PROPERTIES OF NON POWERFUL NUMBERS

VLAD COPIL AND LAURENŢIU PANAITOPOL

University "Spiru Haret"
Department of Mathematics
Str. Ion Ghica, 13, 030045
Bucharest, Romania
vladcopil@gmail.com

University of Bucharest
Department of Mathematics
Str. Academiei 14, 010014
Bucharest, Romania
pan@al.math.unibuc.ro
Received 11 January, 2008; accepted 10 March, 2008
Communicated by L. Tóth

Abstract

In this paper we study some properties of non powerful numbers. We evaluate the n-th non powerful number and prove for the sequence of non powerful numbers some theorems that are related to the sequence of primes: Landau, Mandl, Scherk. Related to the conjecture of Goldbach, we prove that every positive integer ≥ 3 is the sum between a prime and a non powerful number.

Key words and phrases: Powerful numbers, Sequences, Inequalities, Goldbach's conjecture.
2000 Mathematics Subject Classification. 11B83, 11P32, 26D07.

1. Introduction

A positive integer v is called non powerful if there exists a prime p such that $p \mid v$ and $p^{2} \nmid v$. Otherwise, if v has the canonical decomposition $v=q_{1}^{\alpha_{1}} \cdots \cdots q_{r}^{\alpha_{r}}$, there exists $j \in\{1,2, \ldots, r\}$ such that $\alpha_{j}=1$.

It results that v can be written uniquely as $v=f \cdot u$, where f is squarefree, u is powerful and $(f, u)=1$.

In this paper we use the following notations:

- $K(x)=$ the number of powerful numbers less than or equal to x
- $C(x)=$ the number of non powerful numbers less than or equal to x
- v_{n} is the n-th non powerful number

We use a special case of a classical formula:

Theorem A. If $h \in C^{1}, g$ is continuous, a is powerful and

$$
G(x)=\sum_{\substack{a \leq v \leq x \\ v \text { non powerful }}} g(v)
$$

then

$$
\sum_{\substack{a \leq v \leq x \\ v \text { non powerful }}} h(v) g(v)=h(x) G(x)-\int_{a}^{x} h^{\prime}(t) G(t) d t .
$$

G. Mincu and L. Panaitopol proved [5] the following.

Theorem B.

$$
K(x) \geq c \sqrt{x}-1.83522 \sqrt[3]{x} \quad \text { for } x \geq 961
$$

and

$$
K(x) \leq c \sqrt{x}-1.207684 \sqrt[3]{x} \quad \text { for } x \geq 4
$$

As $C(x)=[x]-K(x)$ it results that

$$
\begin{equation*}
[x]-c \sqrt{x}+1.207684 \sqrt[3]{x} \leq C(x) \leq[x]-c \sqrt{x}+1.83522 \sqrt[3]{x} \tag{1.1}
\end{equation*}
$$

the first inequality being true for $x \geq 4$, while the second one is true for $x \geq 961$.
We also use
Theorem C. We have the relation

$$
K(x)=\frac{\zeta(3 / 2)}{\zeta(3)} \sqrt{x}+\frac{\zeta(2 / 3)}{\zeta(2)} \sqrt[3]{x}+O\left(x^{\frac{1}{6}} \exp \left(-c_{1} \log ^{\frac{3}{5}}(\log \log x)^{-\frac{1}{5}}\right)\right.
$$

2. INEQUALITIES FOR v_{n}

Theorem 2.1. We have the relation

$$
v_{n}>n+c \sqrt{n}-a \sqrt[3]{n} \quad \text { for } n \geq 88
$$

where $a=1.83522$.
Proof. If we put $x=v_{n}$ in the second inequality from (1.1), it results that

$$
n \leq v_{n}-c \sqrt{v_{n}}+a \sqrt[3]{v_{n}}
$$

for $n \geq 4$.
Let $f(x)=x-c \sqrt{x}+a \sqrt[3]{x}-n$ and $x_{n}^{\prime}=n+c \sqrt{n}-k \sqrt[3]{n}$. As $f\left(v_{n}\right)>0$, and f is increasing, if we prove that $f\left(x_{n}^{\prime}\right)<0$, it results that $v_{n}>x_{n}^{\prime}$.

