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Abstract

In this paper, we propose some modified projection methods for general varia-
tional inequalities. The convergence of these methods requires the monotonic-
ity of the underlying mapping. Preliminary computational experience is also
reported.
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1. Introduction
Let K be a nonempty closed convex set in Euclidean spaceRn. For given
nonlinear operatorsT, g : Rn → Rn, consider the problem of finding vector
u∗ ∈ Rn such thatg (u∗) ∈ K and

(1.1) 〈T (u∗) , g(u)− g (u∗)〉 ≥ 0, ∀ g(u) ∈ K.

This problem is called general variational inequality (GVI) which was intro-
duced by Noor in [10]. General variational inequalities have important appli-
cations in many fields including economics, operations research and nonlinear
analysis, see, e.g., [5], [10] – [15] and the references therein.

If g(u) ≡ u, then the general variational inequality (1.1) reduces to finding
vectoru∗ ∈ K such that

(1.2) 〈T (u∗) , u− u∗〉 ≥ 0, ∀ u ∈ K,

which is known as the classical variational inequality and was introduced and
studied by Stampacchia [18] in 1964. For the recent state-of-the-art, see e.g.,
[1] – [22].

If K∗∗ = {u ∈ Rn | 〈u, v〉 ≥ 0, ∀ v ∈ K} is a polar cone of a convex cone
K in Rn, then problem (1.1) is equivalent to findingu∗ ∈ Rn such that

(1.3) g(u) ∈ K, T (u) ∈ K∗∗, 〈g(u), T (u)〉 = 0,

which is known as the general complementarity problem. Ifg(u) = u−m(u),
wherem is a point-to-set mapping, then problem (1.3) is called quasi (implicit)
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complementarity problem. Forg(u) = u, problem (1.3) is known as the gener-
alized complementarity problem.

For general variational inequality, Noor [10] gave a fixed point equation re-
formulation, Pang and Yao [15] established some sufficient conditions for the
existence of the solutions and investigated their stability, and He [5] proposed
an inexact implicit method. In this paper, we consider a projection method for
solving GVI under the assumptions that the solution set is nonempty and the
underlying mapping is monotone in a generalized sense.
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2. Preliminaries
For nonempty closed convex setK ⊂ Rn and any vectoru ∈ Rn, the orthogonal
projection ofu ontoK, i.e.,arg min{||v−u|| | v ∈ K}, is denoted byPK(u). In
the following, we state some well known properties of the projection operator.

Lemma 2.1. [23]. Let K be a closed convex subset ofRn, for anyu ∈ Rn,
v ∈ K, then

〈PK(u)− u, v − PK(u)〉 ≥ 0.

From Lemma2.1, it follows that the projection operatorPK is nonexpansive.
Invoking Lemma2.1, one can prove that the general variational inequality

(1.1) is equivalent to the fixed-point problem For GVI, this result is due to Noor
[10].

Lemma 2.2. [10]. A vectoru∗ ∈ Rn with g (u∗) ∈ K is a solution of GVI if
and only ifg (u∗) = PK(g (u∗)− ρT (u∗)) for someρ > 0.

Based on this fixed-point formulation, various projection type iterative meth-
ods for solving general variational inequalities have been suggested and ana-
lyzed, see [5], [10] – [15].

In this paper, we suggest another projection method which needs two projec-
tions at each iteration and its convergence requires the following assumptions.

Assumption 1.

(i) The solution set of GVI, denoted byK∗, is nonempty.

(ii) MappingT : Rn → Rn is g-monotone, i.e.,

〈T (u)− T (v), g(u)− g(v)〉 ≥ 0, ∀ u, v ∈ Rn.
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(iii) Mappingg : Rn → Rn is nonsingular, i.e., there exists a positive constant
µ such that

||g(u)− g(v)|| ≥ µ||u− v||, ∀ u, v ∈ Rn.

Note that forg ≡ I, g-monotonicity of mappingT reduces to the usual
definition of monotone. Furthermore, every solvable monotone variational in-
equality of form (1.2) satisfies the above assumptions.

Throughout this paper, we define the residue vectorRρ(u) by the following
relation

Rρ(u) := g(u)− PK(g(u)− ρT (u)).

