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4 S.S. RAGOMIR

1. INTRODUCTION

The Cauchy-Bunyakovsky-Schwarz inequality, or for short(th8.S)— inequality, plays an
important role in different branches of Modern Mathematics including Hilbert Spaces Theory,
Probability & Statistics, Classical Real and Complex Analysis, Numerical Analysis, Qualitative
Theory of Differential Equations and their applications.

The main purpose of this survey is to identify and highlight the discrete inequalities that
are connected withC'BS)— inequality and provide refinements and reverse results as well as
to study some functional properties of certain mappings that can be naturally associated with
this inequality such as superadditivity, supermultiplicity, the strong versions of these and the
corresponding monotonicity properties. Many companions and related results both for real and
complex numbers are also presented.

The first section is devoted to a number(6fB.S)— type inequalities that provides not only
natural generalizations but also several extensions for different classes of analytic functions of
a real variable. A generalization of the Wagner inequality for complex numbers is obtained.
Several results discovered by the author in the late eighties and published in different journals
of lesser circulation are also surveyed.

The second section contains different refinements of(@h85)— inequality including de
Bruijn’s inequality, McLaughlin’s inequality, the Daykin-Eliezer-Carlitz result in the version
presented by Mitrinow-Pe&aric and Fink as well as the refinements of a particular version
obtained by Alzer and Zheng. A number of new results obtained by the author, which are
connected with the above ones, are also presented.

Section[ 4 is devoted to the study of functional properties of different mappings naturally
associated to th@”' BS)— inequality. Properties such as superadditivity, strong superadditivity,
monotonicity and supermultiplicity and the corresponding inequalities are mentioned.

In the next section, Sectign 5, reverse results for(th&S)— inequality are surveyed. The
results of Cassels, Pdlya-Szegd, Greub-Rheinbold, Shisha-Mond and Zagier are presented with
their original proofs. New results and versions for complex numbers are also obtained. Reverse
results in terms op—norms of the forward difference recently discovered by the author and
some refinements of Cassels and Pdélya-Szegd results obtained via Andrica-Badea inequality
are mentioned. Some new facts derived from Gruss type inequalities are also pointed out.

Section| 6 is devoted to various inequalities related to(&#8.5)— inequality. The two in-
equalities obtained by Ostrowski and Fan-Todd results are presented. New inequalities obtained
via Jensen type inequality for convex functions are derived, some inequalities 10ebysev
functionals are pointed out. Versions for complex numbers that generalize Ostrowski results are
also emphasised.

It was one of the main aims of the survey to provide complete proofs for the results consid-
ered. We also note that in most cases only the original references are mentioned. Each section
concludes with a list of the references utilized and thus may be read independently.

Being self contained, the survey may be used by both postgraduate students and researchers
interested in Theory of Inequalities & Applications as well as by Mathematicians and other
Scientists dealing with numerical computations, bounds and estimates wheé(eRl%g— in-
equality may be used as a powerful tool.

The author intends to continue this survey with another one devoted to the functional and
integral versions of th&C' BS)— inequality. The corresponding results holding in inner-product
and normed spaces will be considered as well.
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2. (CBS)—TYPE INEQUALITIES

2.1. (CBS) —Inequality for Real Numbers. The following inequality is known in the lit-
erature aCauchy’sor Cauchy-Schwarz’sr Cauchy-Bunyakovsky-Schwaragquality. For
simplicity, we shall refer to it throughout this work as tf@B.S) —inequality.

Theorem 2.1.1fa = (a,...,a,) andb = (by,...,b,) are sequences of real numbers, then

(2.1)

N
[
S
e
=
e
~_
[N}
IA
3
<
e
3
o>
TN

with equality if and only if the sequencasaindb are proportional, i.e., there is a € R such
thata, = rb, for eachk € {1,...,n}.

Proof. (1) Consider the quadratic polynomigl: R — R,

n

(2.2) P(t)=>(axt —by)*.

k=1
It is obvious that
P(t) = ( ai) 2 —2 (Zakbk> t+> b
k=1 k=1 k=1

for anyt € R.
SinceP (t) > 0 for anyt € R it follows that the discriminanf of P is negative, i.e.,

n 2 n n
A= (Zakbk> =Y a> b
k=1 k=1

k=1

02>

o |

and the inequality] (2]1) is proved.
(2) If we use Lagrange’s identity

n n n 2 n
=1 i=1

i=1 ij=1

= > (b —a;b)?

1<i<j<n

then [2.1) obviously holds.
The equality holds ir] (2]1) iff
(aibj — ajbl-)2 =0
for anyi, j € {1,...,n} which is equivalent with the fact thatandb are proportional. [

Remark 2.2. The inequality [(2.]1) apparently was firstly mentioned in the work [2] of A.L.
Cauchy in 1821. The integral form was obtained in 1859 by V.Y. Bunyakovsky [1]. The cor-
responding version for inner-product spaces obtained by H.A. Schwartz is mainly known as
Schwarz’s inequality. For a short history of this inequality $ee [3]. In what follows we use the
spelling adopted in the papér [3]. For other spellings of Bunyakovsky’s name, see MathSciNet.
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6 S.S. RAGOMIR

2.2. (CBS) —Inequality for Complex Numbers. The following version of theC'BS) —inequality
for complex numbers holds|[4, p. 84].

Theorem 2.3.1f a = (ai,...,a,) andb = (b,...,b,) are sequences of complex numbers,
then

(2.4)

n 2 n n

Zakbk < Z|ak|22|bk|2’

k=1 k=1 k=1

with equality if and only if there is a complex numherc C such thata; = cb, for any
ke{l,....,n}.

Proof. (1) For any complex number € C one has the equality

n n

(25) Z |ak — )\l_)k|2 = Z (CLk — )\Ek) (C_Lk - j\bk)

k=1 k=1

= Z |ak|2 + |)\|2 Z |bk|2 — 2Re ()\Zakbk> .
k=1 k=1 k=1

Ifin (2.5) we choose\; € C,

===,
Zk:l |bk‘
then we get the identity
n b 2
(2.6) 0< Z ‘ak — )\Obk’ — Z |y, ‘ ’an:1 Qg k2| 7
k=1 Zk:l |bk‘

which proves ).
By virtue of ), we conclude that equality holds 2.4) if and onlyif= \oby
foranyk € {1,...,n}.
(2) Using Binet-Cauchy’s identity for complex numbers

(2.7) zn: ZiYi zn: zit; — zn: Tl zn: 2iYi
i=1 i=1 =1 i=1
= % Z (iz; — x52) (yit; — y;ts)

Z (izj — xj2) (yit; — yjti)

1<i<j<

for the choicesy; = a;, z; = b;, yi = ag, t; = by, i = {1,...,n}, we get

n n n 2 n
(28) Z |a7;|2 Z |bz|2 — Z aibi = % Z |aibj — djbi|2
i=1 i=1 i=1

4,j=1

} : - — 2

= |a7;bj — Cljbi| .
1<i<j<n

Now the inequality[(Z}4) is a simple consequencg of| (2.8).
The case of equality is obvious by the identfty {2.8) as well.
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http://jipam.vu.edu.au/

A SURVEY ON CAUCHY-BUNYAKOVSKY-SCHWARZ TYPE DISCRETEINEQUALITIES 7

Remark 2.4. By the (C' B.S) —inequality for real numbers and the generalised triangle inequal-
ity for complex numbers

n
D lul =
=1

, z%€C, ie{l,...,n}

n
P
i=1

we also have

n

2 n 2 n n
Zakbk < (Z ’akbk‘) < Z|ak|22|bk|2
k=1 k=1 k=1 k=1

Remark 2.5. The Lagrange identity for complex numbers stated in [4, p. 85] is wrong. It
should be corrected as in (2.8).

2.3. An Additive Generalisation. The following generalisation of théC'BS) —inequality
was obtained in 5, p. 5].

Theorem 2.6.1f a = (ay,...,a,), b = (b1,...,b,),¢ = (c1,...,¢,) andd = (di,...,d,)
are sequences of real numbers ghe- (p1,...,p,),q = (¢, .- .,q,) are nonnegative, then

(2.9) > pial > b+ > pic] Z qid; > 2 Zpiaici > qibid;.

=1 =1 =1 =1 =1 =1
If p andq are sequences of positive numbers, then the equality holds |n (23);i# c;d; for
anyi,j € {1,...,n}.

Proof. We will follow the proof from [5].
From the elementary inequality

(2.10) a? 4+ b* > 2abforanya,b € R
with equality iff « = b, we have
(2.11) aibi + cdi > 2a;¢:h;d; forany i,j € {1,...,n}.

Multiplying .11) bypiq; > 0,4,5 € {1,...,n} and summing ovei and; from 1 to n, we

deduce[(2)9).
If pi,g; > 0 (i =1,...,n), then the equality holds ifj (3.9) iff;b; = c;d; for anyi,j

{1,...,n}. O
Remark 2.7. The conditiona;b; = ¢;d; for¢; #0,b; #0 (4,5 =1,...,n) is equivalent with
o= ‘Z—J (i,j=1,...,n),i.e.a,candb,d are proportional with the same constant

Remark 2.8. If in (2.9) we choosep; = ¢ = 1 (i=1,...,n), ¢; = b, andd; = a;
(i=1,...,n), then we recapture the&'BS) —inequality.

The following corollary holds 5, p. 6].

Corollary 2.9. If a, b, € andd are nonnegative, then

(2.12) % [zn: ale; Zn: bid; + Zn: Sa; Zn: d?b,-] > zn: ale Z b2d?,
=1 =1 =1 =1 =1

n 2
(2.13) % [Z a2byd,; - ZbZCLch—i—ZC bid; - Zdzach] > (Z aibicidi> .
=1

Another result is embodied in the following corollary [5, p. 6].
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Corollary 2.10. If a, b, ¢ andd are sequences of positive and real numbers, then:

(2.14) [chz +Zalc12bd >Z Zb

=1 =1

=1 =1

e g

Zaczbzb(jz—i—ZchZad] (Z:aZ Z) )
Finally, we also have [5, p. 6].

Corollary 2.11. If a, andb are positive, then

The following version for complex numbers also holds.

Theorem 2.12.Leta = (a1,...,a,), b = (b1,...,b,), €= (c1,...,c,) andd = (di, ..., d,)
be sequences of complex numbers @gné (py,...,p,), q = (qi,-..,q,) are nonnegative.
Then one has the inequality

(2-16) Zpi |Clz'|2 Z qi |bi|2 + sz' ’Ci|2 Z q; ’dz’|2 > 2Re sz‘ai@' Z Qibid_i] .
i=1 i=1 i=1 i=1 i=1 i=1

The case of equality fgs, q positive holds iff;;b; = ¢;d; foranyi,j € {1,...,n}.

Proof. From the elementary inequality for complex numbers
la)® + [b]* > 2Re [ab], a,beC,

with equality iff « = b, we have

(2.17) i b;* + il |d]* > 2 Re [a;e:b;d]

foranyi,j € {1,...,n}. Multiplying 2.17) byp,q; > 0 and summing over and; from 1 to
n, we deducef(2.16).

The case of equality is obvious and we omit the details. O
Remark 2.13. Similar particular cases may be stated but we omit the details.

2.4. A Related Additive Inequality. The following inequality was obtained in![5, Theorem
1.1].

Theorem 2.14.1f a = (al,.. ,a,), b = (b1,...,b,) are sequences of real numbers and
c=(c1,...,¢y),d = (dy d,) are nonnegative, then

(2.18) ZdiZCia? + ZciZdibf > 2Zciaiid,»bi.
=1 =1 =1 =1 =1

If ¢; andd; (i =1,...,n) are positive, then equality holds i (2]18) #f= b = k where
k = (k,k,..., k) is a constant sequence.

Proof. We will follow the proof from [5].
From the elementary inequality

(2.19) a® +b* > 2ab forany a,b e R

J. Inequal. Pure and Appl. Math4(3) Art. 63, 2003 http://jipam.vu.edu.au/
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with equality iff a = b; we have
(2.20) al + b3 > 2a;b; forany i,je{1,...,n}.

Multiplying 2.20) byc;d; > 0,4,5 € {1,...,n} and summing ovet from 1 to n and over;
from 1 to n, we deduce[(2.18).

If ¢;,d; > 0 (i=1,...,n), then the equality holds i} (2.]18) iff;, = b, for anyi,j €
{1,...,n} which is equivalent with the fact that = b, = & foranyi € {1,...,n}. O

The following corollary holds ][5, p. 4].
Corollary 2.15. If a andb are nonnegative sequences, then

(2.21) %lﬁéafﬁébf+§éa@§3@1zzﬁiafﬁib%
1=1 =1 =1 =1

=1 =1

2
. Z . °h. . 2 | > bl .
(2.22) : [; a; ; aZb; + ; b; ; b2 aZ] > <; albl)
Another corollary that may be obtained|is [5, p. 4 — 5].

Corollary 2.16. If a andb are sequences of positive real numbers, then

n

2 2 no 1Ny 1
a; + b; > Dic 0, 2wi=1b,
Z b = no 1
=1 2a1b" Zi:l a;b;

(2.23)

=1  i=1 ' =1 "

=1

and
9 o5 ”a3+b3>"1”1
(2.25) "2 2 2y
=1 =1 =1
The following version for complex numbers also holds.
Theorem 2.17.1f a = (ay,...,a,), b = (by,...,b,) are sequences of complex numbers, then
forp = (p1,...,pn) @ndq = (q1, - . ., ¢,) two sequences of nonnegative real numbers, one has

the inequality

(2.26) Z qi sz' |Gz“2 + sz' Z%’ ‘bi|2 > 2Re Zpiai Z Qz‘l;i] .
=1 =1 =1 =1 i=1 i=1

For p, g positive sequences, the equality holdg in (2.26) # b =k = (k,..., k).

The proof goes in a similar way with the one in Theofem 2.14 on making use of the following
elementary inequality holding for complex numbers

(2.27) la|” +b]* > 2Re [ab] , a,b € C;
with equality iff a = b.

J. Inequal. Pure and Appl. Math4(3) Art. 63, 2003 http://jipam.vu.edu.au/
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10 S.S. RAGOMIR

2.5. A Parameter Additive Inequality. The following inequality was obtained inl/[5, Theorem
4.1].

Theorem 2.18.Leta = (ai,...,a,), b = (by,...,b,) be sequences of real numbers and

c=(c,...,¢c,),d = (dy,...,d,) be nonnegative. if, 3 > 0 andvy € R such thaty? < af,
then

(2.28) aidiia?@+ﬁi0iib?di > 27i0iaiidibi-
i—1 =1 =1 =1 i—1 i—1

Proof. We will follow the proof from [5].
Sincea, 8 > 0 andy? < a3, it follows that for anyz,y € R one has

(2.29) az? + By* > 2yxy.

Choosing in[(2.29) = a;, y = b; (i,j = 1,...,n), we get

(2.30) aa? + Bb; > 2ya;:b; forany i,j e {1,...,n}.

If we multiply (2.30) byc;d; > 0 and sum ovei andj from 1 to n, we deduce the desired
inequality [2.28). O

The following corollary holds.
Corollary 2.19. If a andb are nonnegative sequences and, v are as in Theore8, then

(2.31) Oézn:bizn:a?—i-ﬁzn:aizn:b?ZQyzn:afzn:bfy
i=1 i=1 =1 i=1 =1 =1
n n n n n 2
(2.32) ad ay albi+B8Y by bla;>2y (Z aibi) .
i=1 =1 =1 1=1 1=1

The following particular case is important [5, p. 8].

Theorem 2.20.Leta, b be sequences of real numbersplfs a sequence of nonnegative real
numbers withy " | p; > 0, then:

- - Zﬁ_l Dia;b; Z’.‘_l pia; Zﬁ_l pib;
(2.33) > piap > pib} > == Z* =
i=1 i=1

Z?ﬂ pi

In particular,

n

i=1 =1 1 i=1  i=1

Proof. We will follow the proof from [5, p. 8].

If we choose in Theoreh 2./18; = d; = p; (i=1,...,n) anda = > pb?, § =
S pial, v = Yi piabi, we observe, by théC'BS) —inequality with the weighty;
(i =1,...,n) one hasy? < a3, and then by[(2.28) we deduge (4.33). O
Remark 2.21. If we assume thai andb areasynchronous.e.,

(a; —aj) (b; —bj) <0 forany i,j € {1,...,n},
then byCebysev's inequality

(2.35) sz’ai Zpibi > Zpi Zpiaibi
i—1 i—1 -1 i1

J. Inequal. Pure and Appl. Math4(3) Art. 63, 2003 http://jipam.vu.edu.au/
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A SURVEY ON CAUCHY-BUNYAKOVSKY-SCHWARZ TYPE DISCRETEINEQUALITIES 11

respectively

(2.36) iaiibi > niaibia
=1 =1 i=1

we have the following refinements of th€' B.S) —inequality

" a Zn_l Pia;b; ZT-L_l Dia; Zﬁ_l Dib;
(2.37) pial Y pib} > == " =

" 2
> (Z pia'ibi>
i—1

provided) " | p;a;b; > 0, respectively

n n n n n n 2
(2.38) dald > %ZaibiZaiZbi > (Z a,-b,)
1 i=1 1 1=1 =1 =1

i= = i=

provided) ! | a;b; > 0.

2.6. A Generalisation Provided by Young’s Inequality. The following result was obtained
in [5, Theorem 5.1].

Theorem 2.22.Leta = (ay,...,a,), b= (b1,...,b,), D
be sequences of nonnegative real numbersa@ang > 1
inequality

(2.39) Y g Y pibl +B8Y pi Yy qal > aBd pibi Y gia;.
i=1 =1 =1 =1 i=1 =1

If p and q are sequences of positive real numbers, then the equality holds in (2.39) iff there
exists a constarit > 0 such thatu® = b’ = k for eachi € {1,...,n}.

= (plv e apn) andq = ((.71a cee 7(In)
with = + % = 1. Then one has the

Proof. Itis, by the Arithmetic-Geometric inequalityl[6, p. 15], well known that
1 1 1 1 1

(2.40) —:I:+—y2x3y% for z,y >0, —+-=1, a,6>1
Q I5) a f

with equality iff z = y.
Applying ) fore =af, y = bf- (1,7 =1,...,n) we have

(2.41) abl] + Baf > afa;b; foranyi,j e {1,...,n}

with equality iff a¢ = b for anyi, j € {1,...,n}.
If we multiply (2.41) byg;p; > 0 (i,5 € {1,...,n}) and sum ovei andj from 1 to n we
deduce[(2.39).

The case of equality is obvious by the above considerations. O
The following corollary is a natural consequence of the above theorem.

Corollary 2.23. Leta, b, a and3 be as in Theorefn 2.22. Then

1 n n . 1 n n n n
(2.42) a;bi;aiﬂ*‘ggai;bfﬂZ;a?;b?;
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n n n n n 2
(2.43) é > a;y biaf + % S by ab > (Z ain) .
i=1 =1 =1 1=1

=1
The following result which provides a generalisation of th&35) —inequality may be ob-
tained by Theorern 2.22 as well [5, Theorem 5.2].

Theorem 2.24.Letx andy be sequences of positive real numbersy, If are as above, then

2
1 n 1 n n n
2.44 SN oz SN T2 2> iy |
e (A3 ) > (S
The equality holds itk andy are proportional.
Proof. Follows by Theore2 on choosipg= ¢; = y7, a; = 3+, b = 75,0 € {1,... ,nE
Remark 2.25. Fora = 5 = 2, we recapture théC' B.S) —inequality.

Remark 2.26. Fora; = |z, b; = |w;|, with z;,w; € C;i = 1,...,n, we may obtain similar
inequalities for complex numbers. We omit the details.

2.7. Further Generalisations via Young’s Inequality. The following inequality is known in
the literature as Young's inequality

1 1
(2.45) px?+qyf > pqry, x,y>0and —+-=1, p>1

P q

with equality iff 27 = yP.
The following result generalising thg'B.S) —inequality was obtained in[7, Theorem 2.1]
(see alsa[8, Theorem 1]).

Theorem 2.27.Letx = (xy,...,2,),¥ = (v1,- - -, y,) be sequences of complex numbers and
p= /P, --,p),a=(q,---,q,) betwo sequences of nonnegative real numberg.>f1,
s+ 2 =1 then

1 n n 1 n n n n
(2.46) — Zpk ’mk’pZQk lyl” + — Z qx o] Zpk |yl > Zpk |2k Y| ZQk |2yl -
Py k=1 7%= k=1 k=1 k=1

Proof. We shall follow the proof in([7].
Choosingr = |z;| ||, y = |zi| ly;], 4,7 € {1,...,n}, we get from|(2.4b)
(2.47) qloil” y; " 4 p ;| [yl > palways] |25y
foranyi,j € {1,...,n}.
Multiplying with p;q; > 0 and summing ovei andj from 1 to n, we deduce the desired

result (2.46). O

The following corollary is a natural consequence of the above thearem [7, Corollary 2.2] (see
also [8, p. 105]).

Corollary 2.28. If x andy are as in Theorem 2.27 anth = (my,...,m,) is a sequence of
nonnegative real numbers, then

2
1 n n 1 n n n

(2.48) = k™ fykl” =D [l Y eyl > (Z m |xkyk|) :
p k=1 k=1 q k=1 k=1 k=1

1 1 _
wherep > 1, s =1
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Remark 2.29. If in (2.48) we assume that, = 1, k € {1,...,n}, then we obtain[7, p. 7]
(see alsa |8, p. 105])

2
1 n n 1 n n n
@ I3l (S )
k=1 k=1 1 k=1

k= = k=1

which, in the particular cage= ¢ = 2 will provide the(C' BS) —inequality.

The second generalisation of th@BS) —inequality via Young's inequality is incorporated
in the following theorem(]7, Theorem 2.4] (see alsb [8, Theorem 2]).

Theorem 2.30.LetX, ¥, p, @ andp, ¢ be as in Theorefn 2.27. Then one has the inequality

1 n n 1 n n
(2.50) = “pelael” > aulyl®+ =D ak |zl ™Y iyl
p k=1 k=1 q k=1 k=1

n n
> ool [0S g Tl
k=1 k=1

Proof. We shall follow the proof in([7].
Choosing in[(2.45); = 2l 4 = 12 we get

IR

x|\ ? x| \? x| |z
(251) p() +a () 22
A il il ly;]
foranyy; #0,4,5 € {1,...,n}.
It is easy to see thdt (2.p1) is equivalent to

-1 -1
(2.52) qlol” [y 1" + plul” 251" > pa @il [yil " 2] 1y;]*

foranyi,j € {1,...,n}.
Multiplying 2.52) byp;q; > 0 (i, € {1,...,n}) and summing overand; from1 ton, we

deduce the desired inequlalify (250). O
The following corollary holds |7, Corollary 2.5] (see also [8, p. 106]).
Corollary 2.31. Letx, y, m andp, q be as in Corollary 2.28. Then

1 n n 1 n n
(2.53) = > k™D lyel+ =Dl ™Y e il
p k=1 k=1 q k=1 k=1

n n
> > loel el D el Jyel
k=1 k=1

Remark 2.32. If in (2.53) we assume that, = 1, k € {1,...,n}, then we obtain[7, p. 8]
(see also[8, p. 106])

1 n n 1 n n n B n B
(2.54) = Y el =D el Dl = Ll okl Ll el
P K=1 1= k=1 h=1 k=1

which, in the particular cage= ¢ = 2 will provide the(C' BS) —inequality.

The third result is embodied in the following theorem [7, Theorem 2.7] (seelalso [8, Theorem

3)).
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Theorem 2.33.Letx, y, p, @ andp, ¢ be as in Theorefin 2.27. Then one has the inequality

1 n n 1 n n
(2.55) - Zpk |2k /" Z% lykl* + = ZQk |2k [P Zpk lyr|*
Pia k=1 1= k=1

n n
> Zpk |2k Y| Zpk k[P [y
k=1 k=1

Proof. We shall follow the proof in([7].

If we chooser = |‘§j|‘ andy = l'j?‘l in (2.45) we get
J J

i ! T g Li| |Yi
p(m> +q(! \) qu\ ||y!7
A ;] |5 [y;]
foranyz;,y; #0,1,7 € {1,...,n}, giving
(2.56) qlzil? Jy|* + o |yl |z > pa |zl |25
foranyi,j € {1,...,n}.

Multiplying ([2.56) bypiq; > 0 (i, € {1,...,n}) and summing overand; from1 ton, we
deduce the desired inequalify (2.55). O

The following corollary is a natural consequence of the above theorem [8, p. 106].

[

|y;

Corollary 2.34. Letx, y, m andp, g be as in Corollary 2.28. Then one has the inequality:

n n n n
(2.57) > P [yl =Y |yl Y P [yl T
k=1 K1 K1 k=1

Remark 2.35. If in (2.57) we assume that, = 1, k = {1,...,n}, then we obtain[7, p. 8]
(see also]8, p. 10])

(2.58) S 1kl el = el D el el
k=1 k=1 k=1 k=1

which, in the particular cage= ¢ = 2 will provide the(C' BS) —inequality.

The fourth generalisation of thg”' B.S) —inequality is embodied in the following theorem
[7, Theorem 2.9] (see alsol[8, Theorem 4]).