Denote $g(n)=f\left(x_{n}^{\prime}\right)$. Proving that $f\left(x_{n}^{\prime}\right)<0$ is equivalent with proving that $g(n)<0$. Therefore we intend to prove that

$$
g(n)=c \sqrt{n}-k \sqrt[3]{n}-c \sqrt{n+c \sqrt{n}-k \sqrt[3]{n}}+a \sqrt[3]{n+c \sqrt{n}-k \sqrt[3]{n}}<0
$$

We use the following relations for $x>0$:

$$
\begin{equation*}
1+\frac{x}{2}>\sqrt{1+x}>1+\frac{x}{2}-\frac{x^{2}}{8} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{x}{3}>\sqrt[3]{1+x}>1+\frac{x}{3}-\frac{x^{2}}{9} \tag{2.2}
\end{equation*}
$$

Putting $x=x_{n}^{\prime}$ in 2.1) gives

$$
\sqrt{n}+\frac{c}{2}-\frac{k}{2 \sqrt[6]{n}}>\sqrt{n+c \sqrt{n}-k \sqrt[3]{n}}>\sqrt{n}+\frac{c}{2}-\frac{k}{2 \sqrt[6]{n}}-\frac{\sqrt{n}}{8}\left(\frac{c}{\sqrt{n}}-\frac{k}{\sqrt[3]{n^{2}}}\right)^{2}
$$

while $x=x_{n}^{\prime}$ gives from (2.2)

$$
\sqrt[3]{n}+\frac{c}{3 \sqrt[6]{n}}-\frac{k}{3 \sqrt[3]{n}}>\sqrt[3]{n+c \sqrt{n}-k \sqrt[3]{n}}>\sqrt[3]{n}+\frac{c}{3 \sqrt[6]{n}}-\frac{k}{3 \sqrt[3]{n}}-\frac{\sqrt[3]{n}}{9}\left(\frac{c}{\sqrt{n}}-\frac{k}{\sqrt[3]{n^{2}}}\right)^{2}
$$

Using the previous relations in the expression of $g(n)$ yields
$g(n)<c \sqrt{n}-k \sqrt[3]{n}-c \sqrt{n}-\frac{c^{2}}{2}+\frac{c k}{2 \sqrt[6]{n}}+\frac{c \sqrt{n}}{8}\left(\frac{c}{\sqrt{n}}-\frac{k}{\sqrt[3]{n^{2}}}\right)^{2}+a \sqrt[3]{n}+\frac{a c}{3 \sqrt[6]{n}}-\frac{a k}{3 \sqrt[3]{n}}$.
In order to prove $g(n)>0$ it is enough to prove that

$$
(a-k) \sqrt[3]{n}-\frac{c^{2}}{2}+\left(\frac{c k}{2}+\frac{a c}{3}\right) \frac{1}{\sqrt[6]{n}}-\frac{a k}{3 \sqrt[3]{n}}+\frac{c \sqrt{n}}{8}\left(\frac{c}{\sqrt{n}}-\frac{k}{\sqrt[3]{n^{2}}}\right)^{2}<0
$$

The best result is obtained by taking $k=a$, therefore

$$
-\frac{c^{2}}{2}+\frac{5}{6} \frac{a c}{\sqrt[6]{n}}-\frac{a^{2}}{3 \sqrt[3]{n}}+\frac{c \sqrt{n}}{8}\left(\frac{c}{\sqrt{n}}-\frac{a}{\sqrt[3]{n^{2}}}\right)^{2}<0 .
$$

As $\frac{c}{\sqrt{n}}>\frac{a}{\sqrt[3]{n^{2}}}$ for $n \geq 1$, it is enough to prove that

$$
\frac{5 a c}{6 \sqrt[6]{n}}+\frac{c \sqrt{n}}{8} \cdot \frac{c^{2}}{n}<\frac{c^{2}}{2}+\frac{a^{2}}{3 \sqrt[3]{n}}
$$