Invoking Lemma2.2, one can easily conclude that vectoru∗ is a solution of
GVI if and only if u∗ is a root of the following equation:

Rρ(u) = 0, for someρ ≥ 0.
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3. Algorithms and Convergence
The basic idea of our method is as follows. First, take an initial pointu0 ∈ Rn

such thatg (u0) ∈ K and compute the projection residue. If it is a zero vector,
then stop; otherwise, take the negative projection residue as a direction and per-
form a line search along this direction to get a new point; after constructing a
“descent direction” related to the current point and the new point, the next iter-
ative point can be obtained by using a projection. Repeat this process until the
projection residue is a zero vector. So the algorithm needs only two projections
at each iteration.

Now, we formally describe our method for solving the GVI problem.

Algorithm 1.
Initial step: Chooseu0 ∈ Rn such thatg(u0) ∈ K, select anyσ, γ ∈ (0, 1),

ρ ∈ (0, +∞), let k := 0.
Iterative step: Forg

(
uk

)
∈ K, takewk ∈ Rn such that

g
(
wk

)
:= PK

(
g

(
uk

)
− ρT

(
uk

))
.

If
∥∥Rρ

(
uk

)∥∥ = 0, then stop. Otherwise, computevk ∈ Rn such
thatg

(
vk

)
:= g

(
uk

)
− ηkRρ

(
uk

)
, whereηk = γmk

with mk being the smallest nonnegative integerm satisfying

(3.1) ρ
〈
T

(
uk

)
− T

(
vk

)
, Rρ

(
uk

)〉
≤ σ

∥∥Rρ

(
uk

)∥∥2
.

Computeuk+1 by solving the following equation
g

(
uk+1

)
= PK

(
g

(
uk

)
+ αkdk

)
,

wheredk = −
(
ηkRρ

(
uk

)
+ ηkT

(
uk

)
+ ρT

(
vk

))
,

αk =
(1−σ)ηk‖Rρ(uk)‖2

‖dk‖2
.
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Remark 3.1. We analyze the step-size rule given in (3.1). If Algorithm 1 ter-
minates withRρ

(
uk

)
= 0, thenuk is a solution of GVI. Otherwise, by non-

singularity ofg and continuity ofT andg, ηk satisfying (3.1) exists.

Remark 3.2. In Algorithm1, several implicit equations ofg must be solved at
each iteration. Ifg ≡ I, thenvk = (1− ηk)u

k + ηkw
k.

Remark 3.3. We recall the searching directions appear in existing projection-
type methods for solving VI of form (1.2). They are

(i) the direction−T (ūk) by Korpelevich [9], whereūk = PK

(
uk − αkT

(
uk

))
;

(ii) the direction−
{
uk − ūk − αk

[
T

(
uk

)
− T

(
ūk

)]}
by Solodov and Tseng

[17], Tseng [20], Sun [19] and He [6].

(iii) the direction−
{
uk − ūk + T

(
ūk

)}
by Noor [13].

(iv) the direction−T
(
vk

)
by Iusem and Svaiter [7] and Solodov and Svaiter

[16].

(v) the direction−
(
ηkr

(
uk

)
+ T

(
vk

))
by Wang, Xiu and Wang [22].

In our algorithm, wheng ≡ I, the searching direction reduces to

−
(
ηkr

(
uk

)
+ ηkT

(
uk

)
+ ρT

(
vk

))
.

It is a combination of the projection residue andT , and differs from the above
five types of directions.
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Now, we discuss the convergence of Algorithm1. From the iterative proce-
dure, we know thatg

(
uk

)
, g

(
vk

)
, g

(
wk

)
∈ K for all k. For anyg (u∗) ∈ K∗,

by Assumption(ii) , we have

(3.2)
〈
ρT

(
uk

)
, g

(
uk

)
− g (u∗)

〉
≥ 0.

From Lemma2.1, we know that〈
g

(
uk

)
− ρT

(
uk

)
− g

(
wk

)
, g

(
wk

)
− g (u∗)

〉
≥ 0,

which can be written as〈
g

(
uk

)
− ρT

(
uk

)
− g

(
wk

)
, g

(
wk

)
− g

(
uk

)〉
+

〈
g

(
uk

)
− g

(
wk

)
− ρT

(
uk

)
, g

(
uk

)
− g (u∗)

〉
≥ 0.

Combining with inequality (3.2), we obtain

(3.3)
〈
Rρ

(
uk

)
, g

(
uk

)
− g (u∗)

〉
≥

∥∥Rρ

(
uk

)∥∥2 − ρ
〈
T

(
uk

)
, Rρ

(
uk

)〉
.