Theorem 2.36.LetX, y, p, g andp, ¢ be as in Theorefin 2.27. Then one has the inequality

1 n n 1 n n
(2.59) =Y ol Y ax el + = > pilusl Y ar )
q k=1 k=1 p k=1 k=1

n n

2 2

> E O | TRy E P |kl [ynl?
—1 k=1

Proof. We shall follow the proof in([7].
Choosing in|(2.45) = |z;|7 |y;| , y = |z |yi|* , we get

2 q P 2 2 2
(2.60) plal” [y;|" + a ;" (vl ™ = palile 1yl > |2;59;]
foranyi,j € {1,...,n}.
Multiply (2.60) by p;g; > 0 (4,5 € {1,...,n}) and summing ovei and; from 1 to n, we
deduce the desired inequalify (2.60). O
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The following corollary holds |7, Corollary 2.10] (see als0 [8, p. 107]).
Corollary 2.37. Letx, y, m andp, ¢ be as in Corollary 2.28. Then one has the inequality:

1 n n 1 n n
(261) - ka |~77k’2 ka \yk\q + - ka |yk\2 ka ’.Ik’p
q k=1 k=1 p k=1 k=1
n n B )
> ka’ BT ka |kl o |yxl? -
k=1 k=1

Remark 2.38. If in (2.61)) we takem;, = 1, k € {1,...,n}, then we get
(2.62) - Z BNk Z yel” + = Z | Z |z ]” > Z |2k Y| Z |kl o |yxl?
q k=1 k=1 p k=1 k=1 k=1 k=1

which, in the particular cage= ¢ = 2 will provide the(C'BS) —inequality.

The fifth result generalising th&' B.S) —inequality is embodied in the following theorem [7,
Theorem 2.12] (see alsal [8, Theorem 5]).

Theorem 2.39.LetX, ¥, p, @ andp, ¢ be as in Theorefin 2.27. Then one has the inequality
1 n n 1 n n

(2.63) =Y ol Y an el + = > pilusl Y ar )
p k=1 k=1 q k=1 k=1

> pelanl? el Y a lanl” el
k=1 k=1

Proof. We will follow the proof in [7].

Choosing in|(2.45)y = 'ﬁ’; Ty = ‘TI' T iy # 0,4, € {1,...,n}, we may write

i \" [P\ L gl el

Yil* Li|? Yil* 1Ti|?

p +4q e
i || 25| |y;]

"~

from where results

[~

2 2
(2.64) plyil® 12,7 + gzl ly;)" > pa el |yl @ |2 P s

foranyi,j € {1,...,n}.
Multiplying (2.64) bypiq; > 0 (i,j € {1,...,n}) and summing over and; from 1 to n,
we deduce the desired inequality (3.63). O

The following corollary holds |7, Corollary 2.13] (see al56 [8, p. 108]).
Corollary 2.40. Letx, y, m andp, ¢ be as in Corollary 2.28. Then one has the inequality:

1 n n 1 n n
(265) — ka |37k|2 ka \yk\q + - ka |yk\2 ka ’mk’p
p k=1 k=1 q k=1 k=1

n n
2 2 _ _
> E my |2k 7 [y @ E my |zx|” l‘yk‘q t
k=1 k=1
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Remark 2.41. If in (2.46) we choosen;, = 1, k € {1,...,n}, then we get]7, p. 10] (see also
8, p. 108])

1 n n 1 n n n 2 2 n B -
(2.66) = "l > lunl =D lwel Yl =) el fyels > el el
p k=1 k=1 q k=1 k=1 k=1 k=1
which in the particular cage= ¢ = 2 will provide the(C B.S) —inequality.

Finally, the following result generalising th&' BS) —inequality holds[[7, Theorem 2.15]
(see alsa [8, Theorem 6]).

Theorem 2.42.LetXx, y, p, @ andp, ¢ be as in Theorein 2.27. Then one has the inequality:

1 n n 1 n n
2.67) =Y ol Y an luel” + =) ax lyel® > pr
p k=1 k=1 q k=1 k=1
“ 2 u 2
> > prlanl? lyel D an lzel lyal
k=1 k=1

Proof. We shall follow the proof in([7].
From [2.45) one has the inequality

2 D 2 q 2 2
(2.68) a (Jzil? 131)" +p (|2l 1wil) > palail? ol 2] 1]

foranyi,j € {1,...,n}.
Multiplying (2.68) byp;q; > 0 (i, € {1,...,n}) and summing overand; from1 ton, we
deduce the desired inequalify (2.67). O

The following corollary also holds [7, Corollary 2.16] (see also [8, p. 108]).
Corollary 2.43. With the assumptions in Corollafy 2]28, one has the inequality

(269) ka ]a:k] ka( yk\ + - yk|q) ka|$k|l’ yk|2mk |£Ijk|q ?/k|

Remark 2.44. If in (2.69) we choosen;, =1 (k € {1,...,n}), then we get

(2.70) RS (— lykl” + - ’yqu) > " lanl eyl D el sl
h=1 =1 \P q =1 h=1

which, in the particular cage= ¢ = 2, provides thgC'BS) —inequality.

2.8. A Generalisation Involving J—Convex Functions. Fora > 1, we denote byxp, the
function

(2.71) exp, : R — (0,00), exp, (z) = a”.

Definition 2.1. A function f : I C R — R is said to be/—convex on an interval if
272 ; (x+y) @)+ W)

2 2
Itis obvious that any convex function dns a.J convex function orf, but the converse does
not generally hold.
The following lemma holds (seg![7, Lemma 4.3]).

forany z,y € I.
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Lemma2.45.Letf : I C R — R be aJ—convex function o, « > 1 andzx,y € R\ {0} with
log, x%, log, y? € I. Thenlog, |zy| € I and

(2.73) {expy [f (log, |zy|)]}* < expy [f (log, 2*)] exp, [ f (log, ¥*)]

foranyb > 1.

Proof. I, being an interval, is a convex setlfhand thus

1
log, |zy| = 5 [log, z* + log, y*] € I.

Sincef is J—convex, one has

(2.74) f (log, |zy]) = f B (log, 2* + log, yz)}

o f(log,z*) + f (log, y°)
_— 2 .
Taking theexp, in both parts, we deduce

f (log, #*) + f (log, y2)1
2

= {exp, [ (log, 2%)] exp, [f (log, y*) ]},
which is equivalent tq (2.73). O

expy [ (log, [ay])] < exp, [

=

The following generalisation of th@' B.S) —inequality in terms of a/— convex function
holds [7, Theorem 4.4].

Theorem 2.46.Let f : I C R — R be a.J—convex function on/, a,b > 1 anda =
(ai,...,an), b = (by,...,b,) sequences of nonzero real numbers.loff, a3, log, b2 € I
forall k € {1,...,n}, then one has the inequality:

(2.75) {Z expy [ (log, !akbk!)]} <Y expy [f (log, af)] Y expy [f (log, b7)] -

k=1

Proof. Using Lemma 2.45 and th& BS) —inequality one has

Z expy, [f (log, [axb|)]
k=1

n

< ) lexwy [f (log, ai)] exp, [ (log, bi)]]

D=

k=1
- ( {fospy [ (om )]} 52 {fospy [ (o 2]} )
k=1 k=1
which is clearly equivalent t¢ (2.75). O

Remark 2.47. If in (2.75) we choose = b > 1 andf (z) = z, = € R, then we recapture the
(C'BS) —inequality.
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2.9. A Functional Generalisation. The following result was proved in [10, Theorem 2].

Theorem 2.48.Let A be a subset of real numbeR, f : A — Randa = (ay,...,a,),

b = (by,...,b,) sequences of real numbers with the properties that
(i) ab;, a2, b? € Aforanyi e {1,...,n},
(i1) f(a2), f(b?) >0foranyi € {1,...,n},
(ii1) f? (a;b;) < f(a?) f (b?) foranyi e {1,...,n}.
Then one has the inequality:

(2.76) [Zf(aibi)] < Zf (a?) Zf (bzz)

Proof. We give here a simpler proof than that found[in|[10].
We have

Z f (aibi)

< Z | f (aibs)|

(by the(C'BS)-inequality)

IN
1
[
VS
—
-
—~
Q
SRy
~—
—_
[NIE
N———
[N}
3
VRS
—
-
—
S
ST
~—
—
[ I
N———
[N}
| I |
(NI

Li=1 =1
- )
[ i=1 1=1
and the inequality] (2.76) is proved. O

Remark 2.49.Itis obvious that forA = R andf (x) = x, we recapture theC' BS) —inequality.

Assume thap : N — N is Euler's indicator. In 1940, T. Popoviciu [11] proved the following
inequality forp

(2.77) [p (ad)]* < ¢ (a®) ¢ (b%) for any natural number, b;

with equality iff « andb have the same prime factors.
A simple proof of this fact may be done by using the representation

o (i) (1-2).

wheren = p*p3? - - - pi* [9, p. 109].
The following generalisation of Popoviciu’s result holds![10, Theorem 1].

Theorem 2.50.Leta;,b; € N (i = 1,...,n). Then one has the inequality

n 2 n n
Yowlab)| <D w(ad)d e (b).
1=1 i=1 1=1
Proof. Follows by Theorem 2.48 on taking into account that,[by (2.77),
[@(azbz)F S @(a?)@(bf) forar‘yiE {1,,Tl}

(2.78)
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Further, let us denote by(n) the sum of all relatively prime numbers withand less than
n. Then the following result also holds [10, Theorem 1].

Theorem 2.51.Leta;,b; € N (i = 1,...,n). Then one has the inequality

n

Zn;s (aibi)] < Xn; s (a7) Zs (v7) .

i=1

(2.79)

Proof. It is known (see for examplée[[9, p. 109]) that for amy= N one has

(2.80) s(n) = %ngp (n).
Thus
(281)  [s(ab)P = 1l (ab) < 10t (a?) ¢ () = 5 (a?) 5 ()
foreachi € {1,...,n}.
Using Theorem 2.48 we then deduce the desired inequiality| (2.79). O

The following corollaries of Theorefm 2.48 are also natural to be considered [10, p. 126].

Corollary 2.52. Leta;,b; € R (i=1,...,n) anda > 1. Denoteexp, x = a”, x € R. Then
one has the inequality

n 2 n n
(2.82) [Z exp, (a;b;)| < Z exp, (a7) Z exp, (b7) .
=1 | i=1 i=1

Corollary 2.53. Leta;, b; € (—1,1) (i =1,...,n)andm > 0. Then one has the inequality:

n 1 2 n 1 i 1
(2.83) [Z M= ety < 1—a)" ; (1-0))"

i=1 i=1

2.10. A Generalisation for Power Series. The following result holds [12, Remark 2].

Theorem 2.54.Let F : (—r,r) — R, F(z) = > 2 ouz® withoy, > 0,k € N. Ifa =

(ay,...,a,),b=(by,...,b,) are sequences of real numbers such that
(2.84) aib;, aZ, b7 € (—r,r) foranyic {1,...,n},

then one has the inequality:

(2.85) ZF(af)ZF(bf)z ZF(aibi)] .

Proof. Firstly, let us observe that if, y € R such thatry, 2%, y* € (—r,7), then one has the
inequality

(2.86) [F (a;y)]2 <F (xQ) F (yQ) .
Indeed, by théC B.S) —inequality, we have
n 2 n n
(2.87) [Z akxkyk] < Z oz Z apy®, n>0.
k=0 k=0 k=0

Taking the limit as» — oo in (2.87), we deduceg (2.86).

J. Inequal. Pure and Appl. Math4(3) Art. 63, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

20 S.S. RAGOMIR

Using the(C'BS) —inequality and[(2.86) we have

VAN
—_—
(7=
/
B
—
S
ST
N—
i
(I
N—
N
3
wi=
B
—
S
ST
SN—
| S—
[ I
N——
¥
—
]

i=1 =1
SIS @ Fe)]
=1 =1

which is clearly equivalent t¢ (2.85).

The following particular inequalities d” B.S) —type hold [12, p. 164].
(1) If a, b are sequences of real numbers, then one has the inequality

n n [ n 2
(2.88) Z exp (aj) Z exp (b7) > Z exp (akbk)] ;
k=1 k=1 Lk=1

n n [ n 2
(2.89) Z sinh (ag) Z sinh (b7) > Z sinh (akbk)] ;
k=1 k=1 Lr=1

n n [ n 2
(2.90) Z cosh (a3) Z cosh (b7) > Z cosh (akbk)] :
k=1 k=1 Lk=1

(2) If a, b are such that;, b; € (—1,1),i € {1,...,n}, then one has the inequalities

(2.91) Z tan (a7) Z tan (by) > Ztan (akbk)] ;
k=1 k=1 [ k=1

n n [ n 2
(2.92) Z arcsin (aj) Z arcsin (bj,) > Z arcsin (akbk)] ;
k=1 k=1 | k=1

o q - - - TN 2
“(1+a} (140 (14 agby _
(2.93) In | | (1 2 In | | (1 5 ><In | | T :

n 1 i 1
(2.94) In H(1—a2 In H<1—b§

(2.95)
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2.11. A Generalisation of Callebaut’s Inequality. The following result holds (see also [12,
Theorem 2] for a generalisation for positive linear functionals).

Theorem 2.55.Let F : (—r,r) — R, F(z) = Y2 apa® with oy, > 0, k € N. If a =
(ay,...,a,),b=(by,...,b,) are sequences of nonnegative real numbers such that

(2.96) aib;, afb?™, a2~ *b> € (0,r) foranyi € {1,...,n}; a €10,2],

then one has the inequality
(2.97)

n 2 n n
MF (aibi)] <STF (ae) SO F (a2700).
i=1 1=1 i=1

Proof. Firstly, we note that for any, y > 0 such thatry, z%y*>~*, z2=%y* € (0,r) one has

(2.98) [F (zy)]” < F (z%y 2= Q)F(a:Q‘O‘y"‘).
Indeed, using Callebaut’s inequality, i.e., we recallit [4]
m 2 m
(2.99) (Z Oéﬂiyi) < Z fayf “ Z 7 $2 “ui'
=1 =1 =

we may write, form > 0, that

(2.100) (Z ocixiyi> < Z o (xayz_a)Z Z a; (xQ_O‘ya)l .

Taking the limit asn — oo, we deduce[(2.98).
Using the(C'BS) —inequality and[(2.98) we may write:

ZF(@,-Z),») < Z |F (a;b;)]

i=1 =1
1
n 2
ZF abZaZF(Qaba)
1=1
which is clearly equivalent t¢ (2.97). O

The following particular inequalities also hold [12, pp. 165-166].
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(1) Leta andb be sequences of nonnegative real numbers. Then one has the inequalities

(2.101) [Z exp (akbk) < Zexp ao‘b2 O‘ Zexp (ai_abg) ;
k=1 i k=1
(2.102) [Z sinh (akbk) < Zsmh agbi™®) Zsinh (ai b7) ;
k=1 i k=1
(2.103) [Z cosh (akbk) < Zcosh (agbi— Zcosh a?=obg)
k=1 i k=1
(2) Leta andb be such thaty,, b, € (0,1) foranyk € {1,...,n}. Then one has the
inequalities:
n 2 n
(2104) [Z tan (akbk)] < Ztan (az‘bi O‘ Ztan aQ aba .
k=1 k=1
n 2 n n
(2.105) [Z arcsin (akbk)] < Z arcsin (ajb; ) Z arcsin (a; “b}!) ;
k=1 k=1 k=1

2
(14 apby (14 agb (14 ai o
2.106) {n []] <t |JT (k) m | T (e ) |
(2.106) {“[ (1—akbk)” —n[ (1—agbza LT e ) |

oo (o)) < e i

2.12. Wagner’s Inequality for Real Numbers. The following generalisation of the”' B.S) —
inequality for sequences of real numbers is known in the literature as Wagner’s inequality [15],
or [14] (see alsd [4, p. 85]).

Theorem 2.56.Leta = (ay,...,a,) andb = (by,...,b,) be sequences of real numbers. If
0 < x < 1, then one has the inequality

n 2
(2.108) (Zakb;mLx > aibj)
k=1

1<i#j<n
< [iai—i—Qm Z aiaj] [Zb2—|—2x Z b;b;
k=1 1<i<j<n 1<i<j<n

Proof. We shall follow the proof in[[13] (see alsol[4, p. 85]).

J. Inequal. Pure and Appl. Math4(3) Art. 63, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A SURVEY ON CAUCHY-BUNYAKOVSKY-SCHWARZ TYPE DISCRETEINEQUALITIES

For anyx € [0, 1], consider the quadratic polynomial in

n

P(y):=(1 —x)Z(aky —bk)2 +x

k=1

yZZai — QyZakbk + Zbi]
k=1 k=1

k=1

ol (&) - (B) (24) - (B2)

— (1—x)2az+x (Zak> y: — 2y [(1—x)2akbk+x2ak2bk]

k=1 k=1 k=1 k=

n n 2
+(1 —x)Zbi—Fx (Zbk>
k=1 k=1
n n 2 n
= Zai—i—x (Zak> —Zaz y?
k=1 k=1 k=1

n

— 2y Li;akbk—i-x <Zak2bk - 1akbk>]

= k=1 k=1 k=

n

Z (ary — bk)]

k=1

=(1—-1x)

3
3

n

n n 2
F3 B (Zbk> Sy
k=1 k=1 k

=1

Since, it is obvious that:

—1 =1 1<i<j<n
Qg bk — akbk = Z alb]
k=1 k=1 k=1 1<iAj<n
and
n 2 n
(Sn) -3i-2 3
k=1 k=1 1<i<j<n
we get
P(y) = (Z az + 2z Z aiaj> y?
k=1 1<i<j<n

— 2y (Z aipby + x Z aibj> + Z bz + 2x Z bib;
k=1

k=1 1<izj<n 1<i<j<n
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Taking into consideration, by the definition &f that P (y) > 0 for anyy € R, it follows that
the discriminantA < 0, i.e.,

" 2
OZEAz(Zakbqux Z aibj)

k=1 1<i#j<n
k=1 1<i<j<n k=1 1<i<j<n
and the inequality (2.108) is proved. O

Remark 2.57. If x = 0, then from |(2.108) we recapture th€ BS) —inequality for real num-
bers.

2.13. Wagner’s inequality for Complex Numbers. The following inequality which provides
a version for complex numbers of Wagner’s result halds [16].

Theorem 2.58.Leta = (a;,...,a,) andb = (by,...,b,) be sequences of complex numbers.
Then for anyr € [0, 1] one has the inequality

n 2
(2.109) Z Re (aklsk) +x Z Re (aigj)]
k=1 1<i#j<n
< [Z |a|? + 2 Z Re (aiaj)] [Z |bg|” + 2z Z Re (bz-l_)j)] .
k=1 1<i<j<n k=1 1<i<j<n
Proof. Start with the functiory : R — R,
n n 2
(2.110) F)=0—2)> [tap—b* + 2| (tay — by)
k=1 k=1
We have

3

(2111)  f(t)=(1—=) ) (tar — bx) (tar — bi)
1
=1 =) [ apl =t > bk —t Y aiby + \b,ﬁ]
k=1 k=1 k=1 k=1
t22|ak|2 —thkZELk —tzakZbk+Z|bk|2]
k=1 k=1 k=1

k=1 k=1 k=1

+x
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= [(1—2x) Z|ak| +a Z

k=

+2((1—2x) ZRe akbk)—l—xRe

+(1—x)2|bk\2+x
k=1

=
Il 3
MR
=
ol
ol
I 3
—
=
Bl
1
| I
~

n 2
> b
k=1

Observe that
k=1 i,j=1
=Yl 3 e
i=1 1<i#j<n
DI VTR S
i=1 1<i<j<n 1<j<i<n
_Z|az| +2 Z Re (a;a )
1<i<j<n
and, similarly,
(2.113) Zw+zz:mw
k=1 1<i<j<n
Also
Qg Z)k = ai@ + CLlB]
k=1 k=1 i=1 1<i#j<n
and thus
(2.114) Re (Z akZbk> = Re(aib) + > Re(aiby).
k=1 k=1 i=1 1<i#j<n

Utilising (2.112) —[(2.11}4), by (2.111), we deduce

(2.115) f (¢ [kay +2r ) Re azaj]tQ

1<i<j<n

2 ZRe(akl_)k)+x Z Re ab
k=1

1<i#j<n

t+Z|bk| + 2z Z Re (b;b;)

1<i<j<n
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Since, by |(2.110)f (t) > 0 for any¢ € R, it follows that the discriminant of the quadratic
function given by[(2.11)5) is negative, i.e.,

0> 1A
n 2
= Z Re (a;j)k) +x Z Re (azbj)]
k=1 1<i#j<n
_ Z |ag|* + 2z Z Re (aiaj)] [Z b |? + 2 Z Re (bib;)
k=1 1<i<j<n k=1 1<i<j<n
and the inequality (2.109) is proved. O

Remark 2.59. If x = 0, then we get théC BS) —inequality

n 2 n n
k=1 k=1 k=1
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3. REFINEMENTS OF THE (C'BS) —INEQUALITY

3.1. A Refinement in Terms of Moduli. The following result was proved in|[1].

Theorem 3.1.Leta = (ai,...,a,) andb = (by,...,b,) be sequences of real numbers. Then
one has the inequality

n 2 n n n n
k=1 k=1 k=1 k=1 k=1 k=1

Proof. We will follow the proof from [1].
Foranyi, j € {1,...,n} the next elementary inequality is true:

(3.2) |aib; — a;bi| > ||a;b;| — |a;bi|.

By multiplying this inequality withla;b; — a;0;| > 0 we get
(33)  (aib; — a;bi)” > |(aib; — azby) (|ai| [bs] — ;| |bi])|
= |ai|a| b; |b] + bi [bs] a; |a;| — |ai| biaj |bj| — aib; |a;| [bi]] -

Summing|(3.B) over and; from 1 to n, we deduce

n

> (aibj — abi)?

ij—1
> > ai las| b |bs| + bi [bi] @ |a;| — |ai] biay [bs] — a;b,
ij=1
> > (s |ail by |b] + bi |bi] aj la| — |a:| bia, [b5] — aiby |a;| 1bi]) |,
ij=1
giving the desired inequality (3.1). O

The following corollary is a natural consequencefof|(3.1) [1, Corollary 4].

Corollary 3.2. Leta be a sequence of real numbers. Then
1< 1< ’

3.4 - 2_ | = >

(34) n;k (n;ak) >

There are some particular inequalities that may also be deduced from the above Theprem 3.1
(seelll, p. 80])).

(1) Suppose that foi andb sequences of real numbers, one kas(a;) = sgn (by) =
er € {—1,1}. Then one has the inequality

n 2 n n
(35) Z a Z bQ (Z akbk> 2 Z ekai Z ekbi - (Z ekakbk> Z
k=1 k=1 k=1

n

%Zak\akl——z Zlakl

k=1 k=1

> 0.

k=1
(2) Ifa=(ay,...,as),then we have the inequality
2 2n 2n
(3.6) 2”2% [Z - )kak] > ZakZ(— )" Jak]| >0
k=1 k=1 k=1
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(3) Ifa=(ay,...,a+1), then we have the inequality
on+1 2n+1 2 ont+l  2n+1
(3.7) 2n+1)> a; - <Z (—1)kak> > ar > (=D)*axl| > 0.
k=1 k=1 k=1 k=1
The following version for complex numbers is valid as well.
Theorem 3.3.Leta = (a;,...,a,) andb = (b, ...,b,) be sequences of complex numbers.

Then one has the inequality

38) D lal Sl = D abi| =D aila > bilbi =D lail b [bil a
=1 =1 =1 =1 =1 =1 =1

Proof. We have for any, j € {1,...,n} that

2
> > 0.

|@ib; — a;b;| > [|ai| [b;] — |aj] |bil| -
Multiplying by |a;b; — a;b;| > 0, we get
@b — a;bil* > |la;| @ |b;| b; + |aj| aj [bi| b — [as| bi |bj] @; — [bs] @ |ay| by .

Summing ovel and;j from 1 to n and using the Lagrange’s identity for complex numbers:

n n n 2 n
Sl S~ (S an| =5 3 lad, - anif
=1 =1 =1

ij=1
we deduce the desired inequality (3.8). O

Remark 3.4. Similar particular inequalities may be stated, but we omit the details.