The last relation is true because

$$
\frac{c^{3}}{8 \sqrt{n}}<\frac{a^{2}}{3 \sqrt[3]{n}} \Leftrightarrow\left(\frac{3 c^{3}}{8 a^{2}}\right)^{6}<n \quad \text { that holds for } n \geq 816
$$

and

$$
\frac{5 a c}{6 \sqrt[6]{n}}<\frac{c^{2}}{2} \Leftrightarrow\left(\frac{5 a}{3 c}\right)^{6}<n \quad \text { that holds for } n \geq 8
$$

In conclusion, we have

$$
v_{n}>n+c \sqrt{n}-a \sqrt[3]{n}
$$

for $n \geq 816$. Verifications done using the computer allow us to lower the bound to $n \geq 88$.
Theorem 2.2. We have the relation

$$
v_{n}<n+c \sqrt{n}-\sqrt[3]{n} \quad \text { for } n \geq 1
$$

Proof. If we put $x=v_{n}$ in the first inequality from (1.1), it results that

$$
n>v_{n}-c \sqrt{v_{n}}+\alpha \sqrt[3]{v_{n}}
$$

where $\alpha=1.207684$.
Let $f(x)=x-c \sqrt{x}+\alpha \sqrt[3]{x}-n$ and $x_{n}^{\prime \prime}=n+c \sqrt{n}-h \sqrt[3]{n}$. We have $f\left(v_{n}\right)<0, f$ is increasing, so if we prove that $f\left(x_{n}^{\prime \prime}\right)>0$, it results that $v_{n}<x_{n}^{\prime \prime}$.

Denote $g(n)=f\left(x_{n}^{\prime \prime}\right)$. Proving that $f\left(x_{n}^{\prime \prime}\right)>0$ is equivalent to proving that $g(n)>0$.
Therefore we have to prove that

$$
g(n)=n+c \sqrt{n}-h \sqrt[3]{n}-c \sqrt{n+c \sqrt{n}-h \sqrt[3]{n}}+\alpha \sqrt[3]{n+c \sqrt{n}-h \sqrt[3]{n}}-n<0
$$

Using the relations (2.1) and (2.2) as we did in the proof of Theorem 2.1, gives

$$
c \sqrt{n}-h \sqrt[3]{n}-c \sqrt{n}-\frac{c^{2}}{2}+\frac{c h}{2 \sqrt[6]{n}}+\alpha \sqrt[3]{n}+\frac{\alpha c}{3 \sqrt[6]{n}}-\frac{\alpha h}{3 \sqrt[3]{n}}-\frac{\alpha \sqrt[3]{n}}{9}\left(\frac{c}{\sqrt{n}}-\frac{h}{\sqrt[3]{n^{2}}}\right)^{2}>0
$$

The previous relation is equivalent to

$$
\sqrt[3]{n}(\alpha-h)+\left(\frac{c h}{2}+\frac{\alpha c}{3}\right) \frac{1}{\sqrt[6]{n}}>\frac{c^{2}}{2}+\frac{\alpha \sqrt[3]{n}}{9}\left(\frac{c}{\sqrt{n}}-\frac{h}{\sqrt[3]{n^{2}}}\right)^{2}+\frac{\alpha h}{3 \sqrt[3]{n}}
$$

Thus, it is enough to prove that for $h<\alpha$

$$
\sqrt[3]{n}(\alpha-h)+\frac{c}{\sqrt[6]{n}}\left(\frac{h}{2}+\frac{\alpha}{3}\right)>\frac{c^{2}}{2}+\frac{\alpha h}{3 \sqrt[3]{n}}+\frac{\alpha \sqrt[3]{n}}{9} \cdot \frac{c^{2}}{n}
$$

We have $\sqrt[3]{n}(\alpha-h)>\frac{c^{2}}{2}$, if

$$
\begin{equation*}
n>\left(\frac{c^{2}}{2(\alpha-h)}\right)^{3} \tag{2.3}
\end{equation*}
$$

It remains to prove that

$$
\frac{c}{\sqrt[6]{n}}\left(\frac{h}{2}+\frac{\alpha}{3}\right)>\frac{\alpha h}{3 \sqrt[3]{n}}+\frac{\alpha c^{2}}{9 \sqrt[3]{n^{2}}}
$$

Therefore it is enough to prove that $c \frac{h}{2}>\frac{\alpha h}{3 \sqrt[6]{n}}$ and that $c \frac{\alpha}{3}>\frac{\alpha c^{2}}{9 \sqrt{n}}$; both the relations are true for $n \geq 1$.

