha+\left(a_{2}-y\right) \cos \beta+\left(a_{3}-z\right) \cos \gamma\right] f(x, y, z) d S
\end{align*}
$$

From the relations (2.9) and (2.10) we obtain the inequality (2.4). The inequality (2.6) is the inequality (2.4) for the functional

$$
A(f)=\frac{\iiint_{D} f(x, y, z) d x d y d z}{\iiint_{D} d x d y d z}
$$

Remark 2.3. For $D=\bar{B}(C, R)$ we have

$$
\left(a_{1}, a_{2}, a_{3}\right)=C
$$

and

$$
\cos \alpha=\frac{x-a_{1}}{R}, \quad \cos \beta=\frac{y-a_{2}}{R}, \quad \cos \gamma=\frac{z-a_{3}}{R} .
$$

In this case the inequality (2.4) becomes

$$
\sigma \iiint_{\bar{B}(C, R)} f(x, y, z) d x d y d z \leq v \iint_{S(C, R)} f(x, y, z) d \sigma .
$$

References

[1] S.S. DRAGOMIR, A mapping in connection to Hadamard's inequality, An. Ostro. Akad. Wiss. Math.Natur. (Wien), 128 (1991), 17-20.
[2] S.S. DRAGOMIR, On Hadamard's inequality for the convex mappings defined on a ball in the space and applications, RGMIA (preprint), 1999. [ONLINE] Available online at http://rgmia.vu.edu.au/Hadamard.html\#HHTICF

[^0]: ISSN (electronic): 1443-5756
 (C) 2000 Victoria University. All rights reserved.

 007-99