3.2. A Refinement for a Sequence Whose Norm is OneThe following result holds |1, The-
orem 6].

Theorem 3.5.Leta = (ay,...,a,), b = (b1,...,b,) be sequences of real numbers ane-
(e1,...,e,) besuchthad ! | e = 1. Then the following inequality holds
]2

(39) Z a? Z bf Z akbk — Z €A Z ekbk Z €A Z ekbk
k=1 k=1 k=1 k=1

=1 =1 [ k=1

(S

k=1

V

+

Proof. We will follow the proof from [1].
From the(C' BSS) —inequality, one has

(3.10) Z ap — (Z eiai) ek] Z [bk — (Z eibi> ek]
k=1 i=1 k=1 i=1

L[ (o) o] e (Ee0)-]}
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Since} "] _, ez = 1, a simple calculation shows that

n n 12 n n 2
2
E QA — E €;a; | ek = E a — €A s
=1 _ k

k=1 k=1 =1
n n 12 n n 2
z[bk— (zb> o :zbz—< b> |
k=1 i=1 i k=1 k=1

and

3
3
3

[ak - (Z em) €k] [bk — (Z eibi> ek] = arby — ekakzekbk
1 i=1 i=1 —

k=

and then the inequality (3.].0) becomes
(311) Z ai — (Z ekak> Z b% - (Z ekbk>
k=1 k=1 k=1 k=1
n n n 2
Z (Z akbk — Z €A Z Gkbk> Z 0.
k=1

k=1 k=1

Using the elementary inequality

(m? = 12) (p* — ¢*) < (mp—19)*, m,l,p,g €R

() e (29

k=1
the above inequality (3.11) provides the following result

Zekbk
k=1

(3.12) <Z az> (Z bz) —
k=1

k=1

for the choices

I

n

E €rLag

k=1

and ¢ =

n

n
E ekakE erby
1

k=1

2
>

n n n
E arby, — E Crag E erby
k=1 k=1 k=1

Since

N =

1
n 2 n 2 n n
(Z ai) <Z bi) Z Z Crar Z ekbk
k=1 k=1 k=1 k=1

then, by taking the square root [n (3}12) we deduce the first pdrt 9f (3.9).
The second part is obvious, and the theorem is proved. O

The following corollary is a natural consequence of the above theorem [1, Corollary 7].
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Corollary 3.6. Leta, b,& be asin Theore@.S. ¥ ,_, arby = 0, then one has the inequality:

n n n 2 n 2
k=1 k=1 k=1 k=1
The following inequalities are interesting as well [1, p. 81].
(1) For anya, b one has the inequality

@14 D ) > [Zakbk—%ZakZbk
k=1 k=1 k=1 k=1 k=1
n 2
> (Z akbk) :

k=1

1
+ — ag by,
n

k=1 k=1

(2) If ZZ:l aibi, = 0, then
2 2
(3.15) dapd by > — (Z ak> (Z bk> :
k=1 k=1 k=1 k=1
In a similar manner, we may state and prove the following result for complex numbers.
Theorem 3.7.Leta = (ai,...,a,), b = (b1,...,b,) be sequences of complex numbers and

& = (ey,...,e,) asequence of complex numbers satisfying the condjifin |e;|* = 1. Then
the following refinement of thg”' BS) —inequality holds
] 2

The proof is similar to the one in Theor¢m[3.5 on using the correspodiBg) —inequality
for complex numbers.

(3.16) Z |a;|” Z |bi]* > [ Z by, — Z ak€ - Z erby| + Zakék : Z erbi
i—1 i—1 k=1 k=1 k=1 k=1 k=1
" 2
> Zakl_?k
k=1

Remark 3.8. Similar particular inequalities may be stated, but we omit the details.
3.3. A Second Refinement in Terms of Moduli. The following lemma holds.

Lemma 3.9. Leta = (ay,...,a,) be a sequence of real numbers apd= (p1,...,p,) @
sequence of positive real numbers Wilj"_, p; = 1. Then one has the inequality:

n n 2 n n n
(3.17) sz‘a? - (ZPNi) > Zpi |ail a; — sz' |ail Zpiai :
i=1 i=1 i=1 i=1 i=1

Proof. By the properties of moduli we have

2
(a; — a;)” = (a; — a;) (a; — a3)| = |(|ai] — [a;]) (a; — a;)]
foranyi,j € {1,...,n}. Thisis equivalent to
(3.18) a? — 2a;a; + a? > ||ai| @i + |aj| a; — |ai| aj — |aj] ai

foranyi,j € {1,...,n}.
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If we multiply (3.18) byp;p; > 0 and sum ovef and; from 1 to n» we deduce
D Pi D el =2 piai ) piaj+ ) pi) pia;
7j=1 =1 =1 7j=1 =1 7j=1

n
> Z piijail a; + |ajl a; — lai| a; — |a;| ai}
ij=1

> v (Jasl ai + |aj| a; — |ai| a; — |a;| a;)
ij=1

which is clearly equivalent t¢ (3.1L.7). O
Using the above lemma, we may prove the following refinement of@heS) -inequality.

?

Theorem 3.10.Leta = (ay,...,a,) andb = (by,...,b,) be two sequences of real numbers.
Then one has the inequality

(3.19) }: }:m (53 )2

=1

=1 =1

=1

Proof. If we choose (fol; # 0, € {1,... ,n}) in ), that

a; b;
7 (2

bi = n 2y i = —, 26{17 777/}7
k=1 %k @;

we get

n 2
n 2
Q; az —1 Zkzl ap @

ZZk L a7

from where we get

Z?:l ‘alb1| Z?:1 a;b;

i b? (i b Zz 1 a;
i=1 D ke (X1 aF) 2 B 2 k=1 i (i ai)Q
which is clearly equivalent t¢ (3.1L9). O

The case for complex numbers is as follows.

Lemma 3.11.Letz = (z,. .., z,) be a sequence of complex numbers gnd (p;,...,p,) a
sequence of positive real numbers wWitl" , p; = 1. Then one has the inequality:

n n 2 n n n
(3.20) Zpi |23 — Zpizi = Zpi |2i| 2 — Zpi il Zpizi :

=1 =1 =1 =1 =1
Proof. By the properties of moduli for complex numbers we have

2
2 = 2| = [(lz] = |250) (21 = 2)]
foranyi,j € {1,...,n}, which is clearly equivalent to
2 — 2
2" = 2Re (2:2;) + 25]" 2 [|2il 2 + [25] 25 — 21 [25] = 2] 2]

foranyi,j € {1,...,n}.
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If we multiply with p;p; > 0 and sum ovet and; from 1 to n, we deduce the desired

inequality [3.2D). O

Now, in a similar manner to the one in Theorgm 3.10, we may state the following result for
complex numbers.

Theorem 3.12.Leta = (ai,...,a,) (a; #0,i=1,...,n) andb = (by,...,b,) be two se-
guences of complex numbers. Then one has the inequality:

i=1 i=1 i=1 i=1 i=1 i=1

3.4. A Refinement for a Sequence Less than the WeightsThe following result was obtained
in [1, Theorem 9] (see alsbl[2, Theorem 3.10]).

2
>

Theorem 3.13.Leta = (ay,...,a,), b = (by,...,b,) be sequences of real numbers and
p=(p1,---,Pn)q=(q1,...,qn) be sequences of nonnegative real numbers suctpfhatg
foranyk € {1,...,n}. Then we have the inequality

2

n

n n n n %
(3.22) Zpkai Zpk:bz = Z (P — an) arbr| + (Z qray, Z kai>
k=1 k=1 k=1 k=1

k=1
] 2

n

> Z (Pr — ar) arby| +
=1

Z qrayby,
k=1

L - )
> <Z pkakbk> .
k=1

Proof. We shall follow the proof in([1].
Sincepy, — g, > 0, then the(C' BS) —inequality for the weights;, := py — qx will give

n

n n n n 2
(3.23) (Z praz — > qmi) (Z b =Y kaz) > [Z (P — ar) akbk] :
k=1 k=1 K1 k=1

k=1

Using the elementary inequality
(ac — bd)2 > (a2 — b2) (02 — d2) , a,bc,deR

for the choices

n 2 n 2 n %
a= (ZPW%) , b= (Z Qka2> , €= (ZP!J%)
k=1 k=1 k=1

n 3
i= (z b)
k=1
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we deduce by (3.23) that

(3.24) <Zpkai) (Zm%) - (Z qkai> (Z qkbi>
k=1 k=1 k=1 k=1
> [Z (P — Qk)akbk] .

k=1
Since, obviously,

1 1
(Z pkai> (Z pkbi> > (Z qkai> (Z qklﬁ)
k=1 k=1 k=1 k=1

then, by [(3.24), on taking the square root, we would get

n 3/ n 3 n 3 /n 3
(Z pkai> (Z pkbi> > (Z qkai) (Z qwi) +
k=1 k=1 k=1 k=1

which provides the first inequality if (3.22).
The other inequalities are obvious and we omit the details. O

N|=
N |=

n

(pr — aqx) axby,
=1

Y

The following corollary is a natural consequence of the above theorem [2, Corollary 3.11].

Corollary 3.14. Let a, b be sequences of real numbers ad= (sy,...,s,) be such that
0 <s; <1foranyk € {1,...,n}. Then one has the inequalities

(3.25) Z@kZbQ (Z skakZSkb2>
k=1

] 2
n 2
k=1
Remark 3.15. Assume thasi, b ands are as in Corollarly 3.14. The following inequalities hold

(seell2, p. 15]).
a) If >, arby = 0, then

(326) Z ag Z b2 > 4 (Z skakbk) .
k=1

b) If ZZ:I sparb, = O, then

2
n

Z (1 — Sk akbk

k:l

n

Z (1 — Sk) akbk +

k=1

n

Z skakbk

k=1

v

172

(3.27) ZakZbQ + (z”: amiia&i) 2
k=1 k=1

k=1

n
g arby
=1
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In particular, we may obtain the following particular inequalities involving trigonometric
functions (se€ |2, p. 15])

n

(3.28) Zazibi >
k=1

k=1

(NI

n

E apby, cos? a

k=1

n n
+ ( E a; sin *qy, E bi sin? ozk)

k=1 k=1

n n 2
> Zakbkcos ag| + Zakbk sin ak]
L k=1 k=1
" 2
> Zakbk> )
k=1
whereag, by, € R, k=1,... n.

If one would assume that’,_, axb;, = 0, then

n

n n 2
(3.29) Z a; Z b2 > 4 (Z ;b sin’ ozk) )
k=1

k=1 k=1
If S, arby sin® a = 0, then

(3.30) zn: ay, zn: by, >
k=1

k=1

2

N

n

Z akbk

k=1

n n
+ ( g az sin® ay, g b7 sin’ ozk)

k=1 k=1

3.5. A Conditional Inequality Providing a Refinement. The following lemma holds |2, Lemma
4.1].

Lemma 3.16. Consider the sequences of real numbees (zy,...,z,),y = (v1,...,y,) and
Z="(21,...,2n). If
(3.31) yi < |rpz| foranyk € {1,...,n},

then one has the inequality:

n 2 n n
(3.32) (Z |yk|> <Yl D Ll -
k=1 =1 k=1

Proof. We will follow the proof in [2]. Using the conditior] (3.81) and t€' BS) —inequality,
we have

n

n 1 1
Z lyr| < Z k] ® |25 ]2
k=1 k=1

[

n n

> (i) 3 (1) |

k=1 k=1

IN

which is clearly equivalent t¢ (3.82). O
The following result holds |2, Theorem 4.6].
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Theorem 3.17.Leta = (ay,...,a,), b = (by,...,b,) @ande = (cy,...,c,) be sequences of
real numbers such that
(i) [bel +lex] #0 (k€ (L. n});
.. 2|br.c
(1) |ax| < \bi\i\il foranyk € {1,...,n}.
Then one has the inequality

- 2 g bkl Dy

53 2 ol = =S S
Proof. We will follow the proof in [2]. By (ii) we observe that
lag| < M < 20 foranyk € {1,...,n}
|bk| + || 2 ||
and thus
(3.34) x =2 |bg| — |ag| >0 and

2k = 2|cg| — |ag] >0 foranyk € {1,...,n}.
A simple calculation also shows that the relat{@i) is equivalent to
(3.35) a; < (2|bk] — |ax]) (2 |ex] — |ax|) foranyk € {1,...,n}.

If we considery; := a; and takexy, z, (k=1,...,n) as defined by| (3.34), then we get
y: < xpzp (With oy, 2, > 0) for any k € {1,...,n}. Applying Lemma 3.16 we deduce

n 2 n n n n
(3.36) (Dakr) < (22@\ —Zw) <2Z|ck\ —Z\m)
k=1 k=1 k=1 k=1 k=1

which is clearly equivalent t¢ (3.B3). O
The following corollary is a natural consequence of the above theadrem [2, Corollary 4.7].

Corollary 3.18. For any sequenc® andy of real numbers, withwy |+|yx| 0 (k= 1,...,n),
one has:

(3.37) i | Tk Y < 22%:1 2| > s Lyl
el 4 lyel = 2 (ol + Tyel)
For two positive real numbers, let us recall the following means
b : .
Ala,b) = a; (the arithmetic mean
G (a,b) :=Vab  (the geometric me3n
and )
H(a,b) := 1 ) (the harmonic megn
a b
We remark that ifi = (a1,...,a,), b = (by,...,b,) are sequences of real numbers, then
obviously
(3.38) ZA (ai, b)) = A <Z as, Z bi) )
=1 i=1 i=1
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and, by theC'BS) —inequality,

The following similar result for harmonic means also holds [2, p. 19].
Theorem 3.19.For any two sequences of positive real numtzeasdb we have the property:

=1 =1 =1
Proof. Follows by Corollary 3.18 on choosing. = ay, v, = by and multiplying the inequality
(3:37) with2. O

The following refinement of théC' BS) —inequality holds([2, Corollary 4.9]. This result is
known in the literature allilne’s inequality [8].

Theorem 3.20.For any two sequences of real numbgrs- (p1,...,p,), = (q1, - - -, ¢,) With
lpk| + |qx] # 0 (k =1,...,n), one has the inequality:

n n n

n 2 n 2 2
(3.41) (Zm%) <S> )Y <Y ¢
=1 k=1 w1 Pt i

k=1 k=1
Proof. We shall follow the proof inl[2]. The first inequality is obvious by Lemma B.16 on
2.2
choosingyy, = prar, Tx = P2 + ¢2 andz, = HE% (k=1,....n).

Prtap
The second inequality follows by CoroII18 on choosing= p; andy = ¢ (k = 1,
.,n). O

Remark 3.21. The following particular inequality is obvious by (3]41)

n 2 n
(3.42) (Z sin oy, cos ozk) <n Z sin? o, cos? ay,

=1 i=1

< Z sin? ay, Z cos? Qay;
=1 =1
foranya, e R,k e {1,...,n}.
3.6. A Refinement for Non-Constant SequencesThe following result was proved in[[3, The-

orem 1].

Theorem 3.22.Leta = (a;)
that
(i) a; # a; andb; # b; fori # j,i,j5 € N;
(73) p; > Oforall i € N.
Then for anyH a finite part ofN one has the inequality:

2
(3.43) Zpia? Zpib? — (Zpiai@) > max {A, B} >0,

i€H 1€H i€H

iens b= (bi),en » P = (pi);en b€ SEQUENCES Of real numbers such

where
2
(3.44) A [ZZEH Piaibi 3 e 5 Pit5 = Xier Piti Xje pjbﬂ}
- = max
T P ien pia? — (X, piai)’
#0 J 2 icH PiG; ey Diti
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and

2
> icn Piaib; EjeJ pibi — D ien pib} ZjeJ pj%}
(3.45) B = max 5 5
]Jig Py ZiEH pibz‘ - (Zieribi)
and Py := 3., p;.

Proof. We shall follow the proof in([B].
Let J be a part off. Define the mapping; : R — R given by

fr(t) = sz‘a? Z pib; + Zpi (bi+1)°| — Z piaib; + Zpiai (bi +1t)

ieH i€H\J icJ i€H\J ieJ

Then by theC' BSS) —inequality we have thaf, (t) > 0 for all t € R.
On the other hand we have

2
fir(t) = sz‘a? [Z pib? + 2t sz‘bz‘ + 1P| — [Z piab; +t Zpiai]

icH i€H i€H icH icJ
2
=2 | P, Zpia? - (Z pﬂz’)
icH ieJ
+ 2t Zpia? Zpibi - Zpiaibi Zpiai]
i€H ieJ i€H ieJ
2
+ Zpia?zpibf - <Zpiaibi>
i€H i€H i€H
forall t € R.
Since

2 2
P; Y pia; — (me) > Py ) pia; — (Zpiai) >0

i€H i€J ieJ i€J
asa; # a; foralli,j € {1,...,n} withi # j, then, by the inequality, (¢) > 0 for anyt € R
we get that

2
0> EA = Zpiaibizpjaj - Zpia? ijbj]
ieH jeJ icH jeJ
2 2
— | Py ZPM? - (ZPMz‘) sz‘a? Zpib? - (Zpiaibi>
icH icJ icH icH icH

from where results the inequality

2
Zpiagzpibzz - <Zpiaibi> > A

1€H i€H i€H
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The second part of the proof goes likewise for the mappgingR — R given by

2
97 (1) = Z pia; + Zpi (a; +t)? sz‘b? - Z piaib; + Zpibi (a; +1t)
i€H\J ieJ i€H i€H\J icJ
and we omit the details. O

The following corollary also holds [3, Corollary 1].
Corollary 3.23. With the assumptions of Theorgm 3.22 and if
[ZiEH Ppiaib; ZieH pia; — ZieH pialz DGH pibi}2
Py} icn piai — (ZzeH piai)Z

2
[ZieH pia;b; ZieH pib; — DGH pib; ZiEH piai]
2
Py Y b} = (Zie pibi)

(3.46) C =

Y

(3.47) D=

)

then one has the inequality

2
(3.48) Zpia? Zpibf — (Z piaibl) > max {C, D} > 0.

1€H i€H 1€H
The following corollary also holds [3, Corollary 2].
Corollary 3.24. If a;, b; # 0 for i € Nand H is a finite part oflN, then one has the inequality

2
(3.49) ZPN?ZPib? - (ZM%@)

1€H i€H 1€H

2 2
> 1 A ZjerjC;'7 Ejerdej >0,
card (H) — 1 D oicn Piti T D iy Pib;
where
(3.50) Cj = aj Zpiaibi —b; ZPM?: JjeH
icH icH
and
(3.51) dj==a; > pib] —b; > piaibi, j€ H.
icH icH

Proof. Choosing in Theoretn 3.22, = {;} , we get the inequality
’ P2
2 2 JJ .
Dia; pib; — piab; | > , JEH
N Y L T ST
from where we obtain

2
(Z pia? — pﬂ?) Zpia? Zpibf — (Z piaibi) > pjcjz- forany j € H.

1€H 1€H i€H 1€H

Summing these inequalities oveeE H, we get

2
lcard (H) — 1] Zpia? Zpia? Zpibf — (Z piaibi) > ijcg

ieH 1€H i€H 1€H JjEH
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from where we get the first part gf (3]49).
The second part goes likewise and we omit the details. O

Remark 3.25. The following particular inequalities provide refinement for the3.S) —inequality
[3, p. 60 —p. 61].

(1) Assume thad = (aq,...,a,), b = (b1,...,b,) are nonconstant sequences of real
numbers. Then

n n n 2
(352) > a2 02— (Z aibi>
i=1 i=1 i=1

[2?1% 11 =D i1 @i ) aib ]
nZa _<Zz 1‘11)2

> max

)

[Z?:l bi Z?:l a;b; — E?:l a; Ez 1 bf]
ny. bz? - (Z?:l bi)2
i=1

(2) Assume thasi andb are sequences of real numbers with not all elements equal to zero,

then

(3.53) Z sz (i )2

=1

3.7. De Bruijn’s Inequality. The following refinement of théC' B.S) —inequality was proved
by N.G. de Bruijn in 1960/]4] (see alsdl [5, p. 89]).

Theorem 3.26.If a = (a4, ...,a,) is a sequence of real numbers aad= (z,...,2,) iS a
sequence of complex numbers, then
> apz P ] :

<32 [Z|zk|2+ >
k=1 k=1 k=1 k=1

Equality holds in|(3.54) if and only if fot € {1,...,n}, ax = Re (\z;), where) is a complex
number such tha} ;_, A\*27 is a nonnegative real number.

n 2

(3.54)

Proof. We shall follow the proof in([5, p. 89 — p. 90].
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By a simultaneous rotation of all the’s about the origin, we get

n
Z Q2 Z 0.
k=1

This rotation does not affect the moduli

n

E ARz

k=1

>4
k=1
Hence, it is sufficient to prove inequalify (3]|54) for the case whefe | a;z, > 0.

If we putz, =z +iyx (k € {1,...,n}), then, by thgC' BS) —inequality for real numbers,
we have

and |z| for ke {1,...,n}.

)

(3.55)

2 n
= (Z akzk> < Zakak
k=1 k=1

n
E 07°%4 3
k=1

Since
222 = |z|° + Re 22 forany ke {1,...,n}
we obtain, by[(3.55), that

n 2 n
(3.56) Zakzk <= ! Z [Z |z|” + ZRe 2
A k=1 k 1 n
ZRezk—Re <Z ) < Zzi 5
then by [3.5p) we deduce the desired |neql]jalm:~3.54)k.:1 O

3.8. McLaughlin’s Inequality. The following refinement of théC B.S) —inequality for se-
guences of real numbers was obtained in 1966 by H.W. McLaudhlin [7, p. 66].

Theorem 3.27.1f a = (ay,...,a9,), b= (by,...,by,) are sequences of real numbers, then

2n
(357) <Z azbz> Z az nt+i an—‘rz z < Z Z b2
=1

with equality if and only if for any, j € {1,...,n}

(3.58) a;bj — ajb; — Anyibpyj + Ang by =0
and
(3.59) Aibntj — Qjbpyi + Angibj — any by = 0.

Proof. We shall follow the proof in[[6] by M.O. Drimbe.
The following identity may be obtained by direct computation

(3.60) Z Zb2 (Z > - [Z(aibnﬂ-—awbi)]

=1 i=1

= Z (aibj — Cljbl' — an+ibn+j + a/nJrjanri)Q

1<i<j<n

§ : 2
+ az n+j = ajbn—i-i + an-‘ribj - an—i—jbi) .

1<i<j<n
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It is obvious that[(3.57) is a simple consequence of the idetity|(3.60). The case of equality is
also obvious. H

Remark 3.28. For other similar(C' BS) —type inequalties see the survey paper [7]. An anal-
ogous inequality to t-?) for sequenceandb having4n terms each may be found inl [7, p.
70].

3.9. A Refinement due to Daykin-Eliezer-Carlitz. We will present now the version due to
Mitrinovic, P&aric and Fink [5, p. 87] of Daykin-Eliezer-Carlitz’s refinement of the discrete
(C'BS) —inequality [8].

Theorem 3.29.Leta = (ay,...,a,) andb = (b, ...,b,) be two sequences of positive num-
bers. The ineuality

(3.61) (2”: aibi> < Zn: f (aibi) Xn: g (aib;) < Zn: a; Zn: b;

i=1 =1

holds if and only if

(3.62) f(a,b) g (a,b) = a?

(3.63) f (ka, kb) = k? f( b),
bf (a,1)  af(b,1) _a

(3.64) of (b, 1) + bf (a,1) < 3 +

foranya,b, k > 0.

Proof. We shall follow the proof in([5, p. 88 — p. 89].
Necessitylndeed, fom = 1, the inequality[(3.6[1) becomes

(ab)® < f(a,b) g (a,b) < a®h?  a,b>0
which gives the conditiorj (3.62).
Forn = 2in (3.61), using[(3.62), we get
2a1b1asby < f (a1,b1) g (as, by) + f (az,b2) g (a1, by) < a3bs + a3bi.
By eliminatingg, we get

f(alabl) asby f(a27bz) ab; a1 by asb;

( ) f<a2,bz) ab; f(alabl) asby asb; a1 by
By substituting in[(3.65), b for a,, by andka, kb for as, by (k > 0), we get
Flah) 4o, f(ka,kb)
f (ka, kb) f (a, b)

and this is valid only if? f (a,b) (f (ka, kb)) = | e., the condition[(3.63) holds.
Using (3.65), fota; = a, by = b, a2 = b, by , we have

2 < E2<2

f(a71

N
~
=
S
—
N

2 o b
(3.66) 2§f%ﬂ+ﬂw)§b+a

The first inequality in[(3.66) is always satisfied while the second inequality is equivalent to

B.64).
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SufficiencySuppose thaf (3.62) holds. Then inequality (B.61) can be written in the form

2 ) abiagh; <Y [f (aibi) g (ay,b5) + [ (a5,b;) g (ai, by)]

1<i<j<n 1<i<j<n

< Z (702 + a3b?) .

1<i<j<n
Therefore, it is enough to prove

(367) 2aibiajbj < f (a’i7 bl) g (ajv bj) + f (aju b]) g (aia bz)
< aib; + ajb;.

Suppose tha4) holds. Th- 66) holds and puttirg 5, b = 3* in ) and using
(3.63), we get

f(a,-,bi) . Cijj i f(aj,bj) ) aibi < aibj + ajbi

2 < .
- f (Clj, bj> aibi f (CI,Z', bl) Cljbj - Cljbi aibj
Multiplying the last inequality by:;b;a;b; and using[(3.62), we obtaip (3]67). O

Remark 3.30. In [8] (see [5, p. 89]) the condition (3.p4) is given as
fla,1) _ f(b,1)
a? b2

Remark 3.31. O.E. Daykin, C.J. Eliezer and C. Carliiz [8] stated that exampleg forsatis-

fying (3.62) — [3.64) were obtained in the literature. The chdice, y) = 22 + 2, g (v,y) =
will give the Milne’s inequality

(3.68) (1) < f(a1),

for a>b> 0.

2+2

n

(3.69) (im) <Z a; +1b7) -Z 2+62 Za Zb?