In conclusion, the condition (2.3) gives the lower bound for realizing the inequality from Theorem 2.2, we take $h=1$ so $n>1471$. Verification using the computer allows us to take $n \geq 1$.

Theorem 2.3. There exists $c_{2}>0$ such that

$$
v_{n}=n+\frac{\zeta(3 / 2)}{\zeta(3)} \sqrt{n}+\frac{\zeta(2 / 3)}{\zeta(2)} \sqrt[3]{n}+O\left(\exp \left(-c_{2} \log ^{\frac{3}{5}} n(\log \log n)^{-\frac{1}{5}}\right)\right.
$$

Proof. We have $C(x)=[x]-K(x)$, and put $x=v_{n}$. It results that $n=v_{n}-K\left(v_{n}\right)$; we use Theorem C to evaluate K, and obtain

$$
n=v_{n}-c \sqrt{v_{n}}-b \sqrt[3]{v_{n}}+O\left(n^{\frac{1}{6}} g(n)\right)
$$

where $c=\zeta(3 / 2) / \zeta(3), b=\zeta(2 / 3) / \zeta(2)$ and $g(n)=\exp \left(-c_{2}(\log n)^{\frac{3}{5}}(\log \log n)^{\frac{-1}{5}}\right)$ with $c_{2}>0$ and $g(n) \rightarrow \infty$ as $n \rightarrow \infty$.

So

$$
\begin{equation*}
-n+v_{n}-c \sqrt{v_{n}}-b \sqrt[3]{v_{n}}=O\left(n^{\frac{1}{6}} g(n)\right) \tag{2.4}
\end{equation*}
$$

From Theorem 2.1 and 2.2 we have

$$
n+c \sqrt{n}-1.83522 \sqrt[3]{n}<v_{n}<n+c \sqrt{n}-\sqrt[3]{n}
$$

therefore

$$
\begin{equation*}
v_{n}=n+c \sqrt{n}-x_{n} \sqrt[3]{n}, \quad \text { with }\left(x_{n}\right)_{n \geq 1} \text { bounded. } \tag{2.5}
\end{equation*}
$$

It is known that

$$
\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\cdots
$$

and

$$
\sqrt[3]{1+x}=1+\frac{x}{3}-\frac{x^{2}}{9}+\cdots
$$

Therefore

$$
\begin{aligned}
\sqrt{v_{n}} & =\sqrt{n}\left(\sqrt{1+\frac{c}{\sqrt{n}}-\frac{x_{n}}{\sqrt[3]{n^{2}}}}\right) \\
& =\sqrt{n}\left(1+\frac{c}{2 \sqrt{n}}-\frac{x_{n}}{2 \sqrt[3]{n^{2}}}-\frac{1}{8}\left(\frac{c}{\sqrt{n}}-\frac{x_{n}}{\sqrt[3]{n^{2}}}\right)^{2}+\cdots\right)
\end{aligned}
$$

so

$$
\begin{equation*}
\sqrt{v_{n}}=\sqrt{n}+\frac{c}{2}-\frac{x_{n}}{2 \sqrt[6]{n}}-\frac{\sqrt{n}}{8}\left(\frac{c}{\sqrt{n}}-\frac{x_{n}}{\sqrt[3]{n^{2}}}\right)^{2}+\cdots \tag{2.6}
\end{equation*}
$$

In a similar manner, we get

$$
\begin{equation*}
\sqrt[3]{v_{n}}=\sqrt[3]{n}+\frac{c}{3 \sqrt[6]{n}}-\frac{x_{n}}{3 \sqrt[3]{n}}-\frac{\sqrt[3]{n}}{9}\left(\frac{c}{\sqrt{n}}-\frac{x_{n}}{\sqrt[3]{n^{2}}}\right)^{2}+\cdots \tag{2.7}
\end{equation*}
$$