So〈
g

(
uk

)
− g (u∗) ,−dk

〉
=

〈
g

(
uk

)
− g (u∗) , ηkRρ

(
uk

)
+ ηkT

(
uk

)
+ ρT

(
vk

)〉
=

〈
g

(
uk

)
− g (u∗) , ηkRρ

(
uk

)〉
+

〈
g

(
uk

)
− g (u∗) , ηkT

(
uk

)〉
+

〈
g

(
uk

)
− g (u∗) , ρT

(
vk

)〉
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≥ ηk

∥∥Rρ

(
uk

)∥∥2 − ρηk

〈
T

(
uk

)
, Rρ

(
uk

)〉
+

〈
g

(
uk

)
− g

(
vk

)
, ρT

(
vk

)〉
= ηk

∥∥Rρ

(
uk

)∥∥2 − ρηk

〈
T

(
uk

)
, Rρ

(
uk

)〉
+ ηk

〈
Rρ

(
uk

)
, ρT

(
vk

)〉
= ηk

∥∥Rρ

(
uk

)∥∥2 − ρηk

〈
T

(
uk

)
− T

(
vk

)
, Rρ

(
uk

)〉
≥ ηk

∥∥Rρ

(
uk

)∥∥2 − σηk

∥∥Rρ

(
uk

)∥∥2

= (1− σ)ηk

∥∥Rρ

(
uk

)∥∥2
,

where the first inequality uses (3.3) and theg-monotonicity ofT , the second
inequality follows from inequality (3.1).

For anyα > 0, one has∥∥PK

(
g

(
uk

)
+ αdk

)
− g (u∗)

∥∥2

≤
∥∥g

(
uk

)
− g (u∗) + αdk

∥∥2

=
∥∥g

(
uk

)
− g (u∗)

∥∥2
+ α2 ‖dk‖2 + 2α

〈
dk, g

(
uk

)
− g (u∗)

〉
≤

∥∥g
(
uk

)
− g (u∗)

∥∥2
+ α2‖dk‖2 − 2α(1− σ)ηk

∥∥Rρ

(
uk

)∥∥2
,

where the first inequality uses non-expansiveness of projection operator.
Based on the above analysis, we show that Algorithm1 converges under

Assumptions(i) – (iii) .

Theorem 3.1.Under Assumptions(i) – (iii) , if Algorithm1 generates an infinite
sequence{uk}, then{uk} globally converges to a solutionu∗ of GVI.

Proof. Let α := αk =
(1−σ)ηk||Rρ(uk)||2

‖dk‖2
in the aforementioned inequalities, we
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obtain∥∥g(uk+1)− g (u∗)
∥∥ ≤ ∥∥g

(
uk

)
− g (u∗)

∥∥2 −
(1− σ)2η2

k

∥∥Rρ

(
uk

)∥∥4

||dk||2
.

So
{∥∥g

(
uk

)
− g (u∗)

∥∥}
is a non-increasing sequence, and

{
g

(
uk

)}
is a bounded

sequence. Sinceg is nonsingular, we conclude that{uk} is a bounded sequence.
Short discussion leads to that{dk} is bounded. So, there exists an infinite subset
N1 such that

lim
k∈N1,k→∞

∥∥Rρ

(
uk

)∥∥ = 0

or an infinite subsetN2 such that

lim
k∈N2,k→∞

ηk = 0.

If lim
k∈N1,k→∞

∥∥Rρ

(
uk

)∥∥ = 0, we know that any cluster̃u of {uk : k ∈ N1}

is a solution of GVI. Since
{∥∥g

(
uk

)
− g (u∗)

∥∥}
is non-increasing, if we take

u∗ = ũ, then we know that{g
(
uk

)
} globally converges tog(ũ) and thus{uk}

globally converges tõu from Assumption(iii) .
If lim

k∈N2,k→∞
ηk = 0, let v̄k ∈ Rn such thatg

(
vk

)
= g

(
uk

)
− ηk

γRρ(uk)
. From

the linear searching procedure ofηk, we have

ρ
〈
T

(
uk

)
− T (v̄k), Rρ

(
uk

)〉
> σ

∥∥Rρ

(
uk

)∥∥2
, for sufficiently largek ∈ N2.