For a different proof of this fact, see Sect[on|3.5.
The choicef (z,y) = z'™y'=* g (z,y) = '™ (a € [0, 1]) will give the Callebaut
inequality

(3.70) (Z aibi> < Za““”bl S aen <Y a3
=1 =1

i=1 i=1

3.10. A Refinement via Dunkl-Williams’ Inequality. We will use the following version of
Dunkl-Williams’ inequality established in 1964 in inner product spaces [9].

Lemma 3.32. Leta, b be two non-null complex numbers. Then

(3.71) la—0[ >3 (Ia\ +[0])

a
lal

-l
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Proof. We start with the identity (see also [5, pp. 515 — 516])
REIER)
lal 161/ \lal 0]
a b
=2—-2Re| — - —
(Ial Ibl>

(21l ] - 2Re (a - B))

a b
la| o]

[al [b]
1
| 12| [2|a| 0] — (|a|2—i—|b|2— |a—b|2)]
1 2 2
= ——lla —b|" — — |b))*| .
la| [b] [|a | (la] — | |)}
Hence
1 S
a—bZ—{—|a%—Mﬂ — — —| =———2 [(Ja] + b])* = |a — b]?
a =07 = |5 el + 10| | = | = e el +100)° ~la =]
and [3.71) is proved. O

Using the above result, we may prove the following refinement of¢hes) —inequality for
complex numbers.

Theorem 3.33.1f a = (a1,...,a,), b = (by,...,b,) are two sequences of nonzero complex
numbers, then

n n n 2
3.72) D lar D bl = D arb
k=1 k=1 k=1

1§ S O P 7 P L TP
Z— (I,Zb b+ a; - ]b — bz—]a ZO
8; A T Lt R 1
Proof. The inequality[(3.7]1) is clearly equivalent to
1 ol el P
(3.73) la —b]* > - ‘ —b+ia— b
4 [a] " ol

foranya,b € C, a,b # 0.
We know the Lagrange’s identity for sequences of complex numbers

2
n n 1 n
(3.74) D o> [bil* - =5 > laiby —abif*.
k=1 k=1

ij=1
By (3.73), we have

axby

2

lagl bl lail [b)]
(Ad]

|ai] |b;] |a;| bi]

Summing overi, 5 from 1 to n and using théC'BS) —inequality for double sums, we deduce

(B.72). O

1
ab; —ab| > =
|a;b; — a;bil =7

dibj — djbi + Eljbi
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3.11. Some Refinements due to Alzer and Zhengln 1992, H. Alzer[[10] presented the fol-
lowing refinement of the Cauchy-Schwarz inequality written in the form

(3.75) (Zm%) < Zykzl‘kyk
k=1 k=1 k=

Theorem 3.34.Letx;, andy, (k = 1,...,n) be real numbers satisfying= z, < z; < % <
<= and0 <y, <y,-1 <--- <y Then

(3.76) (Z l’kyk> < Zyk Z |:xk: - lxk 1331@} Yk,
k=1 k=1

with equality holding if and only if;, = kx; (k =1,...,n)andy; =--- =y,.

In 1998, Liu Zheng[11] pointed out an error in the proof given in [10], which can be corrected
as shown in[[11]. Moreover, Liu Zheng established the following result which shaipenk (3.76).

Theorem 3.35.Letz;, andy, (k= 1,...,n) be real numbers satisfyimg< z; < % <--- <
% ando < Yn S Yn—1 S e S Yr- Then

(3.77) (Z :ckyk) < Z Y Z Ok
k=1 k=1 =

with

Tk+1 k
(3.78) 61 =22 and & = 5 Ty — SG—D) 1>xz71 (k>2).
Equality holds in|(3.77) if and only if, = kxy (k=1,...,n)andy; = --- = y,.

In 1999, H. Alzer improved the above results as follows.
To present his results, we will follow [12].
In order to prove the main result, we need some technical lemmas.

Lemma 3.36.Letz, (k= 1,...,n) be real numbers such that
0<I1§@§...§ﬁ_
2 n
Then
(3.79) 2Zxk (n+ 1) x,,

with equality holding if and only it = kxz, (K =1,...,n).
A proof of Lemmg 3.3 is given in [10].

Lemma 3.37.Letz, (k= 1,...,n) be real numbers such that

0<x1§ﬁ§...§ﬁ‘

2 n
Then
2

- = 3k + 1
3.80 x <n z2,
3.80) (o) <n3%ita

with equality holding if and only if, = kz; (k=1,...,n).
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Proof. Let

2
3k+1 -
Sp = Sn(x1,...,24) IHZT:U%_ <Zxk> )
1 k

Then we have fon > 2 :

n—1

3k+1 , 3(n—1) ,
(3.81) Su=Su1 =Y w2y mt
k=1 k=1
= f(x,), say.

We differentiate with respect to, and use@g) and, > ~"=,_;. This yields

, 3(n—1) — n
f(x,) = Ta:n — QZxk > Exn_l >0
k=1
and
n
@8 Sz ()
C&3k+1,  2n = 3,
T TaE 1x”‘1;x’“+4( —1)
= Lp-—-1 (xh“'vxn—l)? say.

We use induction on to establish thaf,, ; (z1,...,2, 1) > 0forn > 2. We havel; (1) =
0. Letn > 3; applying [3.79) we obtain

o 3n + 2 m 2
axn_lTnfl ($1,---7l’n71) = 9 Tp—1 — n—1 ;3%
n—2)(n+1)
— 0
= T om-1 7
and
n—1
(383) Tn,1 (.1'1, . 71‘7171) Z Tn,1 <x1, R —2.I'n2> .
n J—
Using the induction hypothes®,_» (z1, ..., z,_2) > 0 and [3.79), we get
n—2
n—1 Tp_2
.84 T, _ Lo, ——— T, > —1 o —2 .
(3.84) nl(xl, T2, 2)_n_2[(n ) Tn—2 ;xk]

From (3.8B) and[(3.84) we concludé_; (z1,...,z,-1) > 0 for n > 2, so that[(3.8]1) and
(3:82) imply

(3.85) Sp>8,1>->82>5=0.

This proves inequality (3.80). We discuss the cases of equality. A simple calculation reveals
thatsS,, (z1,2x1,...,nx;) = 0. We use induction on to prove the implication

(3.86) Sp(x1,...,xn) =0=ap, =kay for k=1,... n.

If n = 1, then [3.8p) is obviously true. Next, we assume that (3.86) holdsmwithl instead
of n. Letn > 2 andS, (z1,...,z,) = 0. Then [3.85) leads t8,,_; (z1,...,2,-1) = 0 which
implieszy, = kx; fork = 1,...,n — 1. Thus, we haves, (z1,2z1,...,(n— 1)z, 2,) =0
which is equivalent t@x,, — nx;) (3z,, — nz;) = 0. Since3x,, > nx;, we getr,, = nx;. O
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Lemma 3.38.Letz, (k= 1,...,n) be real numbers such that
0<z; <2 <<
2 n

If the natural numbers andq satisfyn > ¢ + 1, then

q 2 q 2
Z Z In+1

Proof. We denote the expression on the right-hand sidg of (3.87)(ly;) . Then we differen-
tiate with respect ta;,, and apply|(3.79)x,, > (%) z, andn > ¢ + 1. This yields

1 3

() (L —2quk,
(Bn+1)q
ZT —(g+ 1)z
3n—2q—1
e 2q xg > 0.

Hence, we get

(388)  u(e,)>u (ﬁxq) _ 3n Z Yn 2na:anck + (Z >2.

q
Let
3t+ 1)t d
v(t) = %xq - Qth and ¢t > g+ 1;
k=1
from (3.79) we conclude that
6t + 1 : 2q + 3
v (t) = I Tg—2) x> q+ 2, > 0.
k=1

This implies that the expression on the right-hand sidg of [3.88) is increasiiggran oo ) with
respect tov. Sincen > ¢ + 1, we get from[(3.8B):

g a 2
(3.89) u(z,) > B+ 431<q i 1)1“2 —2(q+ 1)z, Z T+ (Z xk)
k=1 k=1

=P, (x1,...,2,), say.

We use induction og to show thatP, (z1,...,2,) > 0 for ¢ > 1. We haveP, (z,) = ja1. If
P,y (z1,...,24-1) > 0, then we obtain foy > 2 :

q—1
Bg+1)q
(3.90) P, (x1,...,x4) > 2q(x4—1 — x4) kz; Ty — Twi*l
-1
+ Mﬁ =w(x,), say.

4 q
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We differentiate with respect to, and use|(3.79) and, > (ﬁ) zq—1. Then we get

, 3—1
w' (x,) = ¢ 5 xq—22mk

k=1
2
¢’ (g+1)
>\ 7
20—
>0
and
(3.91) w(z,) > w (%xq_l)
-1
q 42 —q—1 <
- qg—1 q—1 QZl‘k
qg—1 [ 4(g—1) —
(39 - 1) qxz
4(g—1) """
>0
From (3.89),|(3.90) and (3.91), we obtainz,,) > 0. O

We are now in a position to prove the following companion of inequalifies (3.76) and (3.77)
(seel[12)).

Theorem 3.39.The inequality

(3.92) (RZ; -Tkyk) < ;yk Z < 6) Y

holds for all natural numbers and for all real numbers;, andy, (k = 1,...,n) with
(3.93) 0<x1§%§---§% and 0 <y, <yp1 <o <y,
if and only if

azz and 6 >1—qa.

Proof. First, we assume thdt (3/92) is valid for all> 1 and for all real numbers, andy;
(k=1,...,n) which satisfy [(3.9B). We set;, = k andy, = 1 (k=1,...,n). Then 3.9R)
leads to

(3.94) 0§(a—2)2n+a+36—% (n>1).

This impliese > 2. And, (3.94) withn = 1 yieldsa + § > 1.
Now, we suppose that > ; andg > 1 — a. Then we obtain fok > 1 :

+5> +1—04>3+1
a o -+ —
k — ko~ 4 4k’

so that is suffices to show that (3/92) holds with- 2 and = 1. Let

n 2
F(y1,... yn) Zyk23k+1xiyk— <Zxkyk>
k=1 k=1
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and
Fq(y):F(y7"‘7y7yq+17"'7yn) (1§q§n_]—>

We shall prove that, is strictly increasing offy,1, o). Sincey,1 < y,, we obtain
(3.95) Fo(yg) = Fy(Ygr1) = Fypr (Ygr1) (1<qg<n—1),
and Lemm& 3.37 imply

F .o yn) = Fi (1) = Fi(y2) = F> (y2) > F (y3)
Z e 2 Fn—l (yn—l) Z Fn—l (y)
2
"3k +1 -
= k=1
If F'(y1,...,y,) = 0, then we conclude from the strict monotonicity Bf and from Lemma

thaty1 =...=y,andxy =kz; (k=1,...,n).
It remains to show thak;, is strictly increasing ofy,;1, ). Lety > y,.1; we differentiate
F, and apply Lemmp 3.37. This yields

n

q
3/€—|—1 3k+1
R =2 |30 2 (z) be 3 L,
k=1

k=q+1
+ Z ykz3k+1fi 2 Zﬁkyszﬂk
k=q+1 k=1 k=q+1

and
1 . 3k+1 a ’
B . (y) = QZTiﬁz - (Zm) > 0.
k=1 k=1
Hence, we have
(3.96)  F,(y) > F, (yg+1)

n q q 2
3k+1 1
= <2qu+1 + Z yk) e xz —& < xk:)

k=q+1 k=1 k=1 |
& (3k+1)¢ ¢ .\
2
3 B s (3
=q 1= 1=

From Lemma 3.37 and Lemma 3}38 we obt&jf(y,+1) > 0, so that|(3.96) implieg;, (y) > 0
fory > y,11. This completes the proof of the theorem. O

Remark 3.40. The proof of the theorem reveals that the sign of equality holds in|(3.92) (with
a=3andg = q)ifandonlyifz, = kzy (k=1,...,n)andy; = --- = y,.

Remark 3.41. If §; is defined by[(3.78), then we have for> 2 :

e ()= 242 G - ()]

which implies that inequality (3.92) (with = % and = }) sharpeng (3.77).
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Remark 3.42. 1t is shown in [10] that if a sequence;, ) satisfiesty = 0 and2zy, < xp_1+ k11
(k > 1), then(t) is increasing. Hence, inequality (3/92) is valid for all sequeriegswhich
are positive and convex.
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4. FUNCTIONAL PROPERTIES

4.1. A Monotonicity Property. The following result was obtained inl[1, Theorem].

Theorem 4.1.Leta = (ai,...,a,), b = (by,...,b,) be sequences of real numbers ghd-
(p1,---,pn)>a = (qu,---.,q,) be sequences of nonnegative real numbers suctpthatg, for
anyk € {1,...,n}. Then one has the inequality

i Pia;b;
i=1

Sincep, —qr > 0, then the(C'BS) —inequality for the weights, = p, —qx (k € {1,...,n})
will produce

(4.2) (ipia?y (fjpib?y -

> 0.

zn: q;a;b;
i=1

n

(4.2) (Z PRz = CIW%) (Z pRbi—) kai>2 [Z (P —aw) akbk] :
K1 i i i

k=1

Using the elementary inequality
(ac — bd)2 > (a2 — b2) (02 — d2) , a,bc,deR

for the choices

.
b1
n 3
d= (Z kai)
b1

we deduce by (4]2), that

n 3 /o 3 n 3 /o 3
(Somt) (Somt) = (Set) (3wt
k=1 k=1 k=1 k=1
Zpkakbk - Z qrarby Zpkakbk Z qrarby
k=1 k=1 k=1 k=1

proving the desired inequality (4.1). O

Jun
Jun

2 2

n n %
, b= <Z qmi) , = (Zpﬂ)i) and
k=1 k=1

2 2 -

The following corollary holds/ 1, Corollary 1].
Corollary 4.2. Leta andb be as in Theorein 4.1. Denote

Su(1)i={% = (z1,...,22)[0< 2, <1, i € {1,...,n}}.
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Then

n 2 n

(4.3) ( a?) (be) -
i=1 i=1

[/ n 3/ n 3

= sup (szaf) (szbf) —
xeSn(1) | \i=1 i=1

Remark 4.3. The following inequality is a natural particular case that may be obtained from

@) [, p. 79]

(4.4) (i af) 2 (i b?) T

[N

n

Z aibi

i=1

n
g x;a;:b;
i=1

i aibl-

1
2 n
[Za trig? (ay ] [Z b? trig? (o ] — Zaibi trig? (a;)| > 0,
=1
wheretrig () = sinz orcosz, z € R anda = (a4, ..., «,) is a sequence of real numbers.

4.2. A Superadditivity Property in Terms of Weights. Let P, (N) be the family of finite
parts of the set of natural numbé¥s .S (K) the linear space of real or complex numbers, i.e.,

S(K) == {X|x = (#;);cn, # €K, i €N}

andS, (R) the family of nonnegative real sequences. Define the mapping

Zpi%ﬂi

il

?

i€l i€l

wherep € S; (R), I € P;(N) andx,y € S (K).
The following superadditivity property in terms of weights holds [2, p. 16].

Theorem 4.4.For anyp.q € S+ (R), I € P, (N) andx,y € S (K) we have

(4.6) Sp+a,l,xy)=5(/P1xy)+5@l,XxYy) =0

Proof. Using the(C'BS) —inequality for real numbers
4.7) (a2 + bz)% (02 + dz)% >ac+bd; a,b,c,d>0,
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we have

S (P, 1,X,y) = (sz | + Z%’ ‘$z|2> <sz vl + Z%‘ |y¢|2>

icl el el iel

sz‘iﬁz@z‘ + Z qiTiY;

i€l el

: ; ; ;

= (sz' |$z‘|2> (sz‘|yi|2> + (Z%|$i|2> (Z%L%F)
iel iel iel iel

Z DiiYi Z qiT:Y;

el el
= 5(5717§7y) +S((_17[7§7y)7

[un

[

and the inequality] (4]6) is proved. O

The following corollary concerning the monotonicity 8f-, /,X,y) also holds[[2, p. 16].

Corollary 4.5. For anyp,q € Sy (R)withp > qand! € P;(N), X,y € S (K) one has the
inequality:

(4.8) S(p.1,x,y) > 5(q,1,x.y) > 0.
Proof. Using Theorem 4]4, we have
Sp.1,xy)=S(P-a+al,xy)=5P-al,XxYy) +5(@qlXxy)
giving
S 1,xy)-5@1,xy)>25P-q1%y) >0
and the inequality| (4]8) is proved. O

Remark 4.6. The following inequalities follow by the above results [2, p. 17].

(1) Leta; e R (i €{1,...,n})andz;,y; € K(i € {1,...,n}). Then one has the inequal-
ity:

n n % n
(4.9) (Z i) !%‘\2) — 1>z
i=1 i=1 i=1

n n n

> (Z |x1]2 sin? oy Z |yl|2 sin? ai> Z z;7; sin? oy
i=1 i=1 i=1
1

n n 2 n

+ (Z |2]” cos? a; Z lyi|” cos? ai> — Z 7,;7; cos”
i=1 i=1 '

=1

1
2

> 0.
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(2) DenoteS,, (1) := {pe Sy (R)|p; <1forallie{l,...,n}}. Then for allx,y €
S (K) one has the bound (see also Corol[ary 4.2):

(4.10) 0< (eriFDyi\Q) > g
=1 =1 =1
1
= _Ssup (Zpi|f€i’2zpi!yi\2> -
=1 i=1

1
2

Zpﬂ?i?i
i—1

4.3. The Superadditivity as an Index Set Mapping. We assume that we are under the hy-
pothesis and notations in Sect[on]4.2. Reconsider the functibhal, -, ) : S, (R) x Py (N) x
S(K)x S (K)— R,

i€l i€l

pPESK(1)

Zpi%gi :

il

The following superadditivity property as an index set mapping holds [2].
Theorem 4.7.ForanyI,J € Py (N)\ {0} with I N J = ), one has the inequality
(4.12) SP,1uJxYy) >S5S/ 1,%xy) +S/P /Xy >0.

Proof. Using the elementary inequality for real numbers

(4.13) (a®>+0%)% (¢ +d*)® > ac+bd; a,b,c,d>0,
we have
3 3
S(E.1UL%T) - (zpi o+ 3 m-ﬁ) (zpi W+ w)
iel jeJ icl jeJ
- Zpixi?jz‘ + ijxjgj
icl jeJ

N
-

: : ;

> (sz |$z|2) (sz |?Jz|2) + (ij |$j|2) (ij |yj|2)
i€l i€l jE€J j€J

Zpi%ﬂi ijxjgj

il jeJ
=5(P,1,xy) +5(p, /. X,y)
and the inequality| (4.12) is proved. O

The following corollary concerning the monotonicity 8{p, -, X, ¥) as an index set mapping
also holds([2, p. 16].

Corollary 4.8. Forany !, J € P; (N)with7 O J # (0, one has
(4.14) S(p,1,%y) >S5 JXy) >0
Proof. Using Theorem 4|7, we may write
S 1,xy) =5/ (\J)UJXxYy) =S[PI\)XYy) +5P /XY

J. Inequal. Pure and Appl. Math4(3) Art. 63, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A SURVEY ON CAUCHY-BUNYAKOVSKY-SCHWARZ TYPE DISCRETEINEQUALITIES 55

giving
S(ﬁ7 -[727?) - 5(57 J7§7y) Z S(ﬁr[\‘]?iay> Z 0
which proves the desired inequalify (4,14). O

Remark 4.9. The following inequalities follow by the above results [2, p. 17].

(1) Letp, > 0 (t€{1,...,2n}) andxz;,y; € K (¢ € {1,...,2n}). Then we have the
inequality

1
2n 2n 2
(4.15) (Zm By |yi|2> -
i=1 i—1 —
1
n n 2
> (szi |I2z“2 szi |y2z“2> —
i=1 i=1
1
n n 2
+ (Zp%l |5521'71|2 meel !y2¢1|2> —
i=1 i=1

> 0.

(2) We have the bound

(4.16) (Zpi i pi w)
=1 =1

iTili

n
E D2i—1T2i—1Y2i—1
i1

[ SIS

- Zpﬂiﬂi
i=1
1
2
Sup <sz‘xz‘ sz ‘yz ) -

i€l i€l

Z pixiyi| | =0

el

(3) Define the sequence

n n 3
(4.17) Sy 1= <Zp7; LN |in2) -
=1 =1

wherep = (p;);cy € S+ (R), X = (2i),en: ¥ = Wi)ien € S (K) . Thens, is monoton-
tic nondecreasingnd we have the followinpwer bound

D=

1
(4.18) Sy > pax. { (pi |il” + pj 171%)® (pi |wil* + p; 1y51%)
— |piziy; +pj37j§j’}
> (.

4.4. Strong Superadditivity in Terms of Weights. With the notations in Sectidn 4.2, define
the mapping

Y

sz zyz

el

(419) S pa[ X y sz|xz‘ sz ‘yz’ -

i€l el

wherep € S; (R), I € P;(N) andx,y € S (K).
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Denote also byi-|[, ;; the weighted Euclidean norm

(4.20) Xl = (Z l; |xi|2> , Le S, (R), HePs(N).
i€H

The following strong superadditivity property in terms of weights halds [2, p. 18].
Theorem 4.10.For anyp,q € S+ (R), I € P;(N) andx,y € S (K) we have

(421) g(ﬁ_‘_(_blaivy)_S(ﬁalvi7y)_‘§(q’[7iay)
— — 2
Xlsr  I¥lss
> | det >0
Xllg: ¥l

Proof. We have

4.22)  S(P+alxy) = (sz i+ ) g |l ) (sz- |yi’2+ZQi|yi|2>

i€l icl i€l iel
2
- Zpi%gi + Z ¢T3y
i€l icl
> sz‘ B sz‘ il + Z%‘ Ek Z%‘ ik
iel i€l i€l iel

sz 'Lyz

el

Z Qi TiY;

2
il )

LXY)+S@ILXy) + > pilel®> alvil’

A

el el
+Z% ’xz|2zpz|yz|2 -2 Zpﬁ?iﬂi Zqzﬂ?iﬂi :
iel icl icl icl

By (CBS) —inequality, we have

Z Di%ili Z qiT;Y;

1

< lzpz‘ ] sz' lyil” Z i i Z i |y¢!2]

icl icl icl icl icl icl
and thus
4.23) Y pilelY ailuil + ) a > pilul
iel iel iel iel
3 3
—2 sz%?]z Z GTiYi| = (Z Di |l‘z|2> <Z i ’yi|2>
icl icl icl icl

1 1
3 3
2 2
- <E Ch’%‘) <E pz‘yz|>
iel iel

Utilising (4.23) and|(4.23) we deduce the desired inequdlity {4.21). O
The following corollary concerning a strong monotonicity result also holds [2, p. 18].
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Corollary 4.11. For anyp,q € S, (R) with p > q one has the inequality:

_ 2
_ _ a,l H.VHG,I
(4.24)  5(p,1%y)-5@Lxy) > | det >0,

sar  |Ylpqr

Remark 4.12. The following refinement of théC' B.S) —inequality is a natural consequence of

@23) (2. p. 19]

(4.25) Z|$z|22|yz|2— Z%?%

iel iel iel
2
> Z 2] sin? o; Z |yi|” sin® a;; — Z 37 sin? a
iel iel iel
2
+ Z || cos 2o Z lyi|* cos 2a; — Z 747; cos 2oy
iel iel i€l
_ : Ly 2
(Z |2;|” sin? ai> (Z |yi|” sin? ai)
iel il
+ | det > 0.
1 1
2 2
(Z |2i]” cos Qai) (Z lyi|” cos? ai>
| \ier il i

wherea; € R, i € 1.

4.5. Strong Superadditivity as an Index Set Mapping. We assume that we are under the hy-
pothesis and notations in Sect[on|4.2. Reconsider the functiofial, -, ) : 5. (R) x Py (N) x
S(K) x S(K) — R,

(4.26) SE.LEY) =Y pilnl>Y pilul’ -

el el

sz zyz

el

The following strong supperadditivity property as an index set mapping halds [2, p. 18].

Theorem 4.13.For anyp € Sy (R), I,J € Py (N)\ {0} withI nJ = f andx,y € S (K),
we have

(4.27) SP,IUJxy) —-SP.1xy) —SP /)XY
_ _ 2
X5 [¥ls.s
> | det > 0.
1Xll5,  1¥ls.s
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Proof. We have

(4.28) S(p,1UJXY)

_ (Zpi i+ b !xj|2> (Zpi|yil2+zpj |yj|2)

iel jeJ iel jeJ

2
Z PiTiYi + Z DiT;Y;

iel jeI

> il pilyil ) pill® Y wylyl?

el el jedJ jedJ

+ > mlal® Y iyl + ) pilwl* )l

iel jeJ iel jed

2
- ( szngz ij%@j >

i€l jel
= 5' (57 [7iay) + 5 (ﬁ) Jaiay) + sz |$Z|2 Zp] ’yj|2

_|_

el JjeJ
> pilul? Yyl =2 | D> v -
icl jed icl jel

By the (C'BS) —inequality, we have

Z Pi%ili Z PjT;Y;

1

2
< [Zpi il Yo lwil* Yyl Y ps !%’\2]

el JjeI el el jeJ jeJ
and thus
4.29) > “pilwil Y pi il D pilwil?D> s |yl
el jeJ el jeJ

-2 Zpﬂfjﬂj

jel

Zpﬂzﬂi

il

1 1
2 2
2 2
> (Zpi || ) (ij A )
i€l j€J
1 172
2 2
2 2
- (sz‘yz| > (ij |75 >
icl j€d

If we use now/[(4.28) andl (4.29), we may deduce the desired ineqyality (4.27). O
The following corollary concerning strong monotonicity also holds [2, p. 18].