From (2.4), (2.6) and (2.7) it results that

$$
\begin{aligned}
& c \sqrt{n}-x_{n} \sqrt[3]{n}-c \sqrt{n}-\frac{c^{2}}{2}+\frac{c x_{n}}{2 \sqrt[6]{n}}+\frac{c \sqrt{n}}{8}\left(\frac{c}{\sqrt{n}}-\frac{x_{n}}{\sqrt[3]{n^{2}}}\right)^{2} \\
&-b \sqrt[3]{n}-\frac{b c}{3 \sqrt[6]{n}}+\frac{b x_{n}}{3 \sqrt[3]{n}}+\frac{b \sqrt[3]{n}}{9}\left(\frac{c}{\sqrt{n}}-\frac{x_{n}}{\sqrt[3]{n^{2}}}\right)^{2}+\cdots=O\left(n^{\frac{1}{6}} g(n)\right)
\end{aligned}
$$

Therefore

$$
-\sqrt[3]{n}\left(x_{n}+b\right)=O\left(n^{\frac{1}{6}} g(n)\right)
$$

which yields

$$
\begin{equation*}
x_{n}=-b+O\left(\frac{g(n)}{\sqrt[6]{n}}\right) \tag{2.8}
\end{equation*}
$$

From (2.5) and (2.8) we obtain

$$
v_{n}=n+c \sqrt{n}+b \sqrt[3]{n}+O(g(n) \sqrt[3]{n})
$$

In conclusion, there exists $c_{2}>0$ such that

$$
v_{n}=n+c \sqrt{n}+b \sqrt[3]{n}+O\left(\exp \left(-c_{2} \log ^{\frac{3}{5}} n(\log \log n)^{\frac{1}{5}}\right)\right)
$$

3. Some Properties of the Sequence of Non Powerful Numbers

In relation to the prime number distribution function, E. Landau [4] proved in 1909 that

$$
\pi(2 x)<2 \pi(x) \quad \text { for } x \geq x_{0}
$$

Afterwards J.B. Rosser and L. Schoenfeld proved [6] that

$$
\pi(2 x)<2 \pi(x) \text { for all } x>2
$$

In relation to this problem we can state the following result.
Theorem 3.1. We have the relation

$$
\begin{equation*}
C(2 x) \geq 2 C(x) \quad \text { for all integers } x \geq 7 \tag{3.1}
\end{equation*}
$$

Proof. Using Theorem B we obtain:

$$
[x]-c \sqrt{x}+1.207684 \sqrt[3]{x} \leq C(x) \leq[x]-c \sqrt{x}+1.83522 \sqrt[3]{x}
$$

for $x \geq 961$.
In order to prove (3.1) it is therefore sufficient to show that

$$
[2 x]-c \sqrt{2 x}+1.207864 \sqrt[3]{2 x} \geq 2[x]-2 c \sqrt{x}+3.67044 \sqrt[3]{x}
$$

As $[2 x] \geq 2[x]$, it is sufficient to show that

$$
c \sqrt{x}(2-\sqrt{2})>2.14885307 \sqrt[3]{x}
$$

which is true if $\sqrt[6]{x} \geq 1.687939$, more precisely for $x \geq 24$. Verifications done using the computer show that Theorem 3.1] is true for every integer $8 \leq x \leq 961$, which concludes our proof.