Therefore,

ρ
∥∥T

(
uk

)
− T (v̄k)

∥∥ > σ
∥∥Rρ

(
uk

)∥∥ , for sufficiently largek ∈ N2.
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This, plus lim
k∈N2,k→∞

ηk

γ
= 0, yields lim

k∈N2,k→∞

∥∥Rρ

(
uk

)∥∥ = 0. Similar discus-

sion leads to that any cluster of
{
uk : k ∈ N2

}
is a solution to GVI. Replacing

u∗ by this cluster point yields the desired result.

If we replaceρ with ρk in Algorithm 1, then we obtain the following im-
proved algorithm to GVI.

Algorithm 2.
Initial step: Chooseu0 ∈ Rn such thatg(u0) ∈ K, select anyσ, γ ∈ (0, 1),

η−1 = 1, θ > 0.
Letk = 0.

Iterative step: Forg
(
uk

)
∈ K, defineρk = min{θηk−1, 1}, and takewk ∈ Rn

such thatg
(
wk

)
= PK(g

(
uk

)
− ρkT

(
uk

)
).

If Rρk

(
uk

)
= 0, then stop. Otherwise, takevk ∈ Rn in the

following way:g
(
vk

)
= (1− ηk)g

(
uk

)
+ ηkg

(
wk

)
,

whereηk = γmk , with mk being the smallest
nonnegative integerm satisfying

ρk〈T
(
uk

)
− T

(
vk

)
, Rρk

(
uk

)
〉 ≤ σ

∥∥Rρk

(
uk

)∥∥2
.

Computeuk+1 by solving the following equation:
g(uk+1) = PK(g

(
uk

)
+ αkdk)

wheredk = −
(
ηkRρk

(
uk

)
+ ηkT

(
uk

)
+ ρkT

(
vk

))
,

αk =
(1−σ)ηk‖Rρk(uk)‖2

‖dk‖2
.

The convergence of Algorithm2 can be proved similarly.
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4. Preliminary Computational Experience
In the following, we present some numerical experiments for Algorithms1 and
2. For these algorithms, we used

∥∥r
(
xk, ρk

)∥∥ ≤ 10−8 as stopping criteria.
Throughout the computational experiments, the parameters used were set as

σ = 0.5, γ = 0.8. All computational results were undertaken on a PC-II by
MATLAB.

Example 4.1. This example is a quadratic subproblem of the trust region ap-
proach for solving medium-size nonlinear programming problem:

min

{
1

2
x>Hx + c>x | x ∈ C

}
.

This problem is equivalent to VI(F, C) with F (x) = Hx + c. the data is chosen
as: H = V WV , whereV = I − 2 vv>

||v||2 is a Householder matrix andW =

diag(σi) with σi = cos iπ
n+1

+1000. The vectorsv andc contain pseudo-random
numbers:

v1 = 13846, vi = (42108vi−1 + 13846)mod46273, i = 2, . . . , n;

c1 = 13846, ci = (45287ci−1 + 13846)mod46219, i = 2, . . . , n.

For this test problems, the domain setC = {x ∈ Rn | ||x|| ≤ 105}. Ta-
ble 1 gives the numerical results for this example with starting pointx0 =
(0, 0, . . . , 0)T for different dimensionsn.
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Dimension Algorithm 1 (ρ = 1) Algorithm 2 (θ = 400)
n = 10 73 56
n = 20 75 58
n = 50 78 58
n = 80 81 60
n = 100 84 60
n = 200 97 60

Table 1: Numbers of iterations for Example4.1

Example 4.2. This example is a general variational inequality withg(x) =
Ax + q andF (x) = x, where

A =



4 −2 0 · · · 0
1 4 −2 · · · 0
0 1 4 · · · 0
...

...
...

...
...

0 0 0 · · · −2
0 0 0 · · · 4


, q =



1
1
1
...
1
1


.

For this test problems, the domain setC = {x ∈ Rn | 0 ≤ xi ≤ 1, for i =
1, 2, · · ·n}. Table2 gives the results for this example with starting pointx0 =
−A−1q for different dimensionsn.
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Dimension Algorithm 1 (ρ = 1) Algorithm 2 (100 ≤ θ ≤ 400)
n = 10 492 492
n = 20 489 489
n = 50 484 484
n = 80 481 481
n = 100 480 480
n = 200 476 476

Table 2: Numbers of iterations for Example4.2

From Table1 and Table2, one observes that Algorithms1 and2 work quite
well for these examples, respectively, and there is not much difference to the
choice of parameterρk in the second algorithm, especially for Example4.2.
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