Corollary 4.14. Forany!, J € P; (N)\ {0} with I D J one has the inequality

— — 2
||X||§,J ||Y||§,J

(4.30) S (. 1,x,y) — S (P, J,X,y) > | det > 0.

Xl ¥l

Remark 4.15. The following refinement of théC'B.S) —inequality is a natural consequence of

@27) [2. p. 19
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Supposep; > 0,47 € {1,...,2n} andz;,y; € K, i € {1,...,2n}. Then we have the

inequality

(4.31) sz s sz il
n
> ZP% ‘x2i’2 Zp% \ym!Q —
i=1 i=1 i=1
n n n
+ mefl |$2i71’2 meel ’y2i71|2 —
i=1 i=1 i=1

‘ : :
n n
(2]921 |$2i\2> (E 1: D2i !y2i|2>
1= 1=

i 2iY2i

+ | det

1 1
n 2 n 2
(Z D2i—1 |£E2¢—1|2) (Z P2i—1 |y2i—1|2>
L \i=1 i=1 i

4.6. Another Superadditivity Property. Let P, (N) be the family of finite parts of the set of
natural numbersS (R) the linear space of real sequences andR) the family of nonnegative

real sequences.
Consider the mapping : S; (R) x Py (N) x S(R) x S (R) — R

2
(4.32) C pJ a, b sz szbZ (Zpiaibi> .

iel el icl

The following identity holds[[3, p. 115].
Lemma 4.16.For anyp,q € S. (R) one has

4.33) C(p+a.l.ab)=C(p.I,ab)+C(qlab)+ > pglab -

(4,9)eIXI
Proof. Using the well-known Lagrange’s identity, we have
S 1
(4.34) C (P> I, 3, b) = b Z pipj (aibj — ajbi)z-
(3,5)eIXI
Thus
C(p+a.l,ab)
1
=3 > i+ a) (p +q) (aib; — azby)’
(4,7)eIXI
1 2 1 2
=5 pipj (aibj — a;b;)” + 5 Z ¢iq; (aibj — a;b;)
(i,j)EIxI (i,9)EIXI
1 1
+ 5 Z pl-qj (Gibj — ajbi)2 + 5 Z qui (Gibj — ajbi)2
(i,§)EIXI (i,j)eIxI
=C(p.1.ab)+C(qLab)+ >  pqg;laib; — ab)’
(4,5)eIXI

ajbi)2 .
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since, by symmetry,

Y pigilaby—ab)’ = > pjgs (aiby — abi)’

(4,)eIxI (¢,5)eIxI

Consider the following mapping:

2

el icl el

N

The following result has been obtainedlin [4, p. 88] as a particular case of a more general result
holding in inner product spaces.

Theorem 4.17.For anyp,q € S, (R), I € P; (N) anda,b € S (R), we have the superaddi-
tive property
(4.35) D(p+4q,l.a,b)>D(p,[,ab)+D(q,1,ab)>0.
Proof. We will give here an elementary proof following the onelin [3, p. 116 — p. 117].
By Lemmd 4.1p, we obviously have
(436) D2 (ﬁ+(_1717§75> = DQ (ﬁa 17575) + D2 (67Iaaag) + Z Pig; (aibj - ajbi)2 .
(i,5)eIxT
We claim that
(437) Z Diq; (aibj - ajbi)Q Z 2D (ﬁ, ],5., B) D (a, ],E_l, B) .
(4,5)eIxI

Taking the square in both sides pf (4.37), we must prove that

2
(4.38) > piald b+ > qald pibi =2 piaib; Y Qiaibi]

el iel el iel iel el

2
>4 1) pia Y pib} — (Zm%@)

el i€l el

2
X Z%’a? Z%b? - (Z Qiaibi>

el icl iel

Let us denote

(SIS

1 1
a:= (me?) , X= (Z qm?) 2 , b= (Zpﬂ)?) 2 ,
icl il il
1
Y= <Z q@'b?> y Ci= Zpiaibia g = Z%’aibi-

el iel iel
With these notations (4.88) may be written in the following form
(4.39) (a2y2 +b%2? — 202)2 >4 (aQb2 — 02) (:1:2y2 — 22) .

Using the elementary inequality

(m? = n?) (0 — %) < (mp —nq)*, m,n,p,q €R

J. Inequal. Pure and Appl. Math4(3) Art. 63, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A SURVEY ON CAUCHY-BUNYAKOVSKY-SCHWARZ TYPE DISCRETEINEQUALITIES 61

we may state that

(4.40) 4 (abxy — 02)2 >4 (a262 — 02) (:L’Qy2 — 22) > 0.

Since, by thg C'BS) —inequality, we observe thabzy > |cz| > |cz|, we can state that
a’y? + b*x* — 2cz > 2 (abzy — cz) > 0

giving

(4.41) (a®y? + b%2® — 202)2 > 4 (abxy — cz)?.

Utilizing (4.40) and|[(4.4]1) we deduce the inequaljty (4.39), &nd {4.37) is proved.
Finally, by (4.36) and (4.37) we have

D*(p+q,1,a,b) > [D(p,1,ab) + D (q,1,ab)]",

i.e., the superadditivity property (4]35). O
Remark 4.18. The following refinement of théC'BS) — inequality holdsl[[4, p. 89]

(4.42) > a?> b - (Z aibz)

i€l i€l i€l

1
212
2 2 2 i 2 .92
E a; sin aig b; sin ai—(g a;b; sin ai>

iel el iel

1=

2| 2
+ Z a? cos 2oy Z b? cos® a; — (Z a;b; cos? ozi> >0

icl iel el
foranyo; €e R, i€ {1,...,n}.

4.7. The Case of Index Set Mapping.Assume that we are under the hypothesis and notations
in Sectior] 4.6. Reconsider the functiodat S, (R) x Py (N) x S (R) x S (R) — R given by

2
(4.43) C’ p,[ ab Zpl Zple (meﬂ%) )

iel el iel

The following identity holds.

Lemma 4.19.ForanyI,J € P, (N)\ {0} with I N J # 0 one has the identity:

(444) C (ﬁ, Ty J, 5, B) =C (ﬁ, I,E, B) + C (ﬁ, J, 5, B) + Z DiPj (aibj — Cljbi)z .

(i,5)€IxJ

Proof. Using Lagrange’s identity [5, p. 84], we may state

(445) C (ﬁ, K, 5, E) = % Z piDj (aibj - ajbi)Q s K e Pf (N) \ {@} .

(i,5)eKxK
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Thus
C(p,IUJ,ab)
1
=3 pip; (aib; — a;b;)”
(i,§)€(1UT) X (IUJ)
1 1
=3 pip; (aib; — ab;)* + 5 > pipy(aib; — asb;)?
(i,f)eIxT (i,§)EIx T
1 1
T3 Z pip; (aib; — azby)* + 3 Z pip; (aib; — a;b;)?
(4,5)€I I (i,5)eIxJ
= C (57 [757 B) + C (57 J7 57 B) + Z png (&ibj - ajbi)2

(i)elxJ

since, by symmetry,

Z pip;j (aibj — ajbi)2 = Z pipj (aibj — ajbi)2 :

(ij)eIxJ (i,j)eTxI

Now, if we consider the mapping

1
2] 2

el icl el
then the following superadditivity property as an index set mapping holds:
Theorem 4.20.Forany I, J € Py (N)\ {0} with I N .J # () one has
(4.46) D(p,IuJab)>D(p,I,ab)+D(pJab)>0.
Proof. By Lemmd 4.1P, we have
(4.47) D*(p,IUJ,ab)=D*(p,I,ab)+D*(p,J.ab)+ Y  pp;(ab; —a;b;)’

(4,7)EIxJ
To prove [(4.4p) it is sufficient to show that
(4.48) > pipj(ab; — a;b;)* > 2D (p,1,8,b) D (p, J,a,b) .

(4,9)eIxJ

Taking the square in (4.48), we must demonstrate that

2
szﬂ? ijb? + Zpﬂﬁ Zpib? -2 Zpiaibi ijajbj]

iel jedJ jeJ i€l el jeJ

2
>4 Zpia?Zpibf — <Zpiaibi)

el el el
2
x| piad> pb? - <ijajbj>

Jj€J Jj€J JjeJ
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If we denote

iel
%
Y= (Zpﬂ)?) y €= sz'ai% Z = ijajbja

jed iel jedJ

=

, X = (Zpﬂ?)Q, b:= (Zpﬂ)?)Q,

jeJ iel

then we need to prove
(4.49) (a2y2 + b? — 202)2 >4 (a2b2 — 02) (:E2y2 — z2) ,

which has been shown in Sectionl4.6.
This completes the proof. O

Remark 4.21. The following refinement of théC'BS) —inequality holds

1
2n 2n 2n 2] 2
S St — (zpiaibi)
=1 =1 =1
1
2

n n n 2
> me%inmbéi - (Z p2ia2ib2i>
i=1 i=1 i=1
1
n n n 2 2
+ szi_lagi,l szi_lbi-,l - (Zp2i—1azz‘—1b2z‘—1) > 0.
i=1 i=1 i=1

4.8. Supermultiplicity in Terms of Weights. Denote byS, (R) the set of nonnegative se-
quences. Assume thdt: S, (R) — R is additiveon S, (R), i.e.,

(4.50) AP+q) =AP)+4(q), Pac 5 (R)
andL : S, (R) — Ris superadditiveon S (R) , i.e.,
(4.51) LP+q) >L(P)+L(@, p,ges(R).
Define the following associated functionals

— L (p) — —\1A®D)
4.52 F = and H = [F Py
(4.52) (P) = ®) (p) == [F(P)]

The following result hold< |3, Theorem 2.1].

Lemma 4.22. With the above assumptions, we have

(4.53) H{P+q) > H((P) H@):;
foranyp,q € S, (R),i.e., H (-) is supermultiplicativeon S, (R).

Proof. We shall follow the proof in([3].
Using the well-known arithmetic mean-geometric mean inequality for real numbers

ax + ﬂy Z IOAQTﬁyorFB
a+p3

B

(4.54)
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foranyz,y > 0 anda, 8 > 0 with a + 5 > 0, we have successively

(4.55) F(p+a) = Aigigi
L(Pp+q
A(p)+A@Q)

. L)+ L@

~ AP +A@Q)

CAD) Ap+HA@ 5

- AP +A@

_APFP)+A@QF (9

A(P)+A(Q) )

> [F (p)) 7 5@ - [F (q))7® @
for all p,q € Sy (R). However, A (p) + A(q@) = A(p+a), and thus[(4.55) implies the
desired inequality] (4.53). O

We are now able to point out the following inequality related to(i&S) — inequality.
The first result is incorporated in the following theorem [3, p. 115].

Theorem 4.23.For anyp,q <€ S, (R), anda,b € S (R), one has the inequality

Pr+Qr

@%){Hi@

icl el i€l

1
S
{PI

whereP; =3, ;p; > 0,Qr:=>,.; ¢ > 0.

Proof. Consider the functionals

Z (pi + @) ai Z (pi +q:) b} — (Z (i + @) ai@) ] }
sz‘afzpib? - (Zpi&ibz') ] }

iel il iel

% {QL {Z G023 gib? — (Z qb> ] }Ql >0,

icl iel icl

A(p) = sz' = Pr;
il
2
C(p) = ZPM?ZP&? — (ZPMJ%) )
il il iel

ThenA (-) is additive and”' (-) is superadditive (see for example Lemma #.165qr(R) .
Applying Lemmd 4.2P we deduce the desired inequd]ity (4.56). O

The following refinement of theC' B.S) —inequality holds.
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Corollary 4.24. For anya, b, @ € S (R), one has the inequality

n n n 2
(4.57) > a?» b7 - (Z aibi>
=1 =1 =1

1
= 1 n ) Ly sin?a; o1 n L5 cos2qy
(E i St O‘i) " (E D iy COS 2%') ne
" " " 9 % S sin?
X Z a? sin? oy Z b? sin? a; — <Z a;b; sin? ocz-)
=1 =1 =1

1 n 2.
=D i1 COST

n n n 2(n
X E a? cos? E b? cos? o — E a;b; cos? o > 0.
i=1 i=1 i=1

The following result holds [3, p. 116].

Theorem 4.25.For anyp,q € S, (R), anda,b € S (R), one has the inequality

1 1
2 2

1 1
4.58 i+ @) af i+ ) b}
(4.58) PIJFQI;(p ) PIJF@IZ-GZI@ )
1 Pr+Qr
- i +qi) ab;
P Q ; (pi + @) }
1 1 Pr
> izpaz 2 izp-zﬁ o izp.a.b
jtl P] : 1 Wy P[ 4 1Yy P[ 4 1 Ug
il 1€l el
1 1 Qr
Qrig Qrig Qr 45
Proof. Follows by Lemmé 4.22 on taking into account that the functional
3 3
B(p) := (Z Pz‘ag> (231%@2) - sz'aibi
i€l i€l i€l
is superadditive o1, (R) (see Sectioh 4]2). O

The following refinement of théC'BS) —inequality holds.
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Corollary 4.26. For anya, b,a € S (R), one has the inequality

(4.59) (Z a§>2 (Z bg) 0y

1 1

Ly sina; 1 \n 2

i n Lei=1 ST A =3, cos?

(% S sin® ai) W is1 i (1 S cos? ai) w 2= i

n

>

15 in2 oy
" n,Zi:l sin” oy

— E aibi Siﬂ2 (67

i=1
1 Lsn  cos?
X (Za cos oz,) (Z 62 cos ozz) — Zaibi cos? a; > 0.
i=1 i=1
Finally, we may also state|[3, p. 117].
Theorem 4.27.For anyp,q € S, (R), anda,b € S (R), one has the inequality
(4.60) ! > (pi+a)a; ! > i+ a) b
PI+QIZ‘€I o PI+QIiEI o
Pr+Qy
1 2 2
- i + Gi) aib;
<PI+Q1i€Z](p a)a )
P
2] 2
2
Z |5 sz szb ( > piab )
el el el
Qr
2

QIZQZ Zqsz ( > g 1)2

el el el

Proof. Follows by Lemmé 4.22 on taking into account that the functional

1
Zpia?zpib? - <Zpiaibi>
=1 =1 =1
is superadditive o1%.. (R) (see Sectioh 4]6).

The following corollary also holds.
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Corollary 4.28. For anya, b, @ € S (R), one has the inequality

n n n 2 2
(4.61) Z a? Z b7 — (Z a'ibi)
=1 =1 i=1
1 1

1 n 2 ' 1 n 2
1 n 2 sz',:lsm o (l n 9 ')Ezizlcos a;
(n > ey Sin O‘l) o Di1 COS%

n n n
2 2 2 2 .2
X g a; sin” oy g b; sin” a;; — E a;b; sin” oy

>

1 n a2
9 %Zizlsln a;

1 n 2 ..
9 %Zizlcos a;

n n n
2 .2 2 .2 2
X E a; cos” ay E b; cos” a;; — E a;b; cos” oy > 0.
i=1 i=1 i=1

4.9. Supermultiplicity as an Index Set Mapping. Denote byP, (N) the set of all finite parts
of the natural number s@t and assume thdt : P, (N) — R is set-additiveon P, (N) , i.e.,

(4.62) B(IuJ)y=B({)+B(J) forany I,J € P;(N), InJ#0,

andG : P; (N) — R is set-superadditiven P, (N) , i.e.,

(4.63) GUIUJ)>GI)+G(J) forany I,J € P;(N), InJ#0.
We may define the following associated functionals

(4.64) M(I):= % and N (1) := [M (I)]*7 .

With these notations we may prove the following lemma that is interesting in itself as well.

Lemma 4.29. Under the above assumptions one has
(4.65) N((IuJ)>N()N(J)

foranyl,J € Py (N)\ {0} withI nJ # (), i.e., N (-) is set-supermultiplicative oR; (N).

Proof. Using the arithmetic mean — geometric mean inequality

B

ar + ﬂy > IOAQTﬁyorFB

(4.66) 55 2
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foranyz,y > 0 anda, 8 > 0 with a + 5 > 0, we have successively fdr J € Py (N)\ {0}
with I N J # () that

(4.67) M(IUJ) = gg&g
 G{uJ)
~ B(I)+B(J)
LG +G()
= B +B(J)
B(I)§3 + B () 55
- B +B®)
_BU)MI)+B(J)M(J)
B B(I)+B(J)

> (M (1)) T - (M (J)) T
SinceB (I) + B (J) = B(I U J), we deduce by (4.67) the desired inequality (4.65). O

Now, we are able to point out some set-superadditivity properties for some functionals asso-
ciates to théC' B.S) —inequality.
The first result is embodied in the following theorem.

Theorem 4.30.1fa,b € S(R),p € Sy (R)andI,J € P; (N)\ {0} so thatl N J # (), then
one has the inequality

(4.68) {

keluJ keluJ keluJ

5

!Z prai ) pub — <Z pkakbk>2] }P
> pial> pibl - (Zpiaibi>2] }PI

el el el

¢

S 0y S (zpjajbj>2] }

jeJ jedJ jeJ

whenP; := 3", p;.

Proof. Consider the functionals

=D _pi
2
= pia} Y pib} - (Zpiaibi) :

el el el

The functionalB (-) is obviouslyset-additiveand (see Sectidn 4.7) the functioral-) is set-
superadditive Applying Lemmg 4.29 we then deduce the desired inequdlity|(4.68). O

The following corollary is a natural application.
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Corollary 4.31. Ifa,b € S (R) andp € S, (R), then for anyn > 1 one has the inequality

2n 2 Fon
(4.69) sz ZszQ (Z piaibi>
i=1 i=1
>is1 p2i

n 2
Z D2i agl Z D2i biz (Z p2z’a2ib2i>
i=1

=1

x{ [szz 105 12]% 1054
Z 1p2z 1

=1

=1 p?z

Z?:1 pP2i—1

n 2
- (Z p2¢1(12i152¢1>
i=1

The following result also holds.

Theorem 4.32.1fa,b € S(R),p € Sy (R)and I, J € P; (N)\ {0} so thatl N J # (), then
one has the inequality

Prug
P]U keluJ P]UJ keluJ PIUJ keluJ
Pr
2
> (Plzpz ) ( zpzb) LS
icl el i€l
1 Py
2
Amm) (55w ) LS s
JGJ jGJ jEJ
Proof. Follows by Lemmé 4.29 on taking into account that the functional
1 1
2 2
- (zpiaf) (zpibf) |5 s
el iel el
is set-superadditiven P, (N) . O

The following corollary is a natural application.
Corollary 4.33. If a,b € S (R) andp € S, (R), then for anyn > 1 one has the inequality

P2n

N|=

P2n Z pzaz 7

=1

2n

1
471 | =S pa?
@) (P%;p )

1 2n
2
(P_m ;pibi)
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1 1 SN pos
2 2 1 n i=1P2i
D2il5; paiby; | — =  Poiaaiba
( 1p22 ; > ( —1 D2i ; > ‘Zizl D2i ;
L 1
X P2i— 1a; i P2i— 103 i
( Z1172z 1Z 2 1) ( Z1P2z 1Z 2 1)
g p2ic1

E D2i—1G2i—1b2;_1
Zz 1p27, 1

Finally, we may also state:

Theorem 4.34.1fa,b € S(R),p € S (R) and I, J € P; (N)\ {0} so that/ N J # 0, then
one has the inequality

5 Plqu
@72 LS ( > pkakbk)
keIuJ keIuJ kGIUJ
Pr
2] 2
2
> | LY Lt (Plzpzaz )
el el el
Py
2 2
5 ot St (5 oo |
jGJ ]GJ ]GJ
Proof. Follows by Lemm& 4.29 on taking into account that the functional
27 2
S St (zpia,-bi)
el el el
is set-superadditiven P, (N) (see Sectiop 4]7). O

The following corollary holds as well.
Corollary 4.35. If a,b € S (R) andp € S, (R), then for anyn > 1 one has the inequality

Pop,

1 2n 1 2n 1 2n 2 2
4.73 — az - —— b7 — | — i@;b;
09 | St 3w~ (5 S

2
2
p2ia 7 pZzb i - p21a21b27,
< leQZ; 2)( lem; 2) ( 11p21; >
X Pai— 16l i n Pai— 1b i
[( 1 1p21 lz & 1) < 2 1 P2i— lz & 1)
2
- ( D me 102i—1bi— 1>
z 1 /M2i—1

% 217';1 Pp2i

1 n
2 Zi:1 pP2i—1
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5. REVERSE INEQUALITIES

5.1. The Cassels’ Inequality. The following result was proved by J.W.S. Cassels in 1951 (see
Appendix 1 of [2] or Appendix of[3]):

Theorem 5.1.Leta = (ay,...,a,), b = (by,...,b,) be sequences of positive real numbers
andw = (wy, ..., w,) a sequence of nonnegative real numbers. Suppose that
(5.1) m=mind 2% and M =max{ 24

=t  bi i=tn | b;

Then one has the inequality
Z?:l wia? Z?:l wib? < (m + M)2
(Cr wiaiby)? T AmM
The equality holds i2) when, = - w, = 2w, = -+ = w,_; = 0, m = ¢ and

1 anbn b1
M=a
bn *

(5.2)

Proof. 1. The original proof by Cassels (1951) is of interest. We shall follow the paper [5] in
sketching this proof.
We begin with the assertion that

(1+ kw) (1 + k'w) - 1+k)(1+Ek1
(14 w)? - 4
which, being an equivalent form df ($.2) fer= 2, shows that it holds fon = 2.
To prove that the maximum of (3.2) is obtained when we have more thanvfisdeing

nonzero, Cassels then notes that if for examplews, ws # 0 lead to an extremum/ of %,
then we would have the linear equations

a2 X +b2Y —2Ma,b,Z =0, k=1,2,3.

Nontrivial solutions exist if and only if the three vectdrs, b2, a,,b,] are linearly dependent.
But this will be so only if, for somé # j (i,j = 1,2,3) a; = 7va;, b; = vb;. And if that were
true, we could, for example, drop thg b; terms and so deal with the same problem with one
less variable. If only one; # 0, thenM = 1, the lower bound. So we need only examine all
pairsw; # 0, w; # 0. The result[(5.2) then quickly follows.

2. We will now use théoarycentric methoaf Frucht [1] and Watsori [4]. We will follow the
paper [5].

We substitutey; = % in the left hand side 02), which may then be expressed as the ratio

G
N
D?

n 2 n
a; a;
N = — ] u; and D = — |,
2 (i) et =32 (5)
assuming without loss of generality, that’ , a; = 1. But the point with co-ordinategD, N)

must lie within the convex closure of thepoints (‘“ C") . The value of% at points on the

b B

(5.3) L k>0 w>0

where

parabola is one unit. lfn = mg{‘;—} and M = max {‘;—} , then the minimum must lie on
i=I,n L% i=In L7

the chord joining the pointm, m?) and (M, M?) . Some easy calculus then leads/to](5.2)J

The following “unweighted” Cassels’ inequality holds.
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Corollary 5.2. If a andb satisfy the assumptions in Theo 5.1, one has the inequality
Z?l a; zleQ (m+M)2

(S aby)® — AmM
The following two additive versions of Cassels inequality hold.

(5.4)

Corollary 5.3. With the assumptions of Theorem|5.1, one has

1=1 i=1 i=1

(V- v
< Wy 2 w;a;b;.

and

n n n 2
- - N 2
S 4mM (Z w;a; l) :

Proof. Taking the square root ifi (3.2) we get

1 < (> oiey wiag Yo, wib}) < M+m
B > g wiaib; ~ovmM
Subtracting 1 on both sides, a simple calculation will leadl ig (5.5).
The second inequality follows bl (5.2) on subtracting 1 and appropriate computatioll

=

The following additive version of unweighted Cassels inequality also holds.
Corollary 5.4. With the assumption of Theor5.1 foandb one has the inequalities
1 2
n n 2 n v M — ﬁ) n
& (L) -Rens S

=1 =1

and
(5.8) 0<Z sz (Z ) g%(zab)

5.2. The Pdélya-Szego Inequality. The following inequality was proved in 1925 by Pdlya and
Szeg0l[6, pp. 57, 213 — 214]/[7, pp. 71- 72, 253 — 255].

Theorem 5.5.Leta = (ai,...,a,) andb = (by,...,b,) be two sequences of positive real
numbers. If
(5.9) 0<a<ag<A<oo, 0<b<b <B<x foreachie {1,...,n},
then one has the inequality
" b2 AB)?
(510) Zz 1 Z 1= 12 7 S (ab+ )
<Zz;1 aibi) 1abAB
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The equality holds irf (5.10) if and only if

A A B B A B
p=n-— —4+—] and g=n-— —+ —
a a b b a b

are integers and ip of the numbers, ..., a,, are equal tau andq of these numbers are equal
to A, and if the corresponding numbeisare equal toB andb respectively.