Remark 3.2. From Theorem 3.1 it follows that $v_{n+1}<2 v_{n}$ for every $n \geq 1$.
The Mandl inequality [2] states that, for $n \geq 9$

$$
p_{1}+p_{2}+\ldots+p_{n}<\frac{1}{2} n p_{n}
$$

where p_{n} is the n-the prime.
Related to this inequality, we prove that for non powerful numbers
Theorem 3.3. We have for $n \geq 7$ that

$$
\begin{equation*}
v_{1}+v_{2}+\ldots+v_{n}>\frac{1}{2} n v_{n} \tag{3.2}
\end{equation*}
$$

Proof. Let $n>C(961)+1=912$. In order to evaluate the sum $\sum_{i=1}^{n} v_{i}$, we use Theorem A with $h(t)=t, g(t)=1$ and $a=961$. It follows that $G(x)=C(x)-C(961)$ and then we obtain

$$
\sum_{i=C(961)+1}^{n} v_{i}=v_{n}(n-C(961))-\int_{961}^{v_{n}}(C(t)-C(961)) d t .
$$

Then

$$
\sum_{i=1}^{n} v_{i}=\sum_{i=1}^{C(961)} v_{i}+n v_{n}-v_{n} C(961)-\int_{961}^{v_{n}} C(t) d t+C(961)\left(v_{n}-961\right)
$$

Using Theorem B, we get a better upper bound for $k^{\prime}(x)$, namely

$$
k^{\prime}(x) \leq x-c \sqrt{x}+1.83522 \sqrt[3]{x} \text { for } x \geq 961
$$

Therefore, it is enough to prove that

$$
\sum_{i=1}^{C(961)} v_{i}+n v_{n}-961 C(961)-\int_{961}^{v_{n}}(t+c \sqrt{t}+1.83522 \sqrt[3]{t}) d t>\frac{n v_{n}}{2}
$$

Integrating and making some further numerical calculus $\left(C(961)=911, \sum_{i=1}^{911} v_{i}=445213\right)$ lead us to

$$
v_{n}\left(\frac{n}{2}-\frac{v_{n}}{2}+\frac{2 c}{3} \sqrt{v_{n}}-\frac{3}{4} \cdot 1.83522 \sqrt[3]{v_{n}}\right)>-463153.9136
$$

So, in order to prove (3.2), it is enough to prove that

$$
\frac{n}{2}-\frac{v_{n}}{2}+\frac{2 c}{3} \sqrt{v_{n}}-\frac{3}{4} \cdot 1.83522 \sqrt[3]{v_{n}}>0
$$

This is equivalent with proving that

$$
v_{n}<n+\frac{4 c}{3} \sqrt{v_{n}}-\frac{3}{2} \cdot 1.83522 \sqrt[3]{v_{n}}
$$

Taking into account Theorem 2.2 and the fact that for $n>C(961)+1$ we have $n<v_{n}<2 n$, it is enough to prove that

$$
n+c \sqrt{n}-\sqrt[3]{n}<n+\frac{4 c}{3} \sqrt{n}-\frac{3}{2} \cdot 1.83522 \cdot \sqrt[3]{2} \cdot \sqrt[3]{n}
$$

which is true for $n \geq 1565$.
Verifications done with the computer, lead us to state that the theorem is true for every $n \geq 1$, excepting the case $n=7$.

The well known conjecture of Goldbach states that every even number is the sum of two odd primes. Related to this problem, Chen Jing-Run has shown [1] using the Large Sieve, that all large enough even numbers are the sum of a prime and the product of at most two primes.

We present a weaker result, that has the advantage that is easily obtained and the proof is true for every integer $n \geq 3$.
Theorem 3.4. Every integer $n \geq 3$ is the sum between a prime and a non powerful number.
Proof. Let $n \geq 3$ and p_{i} the largest prime that does not exceed n. Thus $p_{i}<n \leq p_{i+1}$ and

$$
i=\left\{\begin{array}{l}
\pi(n)-1, \text { if } \mathrm{f} \text { is prime }, \\
\pi(n), \text { otherwise }
\end{array}\right.
$$

Then we consider the numbers $n-p_{1}, n-p_{2}, \ldots, n-p_{i}$. We prove that one of these i numbers is non powerful.