Proof. Following [5], we shall present here the original proof of Pélya and Szeg®.

We may, without loss of generality, suppose that> --- > a,, then to maximise the left-
hand side of{(5.10) we must have that the critiga be reversely ordered (for #, > b,, with
k < m, then we can interchandg andb,, such that? + b2, = b2, + b7 andayby, + @by, >
arb,, + ambk), i.e., thatbl <...<b,.

Pdlya and Szegd then continue by defining nonnegative numbparslv; fori = 1,...,n—1
andn > 2 such that

(5.11) a? = wa? + v;a and b? = ub? 4 v;b?.
Sincea;b; > u;a1by + v;a,b, the left hand side of (5.10),
S a b _ (Udd +Va3) (UB +Vb2)

Zl’L 'le

> 1 az‘bi)2 B (Uayby + Vanbn>

whereU = 3" ju;and V =3"" v,
This reduces the problem to that with = 2, which is solvable by elementary methods,
leading to

Y

Z:L 1@ 2= 1b22 (a1b1+anbn)2

5.12 )
(-12) oo albz)2 = Adaranybiby,
where, since the;’s andb;’s here are reversely ordered,
(5.13) a; =max{a;}, a,=min{a;}, by = min{b;}, b, =max{b;}.
i=1n i=1n i=1n i=1n

If we now assume, as if (5.9), that
0<a<a; <A 0<b<b <B, i:(l,...,n),

then
(arby + anby)? _ (ab+ AB)?
4a1anblb - 4abAB
(becausé’“i < “*1) for k < a), and the inequality (5.10) is proved. O

Remark 5.6. The mequallty-O) may also be obtained from the “unweighted” Cassels’ in-
equality
ZZL 1 z i= 1b12 < (m+M)2
(i aby)” — AmM
where0 < m < ¢ < M foreachi € {1,...,n}.

(5.14)

The following additive versions of the Pélya-Szegd inequality also hold.

Corollary 5.7. With the assumptions in Theorém|5.5, one has the inequality

W \P n \/@_\/@2 "
2 21 . ( b
(5.15) 0< (;ai ;bz> ;azbz < N Zazbl

=1
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and
(5.16) 0<Z Zb2 <Z ) S%(Zaibi>-

5.3. The Greub-Rheinboldt Inequality. The following weighted version of the Pélya-Szegd
inequality was obtained by Greub and Rheinboldt in 1959, [6].

Theorem 5.8.Leta = (ai,...,a,) andb = (by,...,b,) be two sequences of positive real
numbers andv = (wy, ..., w,) a sequence of nonnegative real numbers. Suppose that
(5.17) 0<a<ag<A<oo, 0<b<bh<B<o (i=1,...,n).

Then one has the inequality
Sy wiaf Y, wibf _ (ab+ AB)”
(Cr wiaib;)? T~ 4abAB

Equality holds in ) whew,; = ﬁ, w, = ﬁ, wy = =w, 1 =0,m=79 M=%
witha; = A, a, = a, by = bandb, = b.

(5.18)

Remark 5.9. This inequality follows by Cassels’ result which states that
Doy wiag Do wib} < (m + M)2

(i, wiaib)®  — AmM
providedd < m < 3 < M < ocoforeachi € {1,...,n}.

(5.19)

The following additive versions of Greub-Rheinboldt also hold.

Corollary 5.10. With the assumptions in Theorém|5.8, one has the inequalities

1=1 i=1 =1

(VAB ~ vVab)~
<
WabdB

w;a;b;

and

n n n 2
=1 =1 i=1
2
(AB — ab)?
= T 1abAB (Z w303 ) |

5.4. A Cassels’ Type Inequality for Complex Numbers. The following reverse inequality for
the (C'BS) —inequality holds[[9].

Theorem 5.11.Leta, A € K (K = C,R) such thatRe (aA) > 0.
IfX=(x1,...,2,),5 = (1, .., ys) are sequences of complex numbersane (w, ..., w,)
is a sequence of nonnegative real numbers with the property that

(5.22) S Re [(Ay, — ) (7 — 1)) > 0,
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then one has the inequality

n n l 1 n . AT ax;y;
(523) sz |Iz|22w, |yl|2] S 5 ZZ:I Ww; Re[ xzyzl"' axr y]
i=1 i=1 [Re (@A)]?
S 1 M Zwlxlyz A
2 [Re(ad)]

The constang is sharp in the sense that it cannot be replaced by a smaller one.

Proof. We have, obviously, that

= sz’ Re [(Ay; — x;) (z; — ayy)]

i=1
= Zwi Re [AZy; + az;yi] — Zwi ;" — Re (aA) sz‘ il
i=1 i=1 i=1

and then, by{(5.22), one has

i=1 i=1 i=1
giving
1
(5.24) —— sz |7;]” + [Re (aA)] sz yi|” <
[Re (aA)] [Re (GA)]

On the other hand, by the elementary mequallty

oo w;Re [A:clyl + a:czyz]

1
ap® + an > 2pq

holding for anyp, ¢ > 0 anda > 0, we deduce

(5.25) 2 <i w; |xi\2iwi |yi|2> 2 < —Zw, |x,| + [Re (aA)] sz |yZ
i—1 i=1

[Re (aA)]?

Utilising (5.24) and|(5.25), we deduce the first part@}i.ZS).
The second part is obvious by the fact thatfar C, |[Re (2)| < |z|.

Now, assume that the first inequality jn (5.23) holds with a constand, i.e.,

(5.26) Z w |$Z|2 Z w; |yz|2 <ec. > i Wi Re [Afiyil—k ax;y;] |
i=1 i=1 [Re (aA)]2

wherea, A, X, ¥ satisfy [5.2R).
If we choosen = A = 1, y = x # 0, then obviously[(5.23) holds and frofn (5]26) we may

get
Zwi ]xz|2 < 262107; \xz|2 ,
=1 =1
givingc > 1.
The theorem is completely proved. O

The following corollary is a natural consequence of the above theorem.
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Corollary 5.12. Letm, M > 0 andx, y, W be as in Theorein 5.111 and with the property that

(5.27) > wiRe[(My; — ;) (T, — m;)] > 0,

=1

then one has the inequality

n n 2
i=1 i=1

Jun

M+m

' vmM

M+m

. vmM

AN
N | —

z": w; Re (2:4;)
=1

n
E Wix;Ys | -
i=1

(VAN
N | —

The following corollary also holds.

Corollary 5.13. With the assumptions in Corollafy 5]12, then one has the following inequality:

D=

(5.29) 0< sz‘ |317z|2 sz‘ |yz|2 - Zwixigi
L i=1 i=1 i i=1
[ n n T % n
< D wilwl? Y wilyl?| =) wiRe (w:g)
L i=1 i=1 i i=1
2
(VAT = vim) &
< w; Re (79
NI Zl (:9:)
2
() |
< W TiYi
N 2vVmM — Y
and
n n n 2
(5.30) 0< Zwi |$z’2 Zwi |yz’2 - szngz
i=1 i=1 i=1

n n n 2
< wi |z wi |yl - [Z w; Re (fmyi)]
=1 =1 =1

< M [Z w; Re (ngz)]

dmM
2
BRI .
R
=1

5.5. A Reverse Inequality for Real Numbers. The following result holds[[10, Proposition
5.1].

Theorem 5.14.Leta, A € Randx = (z1,...,2,), ¥ = (¥1,---,Yy,) be two sequences with
the property that:

(5.31) ay; < x; < Ay; foreachie {1,...,n}.
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Then for anyw = (w, ..., w,) a sequence of positive real numbers, one has the inequality
n n n 2

(5.32) 0< Y waly wy - (Z wxy>
=1 =1 =1

2
1 o[~
< 1 (A—a) <;w1yz> :
The constant is sharp in|(5.3P).

Proof. Let us define

I = (Azn:wiyf — Zn: wzxzyz> (Zn: WiT;Y; — a Zn: w,yf)
i=1 i=1 i=1 =1

and
Iy = (Zn: wiyz‘2> 2": (Ayi — @) (i — ayi) wi.
Then § - : - § ) i )
Ii=(a+A) Y wy! ) wiviyi - <Z wixiyz) —ad (Z wi@/?)
AR S5 S SED SRR 3t
giving - - - - -

n n n 2
(5.33) L — 1= szxf szyf - <Z wi?J?) :
i=1 i=1 =1

If (6.31)) holds, ther{Ay; — ;) (z; — ay;) > 0 for eachi € {1,...,n} and thusl, > 0 giving
n n n 2
(5.34) Z w;x? Z wiy? — (Z wlyf)
i=1 =1 =1
(A Z wiyiQ - Z wi%‘yi) (Z WYy — @ Z wil/?) ] .
=1 =1 =1 =1

If we use the elementary inequality for real numbers € R

<

1
(5.35) uv < 1 (u+v)*,

then we have for

n n n n
— A 22 . i oy Y
U = wyY; — W;TiyYi, U= WYy — a w;Y;
i=1 i=1 i=1 i=1

that

n n n n n 2
(A TS wy) (z w03 wiys) <o (z wiyf)
=1 =1 =1 i=1 =1

and the inequality] (5.32) is proved.
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Now, assume thalt (5.82) holds with a constant 0, i.e.,

(5.36) Z w;? Z wiy? — (Z wﬂ:ﬁ%) <c(A-a) (Z wi?/?) )
=1 =1 =1 =1
wherea, A, X, ¥ satisfy [5.31).
We choose: = 2, w, = we = 1 and leta, A, y1, 12, x, « € R such that

ay; < 1 = Ay,
ays = xo < Ays.

With these choices, we get froim (5]36) that

2 2

(@®y? +a®3) (ui +3) — (A%F +a’3)” < c(A—a)” (ui +43),
which is equivalent to
2
(A—a)yiys <c(A—a)’ (yi +13)"

Since we may choose# A, we deduce

2

yiys <c(yi +43)°,

giving, fory; =y, =1, ¢ >

PN

The following corollary is obvious.

Corollary 5.15. With the above assumptions forA, x andy, we have the inequality

2 2
n n n 1 n
5.37 0<) a2 2 iy | < -(A—a)? 2
I 0s3ayie (San) < ja-o(N0)
Remark 5.16. Condition [5.31) may be replaced by the weaker condition
(5.38) Z w; (Ay; — ;) (x; —ay;) >0
1=1

and the conclusion in Theorédm 5| 14 will still be valid, i.e., the inequdlity {5.32) holds.
For (5.37) to be true it suffices that

n

(5.39) Z (Ay; — x;) (x; —ay;) >0

=1

holds true.

5.6. A Reverse Inequality for Complex Numbers. The following result holds [10, Proposi-
tion 5.1].

Theorem5.17.Leta, A € Candx = (z1,...,2,), ¥ = (Y1,---,Yn) € C", W = (wy,...,w,) €
R™. If

(5.40) S Re [(Ay, — ) (7 — )] > 0,
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then one has the inequality

(5.41) 0< Zwi |l’z‘2 Zwi |yi‘2 — Zwil’iﬂi
i—1 i—1 i—1
1 - ’
2 2
§1|A—a| (Z;UH?M )

The constant is sharp in (5.4[1).
Proof. Consider

2

A :=Re (A Z w; yi|” — Z wﬂ@i) (Z w;TY; — a Z w; |y2\2>]
i=1 i=1 i=1 i=1
and
Ay =Y wi |y’ = Re | > w; (Ays — ;) (7 — a@z)]
Then . a

A = Zwi ]yi|2 — Re
i=1

A i WY + a i wixiﬂi]
i=1 i=1 ) )
— Z W TiY;
i=1

A) <Z Wi |in2>

and

A2 = Zwl |yll2 — Re
i=1

A Zn: W;T;Y; + a z": wi%‘yi]
i=1 i1
2
— sz \xz| sz \y,| — Re(aA) (Z w; |yil )
giving
(5.42) Ay — Ay = Zwi ’%\szi lyil* —
i=1 i=1
If (6.40) holds, them, > 0 and thus
n n n 2
(5.43) Z w; ’xz‘Z Z w; ’%‘2 - Z Wi XY
i=1 i=1 i=1
(A Z w; [yi* — Z wﬂi@i) (Z WiTY; — a Z w; !yz|2>] :
i=1 i=1 i=1 i=1

If we use the elementary inequality for complex numbeise C

" 2
g Wi TiY;
i—1

(5.44) Re [21] < ;l|z — 1,
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then we have for

n n
2 ,
z:=A E W |yz| - E Wi T;Y;,
i=1 i=1
n n
L _ 2
t:= W;T;Y; — a w; |y
i1 i=1

that

(5.45) Re

(Azwz lyil* — Zwixz-zL-) (Z WiliY; — dZwi |Z/z|2>]
i=1 i=1 i=1 :
1
<Haap (zwz ul )

and the inequality (5.41) is proved.
Now, assume thaf (5.41) holds with a constant 0, i.e.,

(5.46) Zwi|xi|22wi|yi|2— <c|A—al <sz ]yi\2> :
i=1 i=1 =1 =1

wherex, ¥, a, A satisfy [5.40).
Considefy € C", " | |yi|2 w;=1,a#AmeC", > " w |ml~|2 =1with> "  wiym; =
0. Define

il

A+a A+a

Then
A—a* & i
sz Ayz_xz ( _ayz)_ 9 Zwi(yi_ml><yl_ml)zo
=1

and thus the condltlor[@]ﬁlO) is fulfilled.
From [5.46) we deduce

>

i=1

2
w; —

A+a +A—a
7 YT

my;

and since

and

then by [5.45) we get

giving ¢ > %1 and the theorem is completely proved. O

The following corollary holds.
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Corollary 5.18. Leta, A € Candx = (z1,...,2,), Y = (Y1,-.-,yn) € C" be with the
property that

(5.47) Z Re [(Ay; — x;) (z; — ag;)] > 0,
then one has the inequality
n n 2 n 2
(5.48) 0 Il ) luil* - < lA—ap (Z |yi|2> -
=1 =1 =1
The constant is best in[(5.4B).

Remark 5.19. A sufficient condition for both(5.40) anfl (5/47) to hold is
(5.49) Re [(Ay; — x;) (T — ag;)] =2 0
foranyi € {1,...,n}.

n
g TiYi
i=1

5.7. Shisha-Mond Type Inequalities. As some particular case for bounds on differences of
means, O. Shisha and B. Mond obtained in 1967 (see [23]) the following revet€&3sf) —
inequality:

Theorem 5.20.Assume tha = (ay,...,a,) andb = (by,...,b,) are such that there exists
a, A, b, B > 0 with the property that:
(5.50) a<a; <A and b <b; < B foranyj € {1,...,n}

then we have the inequality

650 Yy i- <Z ajbj> < <\/§ _ \/g> S a0t 38
j=1  j=1 j=1 j=1 j=1

The equality holds iff (5.51) if and only if there exists a subsequince. ., k,) of (1,2,...,n)

such that X ,
- (3) ()
—_ = 1+ _ _ ,
P a b

ap, = A, by, =b(n=1,...,p) anda; = a, b, = B for everyk distinct from allk,,.

Using another result stated for weighted means_in [23], we may prove the following reverse
of the (C'BS) —inequality.

Theorem 5.21. Assume thas, b are positive sequences and there exists > 0 with the
property that
(5.52) 0<7§%§F<ooforanyz‘e{l,...,n}.

Then we have the inequality

n n 2 n F N )2 n
_ < 2 2 L= 2
(5.53) O_(;al;bl> ;albz_4(7+r)2b
The equality holds ir} (5.53) if and only if there exists a subsequgnce. ., k,) of (1,2,...,n)
such that

Z F 3 Z”
km: + 7) b?, akm:l—‘ (mzl’jp) andb—:’)/
k
=1
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for everyk distinct from allk,,,.

Proof. In [23, p. 301], Shisha and Mond have proved the following weighted inequality

(5.54) 0< (Z Qj$§> ZQJ% < 4—_{_6)1)

providedg; > 0 (j=1,...,n) with ijlqj =land0 < ¢c < z; < C < oo for any
jedl,....n}.

Equallty holds in[(5.54) if and only if there exists a subsequéhge . ., k,) of (1,2,...,n)
such that
C’ + 30
5.55 -t

xR, =C (m=1,2,...,p) andx, = cfor everyk distinct from allk,,,.
Ifin (6.54) we choose

2
a; bj -
] — 7 q:n—7j€{]-a7n}a
! bj ’ Zkz:lbi

then we get

RTAE Z? 1 4% (I =)
ZZ:1 bi Zk 1 b2 4(y+T)
giving the desired inequality (5.53).
The case of equality follows by the similar casefin (5.54) and we omit the details. O

5.8. Zagier Type Inequalities. The following result was obtained by D. Zagier in 1995,[24].

Lemma5.22.Let f, g : [0,00) — R be monotone decreasing nonnegative function® oso).
Then

I f z)de [° g (x) G (x)de
(5:56) / f@)g(@)de = max {fo x)dx, [7G(x)dx}
for any integrable function$’, G : [0,00) — [0,1] .

Proof. We will follow the proof in [24].
For allx > 0 we have

AmfmFawﬁzfqumFumvyémwawaﬂwwwwﬁ

<t@ [ Foas [ 1f0-r@)a
0 0
and hence, sincé’ G (t) dt¢ is bounded from above by bothand [;* G () dt,

/Ooof(t)F(t)dt-/OxG(t)dt

<zf(x) i

t dt+/ G(t)dt-/ox[f(t)—f(m)]dt

| Fa
gmax{/oooF(t)dt,/oooG(t)dt}-/Omf(t)dt.
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Now, we muItipIy by— dg ( ) and integrate by parts fromto oo. The left hand side gives

[ F@)F@)ydt- [~ t) dt, the right hand side gives
max{/ F(t)dt,/ G(t)dt} / F(6)g(t) dt
0 0 0
and the inequality remains true because the measuge ) is nonnegative. O

The following particular case is a reverse of {lieé3S) —integral inequality obtained by D.
Zagier in 1977,[[25].

Corollary 5.23. If f,¢:[0,00) — [0, c0) are decreasing function 0j, o), then

(5.57) max{f(())/o t)dt, g (0 /f dt] / Ft
2/0 fz(t)dt/ooof(t)dt-

Remark 5.24. The following weighted version of (5.56) may be proved in a similar way, as
noted by D. Zagier in [25]

Jo w®) f@)F @) dt [~ w(t) f ()G (¢)dt
max { [ w (t) F (¢)dt, [["w ()G (t)dt}

providedw (t) > 0 on [0,00), f,¢g : [0,00) — [0,00) are monotonic decreasing atlG :
[0,00) — [0, 1] are integrable oif), oo).

c58) [ e f@e0d>

We may state and prove the following discrete inequality.

Theorem 5.25. Consider the sequences of real numb@rs (ai,...,a,), b = (b1,...,b,),

P=m1,-»Pn):a=(q1,--,qn) ANAW = (w1, ..., w,).
If

(i) a andb are decreasing and nonnegative;
(i) pi,q; €10,1] andw; > 0forany: € {1,...,n},
then we have the inequality

(5.59) Z wiasb; > D i Wit Y iy Wigib; ‘
—max {350, wipi, 3oL, wigi}

Proof. Consider the functiong, g, F, G, W : [0,00) — R given by

a;, te [0, 1) by, te [0, 1)
as, € [1,2) by, t€ [1,2)
Fl)=9: c g =9 :
an, t€n—1,n) bn, t€[n—1,n)
L0 t€n,00) 0 té€n,00)
(P, t€[0,1) q, tel0,1)
P 1€ [L2) p 1e[L2)
Fiy=1 : S cw={ ,
Pny, tE[N—1,n) qn, t€[n—1,n)
L 0 t€n,00) 0 ten,00)
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and

Wit)=q :
Wy, tE€[n—1,n)
0 te€n,00)

We observe that, the above functions satisfy the hypothesis of Rémafk 5.24 and since, for ex-
ample,

[e.9]

[ wwrwswa=3 [ woroawis [ wn oo

n
= E wragby,
=1

then by [5.5B) we deduce the desired inequdity (5.59). O

Remark 5.26. A similar inequality for sequences under some monotonicity assumptiofs for
andq was obtained in 1995 by J. &axic in [26].

The following reverse of théC'BS) —discrete inequality holds.

Theorem 5.27.Assume thai, b are decreasing nonnegative sequences with, # 0 andw
a nonnegative sequence. Then

(560) Z wia? Z U}zblz S max {bl Z w;a;, Ay Z wlbz} Z wlazbl
=1 =1 =1 i=1 =1
The proof follows by Theore5 on choosipg= % € [0,1], ¢; = 2 € [0,1],i €
{1,...,n}. We omit the details.
Remark 5.28. Whenw; = 1, we recapture Alzer’s result from 1992, [27].

5.9. A Reverse Inequality in Terms of thesup —Norm. The following result has been proved
in [11].

Lemma 5.29.Leta = (ay, ..., ) @ndx = (z4,...,z,) be sequences of complex numbers
andp = (p1,...,p,) asequence of nonnegative real numbers suchXfat, p; = 1. Then one
has the inequality

(5.61) Zpiaixi - Zpiai Zpiifi
i=1 i=1 i=1
n n 2
S max ‘Aaz’|i:m%m$i| 212172‘ - (Z ipz‘) ;

i=ln-1 i=1 i=1

whereAq; is the forward difference, i.el«; == a1 — ;.
Inequality [5.611) is sharp in the sense that the constaat 1 in the right membership cannot
be replaced be a smaller one.
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Proof. We shall follow the proof in[[11]. We start with the following identity

n n n 1 n
sz‘%‘xi - sz‘Oéi Zpixi = 2 Z PiD; (a; — aj) (z; — %‘)
i=1 i=1 i=1

3,j=1

= > pipi (i — ) (2 — 1)

1<i<j<n

As i < j, we can write that

J—1
o — oy = E Ay,
k=i

and

j—1
Tj—x; = g Axy.
k=i

Using the generalised triangle inequality, we have successively

n n n j—1 -1

§ Dio; Ty — E picy; E piZ; E Pipj E Aay, E Axy,
i=1 i=1 i=1 1<i<j<n k=i k=i
Jj—1 Jj—1

E Dpibj E Aay, E Azy,
1<i<j<n k=i k=i
Jj—1 Jj—1

> o Y 1Ak > Ayl
1<i<j<n k=i k=i

= A.

IN

IN

Note that
|Aay| < max  |Aag|
1<s<n-—1

and

|Azg| < max |Axy
1<s<n—1

forall k =4,...,7 — 1 and then by summation
j—1

i
kz [Aax| < (j i), max |Aay|

and
-1
<(j—i .
; [Aay| < (=) max |Az,|
=1

Taking into account the above estimations, we can write

A<

Z pl-pj(j—i)2] max  |Aay| maX1|A:cs\.

— 1<s<n—1 1<s<
1<i<j<n

As a simple calculation shows that

Z pip; (7 —1)° = Z *pi — (Z il%‘) ;

1<i<j<n i=1

inequality [5.61) is proved.
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To prove the sharpness of the constant, let us assumé thgt (5.61) holds with a a@nstant
ie.,

(5.62)

Zpiaiiﬁi - Zpiai Zpixi
i=1 i=1 i=1
n n 2
<C max1 |Aa] 'maxl | Az Zi2pi — (Z ipz‘)

(2 ,n 1 ,n i=1 i=1

Now, choose the sequences= o + k5 (6 #0)andzy =z +ky (y#0), ke {l,...,n}
to get

>~ s Ypie| = |3 b 660
i=1 i=1 i=1 ij=1

n n 2
= [B]y| ZiQPi - <Z ipi)
i=1 i=1

1
2

and
n n 2 n n 2
max |Aay| max [Aas| |> i - (Z ipz‘) = 1811yl | > i*pi — (Z ipz‘)
i=1,n— i=1n— i—1 i=1 i=1 i=1
and then, by{(5.62), we g€t > 1. O

The following reverse of theC'BS) —inequality holds[[12].

Theorem 5.30.Leta = (ay,...,a,) andb = (b, ...,b,) be two sequences of real numbers
witha; # 0, (i = 1,...,n). Then one has the inequality

n n n 2
0< Za?Zb? — (Zaibi>
=1 =1 i=1
2 n n n 2
Skirllixl{A (Z—i>} ;a?;iQa?— (Zzaf)

i=1

The constan€’ = 1 is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. Follows by Lemm& 5.29 on choosing

2
Pi==i—g, i=—, v;=—, i€{l,...,n}
Dhoian o a a;
and performing some elementary calculations.
We omit the details. OJ

5.10. A Reverse Inequality in Terms of thel—Norm. The following result has been obtained
in [13].

Lemma 5.31.Leta = (ay,...,a,) andx = (z4,...,z,) be sequences of complex numbers
andp = (p1, ..., p,) asequence of nonnegative real numbers suchXhat, p; = 1. Then one
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has the inequality

n n n n n—1 n—1
Zpi%% — ZPiOéi Zpﬂi < %sz (1—pi) Z |Aa| Z |Az,|,
i1 i1 i1 i1 i—1 i—1

whereAcq; := ;1 — «; is the forward difference.
The constang is sharp in the sense that it cannot be replaced by a smaller constant.

(5.63)

Proof. We shall follow the proof in[[13].
As in the proof of Lemma’5.29 in Sectipn 5.9, we have

n n n 7j—1 j—1
(5.64) Zpiaﬂi - Zpiai Zpiil?i < Z PiDj Z |Aay| Z |Azy| = A.
i=1 i=1 i=1 1<i<j<n k=i =i
It is obvious that for alll <i < j <n — 1, we have that
7—1 n—1
D Aak] < A
k=i k=1
and
7j—1 n—1
D Az <) Az
=i =1
Utilising these and the definition of, we conclude that
n—1 n—1
(5.65) A Aok Y 1Az Y pps.
k=1 =1 1<i<j<n

Now, let us observe that

(5.66) > pip = % > pipj— Zpipj]

1<i<j<n Li,j=1 i=j
1 n n n
S v
Li=1  j=1 =1
i=1

Making use of[(5.64) -{ (5.66), we deduce the desired inequplity|(5.63).
To prove the sharpness of the constantet us assume thaft (5/63) holds with a constant
C > 0. Thatis

n n n n n—1 n—1
(5.67) Zpi@i%‘ - Zpiai Zpiﬂfi < Czpi (1 - pi) Z |A04i| Z |A$z|
i=1 i=1 i=1 i=1 i=1 i=1

forall a;, x;, p; (i =1,...,n) as above and > 1.
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Choose in[(5.63) = 2 and compute

2 2 2
Zpiaifl?i - Zpi%' Zpixi Z pip; (6 — o) (i — ;)
=1 1=1 i=1

4,j=1

= Z pipj (@ = o) (; — ;)

1<i<j<2

= P1P2 (041 - 042) («731 — wz) .
Also

2 2 2
> pi(1=pi) > 1A Y |Azi| = (pip2 + pip2) |on — | |21 — 2o -

=1 i=1 i=1
Substituting in[(5.6]7), we obtain
pipe [an — agl |1 — 22| < 2Cp1ps far — gl |21 — 2]

If we assume thap,,p; > 0, a3 # ao, 11 # 2, then we obtainC’ > %, which proves the

sharpness of the constaéﬂ O

We are now able to state the following reverse of thé3S) —inequality [12].

Theorem 5.32.Leta = (ay,...,a,) andb = (b, ...,b,) be two sequences of real numbers
witha; #0 (i =1,...,n). Then one has the inequality

(5.68) 0<Z Zzﬂ (zn: )2

i=1
n—1 b
< Z A(—k)u Z a?a?.
k=1 Ak 1<i<j<n

The constant” = 1 is sharp in [5.6B), in the sense that it cannot be replaced by a smaller
constant.

Proof. We choose

2
a: b;
(A 1 .
Pi= =g G=u,=—, i€{l,...,n}
k=1 Ak a;

in (5.63) to get

(ZLt (S )
D (> k=1 ak)

S ()
S (SR G
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which is clearly equivalent to

2 2
Al 2 Sk )
k=1 i=1 j=1 J
Since
1 n 2 n
() -S| - 3
k=1 i=1 1<i<j<n
the inequality[(5.68) is thus proved. OJ

5.11. A Reverse Inequality in Terms of thep—Norm. The following result has been obtained
in [14].

Lemma 5.33.Leta = («ay,...,a,) andx = (z,...,z,) be sequences of complex numbers
andp = (pi1, ..., pn) @ Sequence of nonnegative real numbers such}hat, p; = 1. Then one
has the inequality

(5-69) Z]%Oéﬂi - Zpi% Zpixi
=1 =1 =1 . . . .
< > (i—j)p (Z |A04k:|p) <Z |A5Ek|q> ;

k=1 k=1

1<j<i<n

wherep > 1, . + 1 = 1.
The constant” = 1 in the right hand side of (5.69) is sharp in the sense that it cannot be
replaced by a smaller constant.

Proof. We shall follow the proof in[[14].
As in the proof of Lemma’5.29 in Sectipn 5.9, we have

n n n i—1 i—1
(5.70) Zpiaixi - Zpiai Zpiil?i < Z DiDj Z ’Aak| Z ’Axl| = A
i=1 i=1 i=1 k=j I=j

1<j<i<n
Using Holder’s discrete inequality, we can state that

i1 i1 g
D Aa] < (i —j) (Z IAaklp>

k=j k=j

and

i1 i1 7
D lAm < (i) (Z |sz|’1> :

1=j I=j
1
q

(5.71) A< > ppi(i—)) (imakyp) (me) .
k=j k=j

1<j<i<n

wherep > 1, Il) + 1, and then we get
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Since
i—1 n—1
D Al <> [Aay
k=7 k=1

and
i—1 n—1
D Az T <)Y Az,
k=j k=1

forall1 < j < i <mn,thenby[5.7D) and (5.71) we deduce the desired inequglity](5.69).
To prove the sharpness of the constant, let us assumé thgt (5.69) holds with a a@@nstant
That is,

(5.72)

Zpiaixi - Zpiai Zpixi
i=1 i=1 i=1

n—1 % n—1 é

< 3 G- (Sanr) (Sianr)

1<j<i<n k=1 k=1
Note that, forn = 2, we have

2 2 2
E Di;T; — § piQ; E DiT;
i=1 i=1 i=1

= P1DP2 |CY1 - Oé2| |$1 — T2

and

1 1
1 D 1 q
> (=) pp; (Z\Aaup) (Z\Aka) = pipa o — aof |21 — 2o .
k=1 k=1

1<5<i<2
Therefore, from[(5.72), we obtain
pipe [an — agf |1 — 22| < Cpipz |on — sl |21 — 22|
for all ay # an, x1 # x9, p1p2 > 0, giving C' > 1. O
We are able now to state the following reverse of {hé3S) —inequality.

Theorem 5.34.Leta = (a4,...,a,), b = (b1,...,b,) be two sequences of real numbers with
a; #0, (i =1,...,n). Then one has the inequality

n n n 2
=1 =1 =1

SNGhEs

1 1 _
Wherep>1,]—)+5—1.

S 3 e

1<j<i<n

The constan€’ = 1 is sharp in the above sense.
Proof. Follows by Lemm# 5.33 for
“ e (L, n)
==, ;=x;=—, i€{1,...,n}.
D k1 O a;

The following corollary is a natural consequence of Thedrem|5.34 ferg = 2.
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Corollary 5.35. With the assumptions of Theorem 5.344@ndb, we have
n n n 2
=1 =1 =1
-1 b 2
Al ZE . 2,2
() 5 o

1<j<i<n,
5.12. A Reverse Inequality Via an Andrica-Badea Result. The following result is due to
Andrica and Badea [15, p. 16].

Lemma 5.36.Letx = (z1,...,x,) € I" = [m, M]" be a sequence of real numbers anddet
be the subset dfl, ..., n} that minimises the expression
(5.73) > pi— Pl
€S
whereP, :=3"" p; >0,p = (p1,...,pn) IS @a sequence of nonnegative real numbers. Then

n n 2 2
(5.74) max %n;plarf — <%n ;pzxz> = Zpi ( sz) ) )

€S €S

Proof. We shall follow the proof in[[15, p. 161].
Define

2
_ 1 ¢
e S W R F5 9
1 2
=5 > iy (wi—x)”.
" 1<i<j<n
Keeping in mind the convexity of the quadratic function, we have

Dn(oz>_(+(1—oz)3_f D)

Z pipj oz, + (1 — o)y —az; — (1 — @) yj]Q

n 1<i<j<n

1 2
= =8 > pwlo (e —x) + (1—a) (4 — y))]

n <i<j<n

< % Z DiD; [a (x; — %’)2 + (1 —a)(y: — yj)z]

1<i<j<n
=aD, (X,p)+(1—a)D, (¥,D),
henceD,, (-, p) is a convex function od™.

Using a well known theorem (see for instance![16, p. 124]), we get that the maximum of
D, (-, p) is attained on the boundary 6f.
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Let (S, S) be the partition of 1, ..., n} such that the maximum db,, (-, p) is obtained for
0
L1

%o = ( ,2%), wherex? = mif i € Sandz? = M if i € S. In this case we have
o 1
(5.75) Dy (%0.0) =55 D pipj(wi— ;)
N 1<i<j<n
(M = m)?
- P2 Zpi P = Zpi :
n i€S €S

The expression
Zpi (Pn - ZZ%)
€S 1€S

is a maximum when the sétminimises the expression

€S

From (5.75) it follows thatD,, (X, p) is also a maximum and the proof of the above lemma is
complete. O

The following reverse result of thg” B.S) —inequality holds.
Theorem 5.37.Leta = (ay,...,a,) andb = (b, ...,b,) be two sequences of real numbers
witha; #0 (i=1,...,n)and

bA
(5.76) —co<m< =< M<oo foreachie {1,...,n}.
a;

Let S be the subset dfl, ..., n} that minimizes the expression

LN
=1

i€S

(5.77)

?

and denoteS := {1,...,n} \ S. Then we have the inequality

n n n 2
(5.78) 0<> a? ) b - (Z aibi>
i=1 =1 i=1
< (M—m)QZa?Za?

€S i€S
1 - ’

2 2
gZ(M—m) (;Zl ai) .

Proof. The proof of the second inequality in (5]78) follows by Lemma .36 on chogsirg
a2, r; =% ic{l,... n}.
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The third inequality is obvious as

>y -y (Y- )

i€S i€S i€S i€S

<4 (DS x)

€S €S
1 (< ’
_ 2
1 (Z %‘) :
j=1

5.13. A Refinement of Cassels’ Inequality.In 1914, P. Schweitzer [18] proved the following
result.

0

Theorem 5.38.1f a = (a4, ...,a,) is a sequence of real numbers such that m < a; <
M < oo (ie{l,...,n}),then

67 () () =

In 1972, A. Lupas|[17] proved the following refinement of Schweitzer’s result which gives
the best bound for odd as well.

Theorem 5.39. With the assumptions in Theorém §.38, one has

(5.80) Z“zz 5| M+ 2] m) (2] M+ [5]m)

Mm ’

where][-] is the integer part.

In 1988, Andrica and Badea [15] established a weighted version of Schweitzer and Lupas
inequalities via the use of the following weighted version of the Griss inequality [15, Theorem
2].

Theorem 5.40.1f my; < a; < My, my < b; < M, (i € {1,...,n}) and S is the subset of
{1,...,n} which minimises the expression

S lp,

€S

(5.81)

whereP, := 3", p; > 0, then

P, szaz i szaz Zpl i
< (My —my) (M, —WQ)ZZ%‘ <Pn - ZZ%) :

€S €S

(5.82)

P2 (M1 —m1> (M2 —mg).
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Proof. Using the result in Lemnmia 5.B6, Sectjon 5.12, we have

1 - 2 1 - ? (Ml — m1)2
(5.83) sziai - ?Zpiai < szz Pn_zpi
"oi=1 n =1 n

€S ics
and
2
]. " 2 1 " (MQ — m2)2
R (E zpib) S Y
=1 =1 €S €S
and since

n n n 2
o 1 n - 1 Zzl 2 1 n 1 n 2
< Fn ;pia? — (Fn ;pi%) Fn ;pibf — <Fn ;pin) ,

the first part of[(5.82) holds true.
The second part follows by the elementary inequality

1
abgz(aer)?, a,beR

for the choices: := >, ¢ pi, b:= P, — >, .o Di- -

We are now able to state and prove the result of Andrica and Badea [15, Theorem 4], which
is related to Schweitzer’s inequality.

Theorem5.41.1f0 <m <a; < M <o0,i€{1,...,n}andS is asubset ofl,...,n} that
minimises the expression

then we have the inequality

(5.86) (Zpim) (Z Zi) < P+ % > (Pn - ZpZ)

Proof. We shall follow the proof in[I5]. We obtain from Theorgm §.39 with= -, m; = m,
M; =m,my = 12, My = +, the following estimate

T m

— (L 2 < _ N ) — )
- Sna S <00 (- 5) X (- o).
=1 i=1 ies €S
that leads, in a simple manner, fo (5.86). O

We may now prove the following reverse result for the weight€dS) — inequality that
improves the additive version of Cassels’ inequality.
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Theorem 5.42.Leta =(a4,...,a,), b =(b1,...,b,) be two sequences of positive real num-
bers with the property that

b; .
(5.87) 0<m< — <M< foreachi € {1,...,n},

a;

andp = (p1,...,p,) a sequence of nonnegative real numbers suchfhat >, p; > 0. If

Sis asubset of1,...,n} that minimises the expression
1 n
(5.88) ;piaibi ) ;piaibi

then one has the inequality
n n n 2
(5.89) ZPM? sz‘b? - (ZP@%@‘)
i=1 i=1 i=1
M —m)? "
< % Zpiaibi (Z pia;b; — ZPMJ%)
i=1

iesS €S

Proof. Applying Theoreny 5.41 fou; = z;, p; = ¢;x; we may deduce the inequality

n n n 2 . 2 n
(5.90) Z ¢z} Z qi — (Z %%) < % Z Qi (Z qix; — Z %%’) ;
i=1 =1 i=1 i=1

€S €S

providedg; > 0,> " ¢ > 0,0 <m <z; <M < oo, fori € {1,...,n} andS is a subset of

{1,...,n} that minimises the expression

Z qiTi; — % Z qiTi| -
i=1

€S

(5.91)

Now, if in (5.90) we choos@; = pia, z; = % € [m, M] fori € {1,...,n}, we deduce the
desired resul{ (5.89). O

The following corollary provides a refinement of Cassels’ inequality.

Corollary 5.43. With the assumptions of Theorem 5.42, we have the inequality

(5.92) 1< D i Piai Z?ﬂgib?
(> iy piaibi)
<14 (M — m)2 ) > ics Piaibi (1 B Ziespiaibi>
B Mm D i1 Pitibi > iy Ditib;
< (M + m)Q'
— 4Mm

The case of the “unweighted” Cassels’ inequality is embodied in the following corollary as
well.
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Corollary 5.44. Assume thai andb satisfy (5.8B). IS is a subset of1, . . ., n} that minimises
the expression

(5.93)

Z CLibi — % Xn: aibi
i=1

€S

then one has the inequality

(5.94) 1< Z?ZIT?? ?:12[)@2
(Zi:l a;b;)
<14 (M — m)2 ] ZieS a;b; 1— Zies a;b;
- Mm > i ib; D i @ibi
< (M + m)2.
-  4Mm

In particular, we may obtain the following refinement of the Polya-Szegd’s inequality.
Corollary 5.45. Assume that
(5.95) 0<a<ag<A<oo, 0<b<b<B<o forie{l,....,n}.

If S'is a subset of1, ..., n} that minimises the expressidgn (5.93), then one has the inequality

(5.96) 1< > i1 4 ?:12512
(Do aibi)
<14 (AB — ab)? ' Y ics ibi 1_ 2ics @ibi
- abAB Yo ab; Yo aib;
_(AB+ ab)?

4abAB

5.14. Two Reverse Results Via Diaz-Metcalf Resultsin [19], J.B. Diaz and F.T. Metcalf
proved the following inequality for sequences of complex numbers.

Lemma 5.46.Leta = (ai,...,a,) andb = (b,...,b,) be sequences of complex numbers
such thata, # 0, k € {1,...,n} and

(5.97) m < Re (b—k) +Im (b—k> <M, m<Re <b—k) —Im (%> <M,

Qg Qg Qg Qg

wherem, M € Randk € {1,...,n}. Then one has the inequality

(5.98) S bl +mM D> fagl* < (m+ M)Re Zakbk]
k=1 k=1 k=1
k=1

Using the above result we may state and prove the following reverse inequality.
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Theorem 5.47.1f a andb are as in[(5.9F) andn, M > 0, then one has the inequality

(5.99) Z|ak| Z|bk| < BT M+m <Re2akbk>

Proof. Using the elementary inequality
2 1 2
ap +_q Zng, Q4>0, paQZO
(0%

we have

N

n 1 n n n
(5.100) VmM > " axl* + FZ |bel* > 2 (Z jar]*> |bk|2)
k=1 Mk:l k=1 k=1

On the other hand, by (5.p8), we have

(5.101) |be]” + vVmM Y |ag]” < —===Re aby,
vmM ; ; vmM ;
M+m|~ -
S akbk .
vmM ;

Combining [5.100) and (5.1P1), we deduce the desired résuli (5.99).

The following corollary is a natural consequence of the above lemma.

Corollary 5.48. If aandb andm, M satisfy the hypothesis of Theorem 5.47, then

M|
3

(5.102) 0< (f}aﬁf}bﬁ) — 1> aib;
i=1 i=1 ]
< (ilailziW)Z — |Re <§n:akbk)‘
i=1 i=1

A | (e |
§< 2\/m_M> Re(%akbk>
VIT - i) |

§< 2\/m_M> ;akbk
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and
n n n 2
(5.103) 0< > as Y bl = > aibs
=1 =1 =1
n n n 2
(5.104) <Y lal?> ] [bif* - Re( b)
=1 =1 =1
M =m? | (& \[
. .
A < b,
(5.105) <7 |Re <;a )
M =m? [ |
_m —
A <X 7 b,
(5.106) < ;albz

Another result obtained by Diaz and Metcalfiin[19] is the following one.

Lemma 5.49. Leta, b, m and M be complex numbers such that

(5.107) Re (m) 4+ Im (m) < Re (Zi) + Im (2—’;) < Re(M) +Im (M);

Re (m) —Im (m) < Re (b—’“) —Im (%> < Re(M) —Im (M);

Qg
for eachk € {1,...,n}. Then

(5.108) > |bel* + Re (mM) Y |axl* < Re | (M +m) Zakl;k]
k=1 k=1 k=1
k=1

The following reverse result for th&' BS) —inequality may be stated as well.

Theorem 5.50. With the assumptions in Lemia §.49, anHdf(m A1) > 0, then we have the
inequality:

(5.109) [Z\ak\22\bk\2
k=1 k=1

: < Re [(M +m) > "_, arby]
2 [Re (mM)]?
_ M4 ml [ 1akbk\
[Re (mM)]

The proof is similar to the one in Theorém 5.47 and we omit the details.

Remark 5.51. Similar additive versions may be stated. They are left as an exercise for the
interested reader.

5.15. Some Reverse Results Via thE€ebysev Functional. Forz= (z1, ..., 2,), 7= (y1, ..., yn)
two sequences of real numbers gnd- (p1,--.,pn) @ sequence of nonnegative real numbers
with > | p; = 1, define theCebySev functional

(5.110) n(P;X,y) : szxlyz szxZZplyz

J. Inequal. Pure and Appl. Math4(3) Art. 63, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

100 S.S. [RAGOMIR

Forz andp as above consider the norms:

1% := max |z;]
i=1n

XI5 = (Zpi |Ii|a) , a€[l00).
i=1

The following result holds [20].

=

Theorem 5.52.Letz, y, p be as above and= (c, . .., ¢) a constant sequence withe R. Then
one has the inequalities

(5.111) 0 < [T (p;X,5)|
4 — — . — —
1Y = Bl igﬂg 1% — ¢l
- els = 1,1 1.
< ||y_YM,’p ﬁ,ﬂ'igﬂng_CHf),a’ a>1o+5=1

H}_’ - }_’u,p p,1 )

Y ceR

(N5 = Fupllp min {IR] , 1% = Rupllc} 5

5,500 { IRl 0 1% = Rl }
a>1%+ % =1;

«

~ * Min {Hin),l 1% - imp”@l} ;

1Y = Fus

IN

1Y = Fuo
\

where
n n
Lpp = Zpﬂi, Yup = sz’yi
i—1 i=1

andz, ,, y,, are the sequences with all components equal.tp v, ,,.

Proof. Firstly, let us observe that for anyc R, one has Sonin’s identity

(5.112) T, (0;%,9) =T, (B;X =T, F — Fup)

=> pi(zi—c) (y —~ Zm%) :
i=1 j=1
Taking the modulus and using Holder’s inequality, we have

(5.113) T (3:%,9)] < Y pilws — cl 19 — Yyl

=1
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(- max |z; — ¢ Y0 pi Y — Yup

i=1,n

1
1 B
<9 (Shamile—d (Samily — vul’)
a>1, é + % =1;
2?21 pilzi — | max Yi = Yup

\ 1=1n

X =l 1Y = Frupllzi

= H)_(_(_:Hf),a ”y_yu,p”ﬁ’ﬁ, o > 1,&—’—% e 1’

(I =ellsa 1Y = Yol -

Taking theinf overc € R in (5.113), we deduce the second inequality in (5/111).
Since

%150 -
inﬂg [ —¢ll;, < forany a € [1, o0]
IS ’ — —
‘ ||X_Xu7p||l3,a

the last part of[(5.110) is also proved. O

Forp andz as above, define

n n 2
T, (P;X) :== szl'? - <sz$z> .
i=1 i=1

The following corollary holds [20].

Corollary 5.53. With the above assumptions we have

(5.114) 0 <|T, (P; %)
T — . S = .
% — Xu,pHgl : ilelﬂfﬁ 1% — CHoo )
— — . — — 1 1 .
S ||X_Xﬂap||f)ﬁ'igIgnx_ch),om a > 17&+F = 17
\ 1% = Xppllo - égﬂg 1% — 6||f),1 ;
/ — — . — — —
15 = Ryl min { 1%, 1% = Rup o}
< 15 = Rl g min { K] 0 1% = Kl }
a>1,141=1;
| 115 = gl - min {1l 1 1% = Rl -

Remark 5.54.1f p; := 1, i =1,...,n, then from Theorerh 5.52 and Corolldry 5.53 we recap-
ture the results i [22].

The following reverse of theC B.S) —inequality holds[[20].
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Theorem 5.55.Leta, b be two sequences of real numbers with# 0,7 € {1,...,

one has the inequality

n n n 2
=1 i=1 =1

(5.115)

) b; u ap a;
<t o ] 3= [} 5|
i=1 k=1
b;
max |—
ak s i=1,n | A
<3 fld || 5 1
h=t max E Zk lakbk
=1n | Zk 1 0}
Proof. By Corollary[5.58, we may state that
(5.116) 0 < T, (5;%)
< |x—x4 inf [|x — €|
HiHocﬂ
<[x-x,
H)_(_)_ciuvaoo
For the choices
Di n = — =1, , 5
Zk:l Q;
we get
n b2 n zbz 2
Tn(l—);—):Zzl 7 ’Ll’L (;zzla )7
(> ke ak)
1% = Rpuplls, = sz‘ Li — ijxj
i=1 j=1
1 " | b 1 &
=<n 2 i |— — < 2 a;b;
> ket G, ; ai Doy ap Z:: o
1
e IO SCELD
(Zk 1 k) =1 j=1
1 n n
Sl (b, — aihy)
(Zkz—l az) i=1 k=1
- Q. a;
Z! -
(Zk La7) o k=1 b bi
_ b; _ b;
I% — e, = max |- — |, [%], = max |~
i=1,n | Q; i=1,n | Q;
and
|X — X, = max b 2?21 aib;
r i=1n | Q4 22—1 ai
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Utilising the inequality[(5.11]6) we deduce the desired refult ($.115). O
The following result also holds [20].

Theorem 5.56. With the assumption in Theor.55 and if- 1, é + 1 =1, then we have
the inequality:

(5.117) 0<Z Zb2 <zn; )2

n n
—p ar  a; . 2—« ey
(S [l 2 []) se(Sr o)
1= 1=

Q=

3
sy
Tl

n n B

2-83 ar  a;
2 (D oy,

=1

@l

IN

(/0 :
(z ai |bz-|“)
=1

X
1 o\ a
n 2—« n ar a; «
S Y ay a .
\ 22:1 az (Zzl | Z| Zk:l k b b )
Proof. By Corollary[5.58, we may state that
(5.118) 0< T, (p;x)
< ”7_( — Xup B,8 " igﬂfa H)_( - ény,a
%[5, -
<X = Rupllp % o
|x — X%PH;‘),Q )
fora>1,1+ ;=1
For the choices
a b . 1
p =— =1 , 1
' ZZ:1 @;
we get
n . B\ 7
[ ilhp”f)ﬂ = Zpi i — ijxj
i=1 j=1
B\ 7
_ i a? b; ZL ai - Zj 1 ajb;
i=1 2 k=1 ai Wi ) py ak
1
1 B\ B
ar Q;
= - |a 2 ﬁ s
(Chy ) Z Z Z b b

. L 1
%l = (z||) - (zw i ca ) |
i=1 (Zk 1 k * \i=1
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|=

||)_(Hf>a —n oL (ZMZQ o )
(Zk 1% )* \i=t

and

n

_ 1 9_ ap  a;
1% =Xupllpe = ——7 (Z!ai\ D a '

n

(Zn a2)1+a — bk bz > '
k=1"k i=1 k=1
Utilising the inequality[(5.118), we deduce the desired repult ($.117). O

Finally, the following result also holds [20].