Suppose that all these i numbers are powerful. It results that

$$
c \sqrt{n-2} \geq k(n-2) \geq i \geq \pi(n)-1
$$

Taking into account that $\pi(x)>\frac{x}{\log x}$ for $x \geq 59$, we obtain

$$
c \sqrt{n-2} \geq \frac{n}{\log n}-1 \text { for } n \geq 59
$$

For $n \geq 4$ we have $c \sqrt{n-2}>2 \sqrt{n}-1$, therefore it is enough to prove that

$$
2 \sqrt{n} \geq \frac{n}{\log n}
$$

But for $n \geq 75$ we have $2 \log n<\sqrt{n}$.
Therefore the supposition we made (that $n-p_{1}, n-p_{2}, \ldots, n-p_{i}$ are all powerful) is certainly false for $n \geq 75$ and it results that every integer greater than 75 is the sum between a prime and a non powerful number. Direct computation leads us to state that every integer $n \geq 3$ is the sum between a prime and a non powerful number.

In 1830, H. F. Scherk found that

$$
p_{2 n}=1 \pm p_{1} \pm p_{2} \pm \ldots \pm p_{2 n-2}+p_{2 n-1}
$$

and

$$
p_{2 n+1}=1 \pm p_{1} \pm p_{2} \pm \cdots \pm p_{2 n-1}+2 p_{2 n}
$$

The proof of these relations was first given by S. Pillai in 1928. W. Sierpinski gave a proof of Scherk's formulae in 1952, [7].

In relation to Scherk's formulae, we have the following.
Theorem 3.5. For $n \geq 6$, we have

$$
v_{n}= \pm \varepsilon_{n} \pm v_{1} \pm v_{2} \pm \ldots \pm v_{n-2}+v_{n-1}
$$

where ε_{n} is 0 or 1 .
Proof. Following the method Sierpinski used in [7], we make an induction proof of this theorem.

If $n=6$, we have $v_{6}=10$ and

$$
\begin{aligned}
1 & =-2-3+5-6+7, \\
2 & =1-2-3+5-6+7, \\
3 & =-2-3-5+6+7, \\
4 & =1-2-3-5+6+7, \\
5 & =2-3+5-6+7, \\
6 & =1+2-3+5-6+7, \\
7 & =2-3-5+6+7, \\
8 & =1+2-3-5+6+7, \\
9 & =-2+3-5+6+7, \\
10 & =1-2+3-5+6+7 .
\end{aligned}
$$

Therefore every natural number less than or equal to 10 can be expressed in the desired form.
We suppose the theorem is true for n and prove it for $n+1$.
Let k be a positive integer less than or equal to v_{n+1}. Then, because $v_{i+1}<2 v_{i}$ for every natural number i, we have
so

$$
k \leq v_{n+1}<2 v_{n}
$$

$$
-v_{n}<k-v_{n}<v_{n} .
$$

It follows that $0 \leq \pm\left(k-v_{n}\right)<v_{n}$; we can apply the induction hypothesis and write $\pm\left(k-v_{n}\right)= \pm \varepsilon_{n} \pm v_{1} \pm v_{2} \pm \ldots \pm v_{n-2}+v_{n-1}$. It will immediately follow that there exist a choice of the signs + and - such that

$$
k= \pm \varepsilon_{n} \pm v_{1} \pm v_{2} \pm \ldots \pm v_{n-1}+v_{n}
$$

As $v_{n} \leq v_{n+1}$, we get

$$
v_{n}= \pm \varepsilon_{n} \pm v_{1} \pm v_{2} \pm \ldots \pm v_{n-2}+v_{n-1} .
$$

References

[1] JING-RUN CHEN, On the representation of a large even number as the sum of a prime and the product of at most two primes, Sci. Sinica, 16 (1973), 157-176.
[2] P. DUSART, Sharper bounds for ψ, θ, π, p_{k}, Rapport de Recherche, 1998.
[3] S.W. GOLOMB, Powerful numbers, Amer. Math. Monthly, 77 (1970), 848-852.
[4] E. LANDAU, Handbuch, Band I. Leipzig, (1909)
[5] G. MINCU AND L. PANAITOPOL, More about powerful numbers, in press.
[6] J.B. ROSSER AND L. SCHOENFELD, Abstracts of scientific communications, Intern. Congr. Math. Moscow, (1966).
[7] W. SIERPINSKI, Elementary Theory of Numbers, Warszawa, P.W.N., (1964).