Theorem 5.57. With the assumptions in Theor¢m 5.55 we have the following reverse of the
(C'BS) —inequality:

(5.119) 0< i a? i by — (i a;b;
=1 =1 =1

Sg?ﬁ a—iz_:ak—Zajb inf [Z|az||b caZ]
< mpx 0SSt D
i=1n
> Jaib
=1
X
< ak a;
; Sl .
Zk 1 Ak i=1 k=1 bi
Proof. By Corollary[5.58, we may state that
(5.120) 0< T, (p:%)
< %=Xl - igf |x — 6||15,1
1Xll5.1

< Hi_iu,p“oo _
[ XﬂvPHp,l :

For the choices

a? bz
Di n 55 i — 1= 17 » 1
k=1 Tk @

we get

1% = Ryupl o = maxz; > _pit

n
- > j=1 asb;
— R i

i=Tn | G Zkz:l aj,

Za Za
a; k 7Y

9
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|
i1 > ko1 Gp | @i
1 n
- n o2 Z|a’l| |bl Cal|7
k=1"k ;—1
1 n
‘XH Zpl‘xl Z n 2 Z‘albly
Zk 1 ak a’l Zk:l A i=1
and
- — ag G,
||X_Xu,p||-1 Z|al Z A
i (Zk Lay) o k=1 b b

Utilising the inequality[(5.120) we dedude (5.119). O

5.16. Another Reverse Result via a Gruss Type ResultThe following Griss type inequality
has been obtained in [21].

Lemma 5.58.Leta = (ai,...,a,), b = (b1,...,b,) be two sequences of real numbers and
assume that there are I' € R such that

(5.121) —c0o<vy<a <I'<ooforeachi e {1,...,n}.

Then for anyp = (py, . .., p,) a nonnegative sequence with the property thdt , p; = 1, one
has the inequality

(5122) szaz % szaz sz % F '7 sz b - Zpkbk

The constang is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. We will give here a simpler direct proof based on Sonin’s identity. A simple calculation
shows that:

(5123) praz ) szal szb - sz (CL’L 7 il F) (b - ZPIJ%) .
By (5.121) we have

v+T
a; —
2

and thus, by@S), on taking the modulus, we get

;g szazZpH <Zp2
< %(r—wzpi
=1

I —
‘g 27 forall i e {1,...,n}

n

bi— Y prbi
k=1

b; — Zpkbk .
k=1

7+F
a; —
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To prove the sharpness of the constariet us assume thdt (5.122) holds with a constant0,
ie.,

(5.124) Zn:piaibi - ipiai zn:pibi
i=1 i=1 i=1

provideda; satisfies|(5.121).
If we choosen = 2 in (5.124) and take into account that

2 2 2
Zpiaz’bz’ — Zpiai Zpibi = p1pa (a1 — ag) (b — by)
=1 =1 =1

providedp; + p, = 1, p1,p2 € [0,1], and since

2 2
> pilbi = pibs
i=1 k=1

<c('=n) Zpi
1=1

b; — Z Prbr
=1

= p1|(p1 + p2) b1 — p1by — Paba| + 2 |(p1 + P2) b2 — P1by — Pabo

= 2p1p2 |b1 — by
we deduce by (5.124)
(5.125) pipe|ar — az| [b1 — ba| < 2¢(I" =) [b1 — ba| p1po.
If we assume thaty, p, # 0, by # by anday = I, a; = v, then by [(5.125) we deduce> 1,
which proves the sharpness of the cons@nt 0J

The following corollary is a natural consequence of the above lemma.

Corollary 5.59. Assume that = (a4, ...,a,) satisfies the assumptioh (5.121) apds a
probability sequence. Then

(5.126) 0< Zpia? - <Zpiai> < % (T'—7) Zpi

The constang is best possible in the sense mentioned above.

The following reverse of théC'BS) —inequality may be stated.

Theorem 5.60. Assume thak = (zy,...,z,) andy = (y1,...,y,) are sequences of real
numbers withy; £ 0 (i = 1,...,n) . If there exists the real numbers, M such that

(5.127) m < i < M foreach: € {1,...,n},
Yi

then we have the inequality

n n n 2
(5.128) 0< Y a2y 2 - (Z xy)
=1 =1 =1
<3or-m 3w % ]|
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v} 2,alszori:1,...,nand7:m,I“:Min 5.126), we

Z’ﬂ
deduce
DT 2
=1 )
n TilYi
> k1 Vi < k=1 Z )
1 T -
<5 (M-m) vi | TkYk
2 P 1yk; Yi Zk: 1ykk1
1
=5 (M —m) Zlyz xiZyi—inxkyk
(Ek 1 k =1 = =
1 ,
=S5 (M —m) =5 > lwil Do |
2 (Zk 1 k zzl Z Tk yk
giving the desired inequality (5.1IP8). O
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6. RELATED INEQUALITIES

6.1. Ostrowski’s Inequality for Real Sequences.In 1951, A.M. Ostrowskil[2, p. 289] gave
the following result related to thg” B.S) —inequality for real sequences (see also [1, p. 92]).

Theorem 6.1.Leta = (a,,...,a,) andb = (b, ...,b,) be two non-proportional sequences
of real numbers. Lex = (24, ..., x,) be a sequence of real numbers such that

=1 =1
Then
no 9
(62) le > Zz 2l a; - 5
D i1 @F Do b — (O, aibi)

with equality if and only if

(63) T = fk Zz 1az 2ak’ Zz lab :
> ic1 a3 i= 1bz (Zi:l a;bi)

foranyk € {1,...,n}.
Proof. We shall follow the proof in([1, p. 93 — p. 94].

Let
(6.4) A:ia?, B:ib?, C:iaibi
=1 =1 =1
and
(6.5) yi:% forany i € {1,...,n}.

Itis easy to see that the sequef§ce: (yi, ..., y,) as defined by (6]5) satisfigs (6.1).
Any sequenc& = (z1,...,,) that satisfieq (6]1) fulfills the equality

2T =D T e = qp R
=1 =1

S0, in particular

Zy@ AB AB—C?

Any sequenc& = (z,, ..., ,) that saﬂsﬁe'l) therefore satisfies
(6.6) Zz —Zyl Z i— )" >0,

=1
and thus

;‘” Zyl - AB AB-C?
and the inequality] (6]2) is proved.

From [6.6) it follows that equality holds in (6.1) iff, = y; for eachi € {1,...,n}, and the
theorem is completely proved. O
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6.2. Ostrowski’s Inequality for Complex Sequences.The following result that points out a
natural generalisation of Ostrowski’s inequality for complex numbers holds [3].

Theorem 6.2.Leta = (ay, . .. ,an),_l_) = (by,...,b,) andx = (1,...,1,) be sequences of
complex numbers. #andb, whereb = (b1, ...,b,) , are not proportional and

=1
(6.8)

then one has the inequality

(6.9) zn:|xi|22 — nZ?llo;F —
i=1 D i lail” D2 1bil _|Zi:1 aibi‘

with equality iff

n 2
>t lak|
andu € C with
(6.11) Il = Yiclof

Zk 1|ak| Zk 1|bk ‘Zk 1akbk"

Proof. Recall the(C' BS) —inequality for complex sequences

n n n 2
(6.12) STl ol > 1w
k=1 k=1 k=1

with equality iff there is a complex numbere C such that

(6.13) u,=auvg, k=1,...,n
If we apply (6.12) for
wp = 2 — % -,
> i il
=d; — M - ¢, Wheree # 0 andc,d,z € C*,
>y lail”
i=11Ci
we have
2, Zn de 2
2;C; . iCi
(614) 2k — ZlZZ'C]C dk—%'ck
Z Zz 1| | ; Zi:l |Ci’2

n n — n —
>3 (a- 222 a) (4- 2205
k=1 > iz leil >ic il

with equality iff there is & € C such that

i1 ZiCi v dic
(615) zk:%f;{—i—ﬁ dk—%-ck .
>ie il > iz lail
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Since a simple calculation shows that

_ 2 2 2 _ 2
) PP LN N > ENSD BTN >R
Py )
k=1 i1 lcil (X |Ck|2)
_ 2 2 2 — 12
i dy — 22;1 diC; cop| = ZZ:1 || ZZ:I lel” = ‘22;1 d
== = 2
k=1 > i leil Xk |Ck|2)

and

n n — n —
E 2k — —Z:L:1 ZZC; o | | de — =5 lc; -
k=1 Zz‘:1 |ci Zi:l i

e S ekl = o h 2kl - Yo p cdi
- (20, lef?)’

then by [6.1P) we deduce

6.16) [ > lz* ) lenl* -
k=1 k=1

2

2 n n
D Idl") el -
k=1 k=1

n
E ZkCr
k=1

n
E djCr
=1

with equality iff there is a3 € C such that[(6.15) holds.
_ If &, %, b satisfy [6.7) and (6]8), then bly (6]16) and (§.15) for the chaicesx, € = a and
d = b, we deduce| (6/9) with equality iff there islac C such that

TL_ aiBi
Ty = (bk EpVSLIL Gk) )

> i |ai|2
and, by[(6.8),
- iy aibi .
; Zizl |az~|2
Since [(6.1]) is clearly equivalent {o (6]15), the theorem is completely proved. O

6.3. Another Ostrowski's Inequality. In his book from 1951, [2, p. 130], A.M. Ostrowski
proved the following inequality as well (see al50 [1, p. 94]).

Theorem 6.3. Leta, b, X be sequences of real numbers so that 0 and

(6.18) Y ap=1
k=1
k=1
Then
n 2 n 2 n 2 n 2
(620) Zk‘:l a’k‘ Zk:zlgn a2(Zk‘=l a’k’bk’) Z (Z bk;l‘]g) )
k=1 Y 1
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If a andb are non-proportional, then equality holds in (6]20) iff
n o2 " b
(621) Tp=q- bk Zi:l ai Qg Zz:l albl
n 1 n n n
(Ciyad)® |0 a2 S0 0 — (0 aibi)?]
ke{l,....,n}, g€ {-1,1}.

We may extend this result for sequences of complex numbers as follows [4].

Y

NI

Theorem 6.4.Leta, b, X be sequences of complex numbers soahat0, a, b are not propor-
tional, and

(6.22)  lmlf =1
k=1
(6.23) > apay = 0.
k=1
Then
_ 2
Sy e S el = | ade]” |~
(6.24) L Z:‘ P L > by
k=1 1%k k=1
The equality holds irf (6.24) iff
" b,
(6.25) xkzﬁ<bk—%-ak>, ke{l,...,n};
=1 1"
wheref € C is such that
1
(X lal*)?

(6.26) 6] =

(i anl” Sy nl? = [y i)

Proof. In Subsectioh 6]2, we proved the following inequality:

6.27) | lal*D lenl - D ldD el -
k=1 k=1

k=1 k=1

2 2

n

E ZkC,

k=1

n
E diCy,
k=1

2
>

n n n n
_ ) B _
E 2y, - E lex]” — E 21,Cr, E crdy
k=1 1 k=1

k=1 = k=

for anyz, ¢, d sequences of complex numbers, with equality iff thereisaC such that

noa "G
(6.28) = 2 EG g 2 dG
i1 lcil > ict lcil
foreachkt € {1,...,n}. ~
If in (6.27) we choos& = , ¢ = a andd
(6.23) hold, then we get

n n n n
D el D lael® | D Ioul* D lanf” -
k=1 1 k=1

k=1 k=

b and take into consideration that (6.22) and

(&)
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which is clearly equivalent t¢ (6.24).
By (6.28) the equality holds if (6.P4) iff
> iy bidl )
;Ckzﬁ bk—:l_—wzk , ke{l,...,n}.
( >ict |a2-|2
Sincex should satisfy[(6.92), we get

n

1= |zl

k=1
l ak
Zz 1 | |
DO
= |8I° [ by — =
; Dkt ’ak‘Q
from where we deduce thatsatisfies[(6.26). O

6.4. Fan and Todd Inequalities. In 1955, K. Fan and J. Todd![5] proved the following in-
equality (see also [1, p. 94]).

Theorem 6.5.Leta = (ai,...,a,) andb = (by,...,b,) be two sequences of real numbers
such thata;b; # a;b; for i # 5. Then

> 1 a; n - - a;
(6.29) — =10 — < -7
(Ooimiad) (i 7)) — (i, aibi>2 2 zzz; %1: ajb; — ab;

Proof. We shall follow the proof in([1, p. 94 — p. 95].

Define )
L n Q; .
xz.—(2> Z—ajbz‘_a/ibj (1<i<mn).
JFi

The terms in the sum on the right-hand side

n -1 n n
n a;a;
;$iai - ( 2 ) Z 2 a;bi _]aibj

i=1 Jj=
J#i

can be grouped in pairs of the form

-1
n a;a; A Q; ) .
( 2 ) (a]’bi — CI,Z'bj + aibj - ajbi) (Z 7é j)

and the sum of each such pair vanishes.

Hence, we deduce
Z a;T; = 0 and Z bﬂfz =1.
=1 =1

Applying Ostrowski’s inequality (see Sectipn6.1) we deduce the desired flesult (6.29)0]

A weighted version of the result is also due to K. Fan and J. Todd [5] (seelalso [1, p. 95]).
We may state the result as follows.
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Theorem 6.6.Letp;; (i,5 € {1,...,n}, i # j) be real numbers such that

(6.30) pij = pji, forany ¢,j € {l,...,n} with i# j.

DenoteP := Zl§i<j§n pi; and assume that # 0. Then for any two sequences of real numbers
a=(a,...,a,) andb = (by,...,b,) satisfyinga;b; # a;b; (i # j), we have

2

ZT‘Lﬂ a; pZ]a]
6.31 =2t E E — 7
( ) Zn 2 ?:1 bZQ _ (2 :Z . azbz P2 aibj

i=1 @ =1
J#i

6.5. Some Results for Asynchronous Sequencef. S (R) is the linear space of real se-
quences,S; (R) is the subset of nonnegative sequences Bp(N) denotes the set of finite
parts ofN, then for the functional” : P; (N) x S} (R) x 5% (R) — R,

(6.32) T( P, &, B <sz szb2> Zpiaibi

el iel il

we may state the following result/[6, Theorem 3].

Theorem 6.7.1f |a] = (|a,|),cy @nd |b| = (|b,]),. are asynchronous, i.e.,
(lail = laz]) (lb:] = [bs]) <0

forall i, j € N, then

(6.33) T(I,p,a,b) > Lier P16l 2ier pilbl > pilaibi| > 0.
Yier Pi i€l

Proof. We shall follow the proof in([6].
Consider the inequalities

[N

<sz’ Zpia?) > pilail

el iel iel
and

[N

(Zpizpib?) > pilbil

i€l el i€l
which by multiplication give

1
ZPM?ZP&? > Zzelp ‘a ’Zze[p | ’
Zie]pi

il el

Now, by the definition ofl” and byéebyéev’s inequality for asynchronous sequences, we have

— i i | ; i |bs
ZZEI Di icl
D icr Pilail 2ieq pi |bil
2 el el o D; |az| |bz|
D ier i ;
>0
and the theorem is proved. O

The following result also hold$ [6, Theorem 4].
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Theorem 6.8.1f |a| and|b| are synchronous, i.e(|a;| — |a;]) (|b:| — |b;|) > 0forall i, € N,
then one has the inequality

(6.34) 0<T(I,p,a,b) <T(I,p,ab,1),
wherel = (¢;),cy, € = 1, 7 € N.

Proof. We have, byCebySev’s inequality for the synchronous sequerifes= (a?),_, and
B? = (b?),.y that

N

T(I,p,a,b) = (Zpl ZpJ)z) — | piasbs

el i€l i€l
< (zpiafzﬁzpi) IS
i€l i€l i€l
=T (I,p,ab,1)
and the theorem is proved. O

6.6. An Inequality via A — G — H Mean Inequality. The following result holds [6, Theorem
5].

Theorem 6.9. Leta andb be sequences of positive real numbers. Define

a b2
(6.35) A, =
Zie[ azz ZZEI bzz

where; € [ and/ is a finite part ofN. Then one has the inequality

2 ATF s
(Z I azbz) a; \ 7| Tier i ier?
(6.36) i€! > i
Zzel 7 iel bzg g bz
> Zzel 7 el bz2

- b3 °
Zzel b; ZZGI a;

The equality holds in all the inequalities frojn (6.36) iff there exists a positive nuinbei)
such thata; = kb, forall i € I.

Proof. We shall follow the proof in([6].
We will use theAG H —inequality

1 P% Py
(6.37) - D _PiTi = ' >
PI Z g Z’LEI T;
wherep; > 0, z; > 0 foralli € I, whereP; := ., p; > 0.
We remark that the equality holds [n (6]37)ff = =, for eachi, j € I.
Choosingy; = a; andz; = % (i € I) in (6.37), then we get
2

(638) Zié] aibi > H (Z) ZZG; a? > ZiEI alz

2 = )
D ier 4 ier N Zief%

Sy
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and byp, = b? andz; = &, we also have

b2

(6 39) Zie[ aibi > (&) ziEZI b% > ZiGI bl2
' S - 11(5 = B
el i iel t Ziela_i

If we multiply (6.38) with [6.39) we easily deduce the desired inequdlity {6.36).
The case of equality follows by the same case in the arithmetic mean — geometric mean —

harmonic mean inequality. We omit the details. O
The following corollary holds |6, Corollary 5.1].
Corollary 6.10. Witha andb as above, one has the inequality

1
2

ad b3
Zie[ by Ziel @ > Zie[ a; icl b}
2 — 2 -
(Ziel aibi) (Ziel aibi)
The equality holds i (6.40) iff there iska> 0 such thata; = kb;, i € {1,...,n}.

6.7. A Related Result via Jensen’s Inequality for Power Functions.The following result
also holds([6, Theorem 6].

(6.40)

Theorem 6.11.Leta andb be sequences of positive real numbers and 1. If I is a finite
part of N, then one has the inequality

2 9 2—p%
(6.41) (Ziel aibi) < [Ziel a; b} Dicr a;b; " ‘

Dier @i D ier b T D ier @i D icr b
The equality holds irf (6.41) if and only if there exist8 & 0 such thatu; = kb; for all i € I.
If p € (0,1), the inequality in[(6.41) reverses.
Proof. We shall follow the proof in([6].
By Jensen’s inequality for the convex mappifigR, — R,
fle)=2a" p=1
one has
er ivi \" i iy
(6.42) (—ZZE];IP ) < Zer Pit Glgf ,
whereP; == 3. pi, pi > 0, z; > 0,7 € I. The equality holds in (6.42) ifi;; = x; for all
,7 € 1.
2’]Niw, choosing in21)>l- = a2, z; = %, we get

1
(643) Zie[ a’ibi < Eié] a’?ipbf g
Dict ai ~ dict a;
and forp; = b7, z; = §*, the inequality) also gives
1
2p\ »
(6.44) 2 ier @ibi < D i1 @ ;7 .
Zie[ b’? N Zie[ b’?

By multiplying the inequalitieq (6.43) anfd (6144), we deduce the desired result[from (6.42).

The case of equality follows by the fact thatfin (§.42) the equality holdsjff_, is constant.
If p € (0,1), then a reverse inequality holds in (6/.42) giving the corresponding result in

©.43). O
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Remark 6.12. If p = 2, then [6.4]l) becomes ti{€'BS) —inequality.

6.8. Inequalities Derived from the Double Sums Caselet A = (a;;), ._;—andB = (bij)i,jzﬁ

i,j=1,n
be two matrices of real numbers. The following inequality is known agdheS) —inequality
for double sums

n 2 n n
(6.45) (Z aij%) <y b
ij=1 ij=1  ij=1

with equality iff there is a real numbersuch that;; = rb;; for anyi,j € {1,...,n}.
The following inequality holds |7, Theorem 5.2].

Theorem 6.13.Leta = (ay, ..., a,) andb = (b1,...,b,) be sequences of real numbers. Then

n 2 n 2 n n n n
(6.46) <Zak) + (Zbk> =2 agbp| <n Y (ap+b7) =2 ar» by
k=1 k=1 k=1 k=1 k=1

k=1 =

Proof. We shall follow the proof from([7].
Applying (6.4%) fora;; = a; — b;, bj; = b; — a; and taking into account that

Z (a; — bj) (b; —aj) = QnZakbk — (Z ak> — <Z bk>

n

Z (ai—bj)2:n2(ai+bi) —QZakZbk
1 k=1

i,j=1 k= k=1 =
and
Z (b; — a;)* = ”Z (ai +07) — QZakZbk,
i,j=1 k=1 k=1 k=1
we may deduce the desired inequaljty (6.46). O

The following result also hold§[7, Theorem 5.3].

Theorem 6.14.Leta = (ay,...,a,), b= (b1,...,b,), €= (c1,...,c,) andd = (dy, ... ,d,)
be sequences of real numbers. Then one has the inequality:

Do iy aids

2

(6.47) |det
Do bici Yo bid;
D i O D iy ibi > € i Cidi
< det x det
D i @ibi > i Cids > d;

Proof. We shall follow the proof in([7].
Applying (6.4%) fora;; = a;b; — a;b;, b;; = c;d; — c;d; and using Cauchy-Binet’s identity|[1,
p. 85]

n

(648) % Z (aibj — (ljbz') (Cidj — dei) = i a;C; i bzdz — (i azd2> (i szZ)
1=1 i=1 i=1 =1

ij=1
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and Lagrange’s identity [1, p. 84]

n n n 2
(649) % Z (aibj — Cljbi)z = a? Z b12 - <Z Ojlbz> y
i=1 i

i,j=1 i=1

we deduce the desired res(ilt (.47). O

6.9. A Functional Generalisation for Double Sums. The following result holds 7, Theorem
5.5].

Theorem 6.15.Let A be a subset of real numbeB, f : A — Randa = (ay,...,a,),

b = (by,...,b,) sequences of real numbers with the property that
(i) agb;, a?, b2 € Aforanyi, k€ {1,...,n};
(i) f(a}), f(b) > 0foranyk € {1,...,n};
(ii7) f2 (arb;) < f(a2) f (0?) foranyi, k € {1,...,n}.
Then one has the inequality

n

2 n
<37 () D05 ().
k=1 k

=1

(6.50) [Z f (axby)

k,i=1

Proof. We will follow the proof in [7].
Using the assumptiofiii) and the(C' B.S) —inequality for double sums, we have

D flarbi)| < 31 (arby)

k,i=1 k,i=1

(6.51)

which is clearly equivalent t¢ (6.50). O
The following corollary is a natural consequence of the above theaorem [7, Corollary 5.6].

Corollary 6.16. Let A, f anda be as above. If
(i) apa; € Aforanyi, k€ {1,...,n};
(ii) f(a}) > 0foranyk € {1,...,n};
(ii7) f? (ara;) < f(a2) f (a?) foranyi, k € {1,...,n},
then one has the inequality

(6.52)

J. Inequal. Pure and Appl. Math4(3) Art. 63, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A SURVEY ON CAUCHY-BUNYAKOVSKY-SCHWARZ TYPE DISCRETEINEQUALITIES 119

The following particular inequalities also hold [7, p. 23].

(1) If ¢ : N— N is Euler’s indicator and (n) denotes the sum of all relatively prime
numbers including and less than then for anya = (ay,...,a,), b = (by,...,b,)
sequences of natural numbers, one has the inequalities

(6.53) [Z ’ (akbi)] <n®) e (ap) > e (07);

k=1
(6.54) > lara) <nd ¢ (af);
ki=1 k=1
n 2 n n
(6.55) [Z s (akbi)] < n? Z s(ap) > s(b7);
k=1 k=1 k=1
(6.56) Z s(apa;) <n Y s(ap).
k,i=1 k=1
(2) f a > 1anda = (ay,...,a,), b= (by,...,b,) are sequences of real numbers, then

(6.57) [Z exp, (akbi)] < n? Z exp, (ap) Z exp, (b7) ;
k=1 k=1

kyi=1
(6.58) Z exp, (axa;) < nz exp, (a}) ;
kyi=1 k=1

(3) If a andb are sequences of real numbers such éhab, € (—1,1) (k€ {1,...,n}),
then one has the inequalities:

3

n 1 2 n 1
(6.59) [Z T e ] > @) 2= =)™
(6.60) > ; <n

wherem > 0.

6.10. A (C'BS) —Type Result for Lipschitzian Functions. The following result was obtained
in [8, Theorem].

Theorem 6.17.Let f : I C R — R be a Lipschitzian function with the constaif, i.e., it
satisfies the condition

(6.61) [f () = f(Y)l < M|z —y| foranyz,y € I.
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If a = (ay,...,a,), b = (by,...,b,) are sequences of real numbers witth; € I for any
i,7€{l,...,n}, then

(6.62) 0<

Zfaz |faz Z|faj |faz)

4,j=1 3,j=1

<> Pagb) = Y f (aiby) f (ashy)

3,j=1 1,j=1
n n n 2
i=1 i=1 i=1

Proof. We shall follow the proof in([8].
Sincef is Lipschitzian with the constarit/, we have

(6.63) 0 < |[f (aibs)| = |f (a;bi)l| < |f (aibj) — f (a;bs)] < M |aib; — a;bil
foranyi,j € {1,...,n}, giving
(6.64) 0 < [(If (aibj)| = | f (a;0:)) (f (asbs) — f (a;b:))|

< (f (aiby) — f (a;0)* < M* (a;b; — a;b;)”

foranyi,j € {1,...,n}.
The inequality[(6.614) is obviously equivalent to

(6.65) | I (aiby)| f (aby) + | (asbi)| f (asbi) — Lf (asby)] £ (aiby) — | (asb)] £ (asby)|
< f2(abj) = 2f (aiby) f (azb;) + [ (a;b;)
< M? (a?b2 2a;b;a;b; +a2b2)

foranyi,j € {1,...,n}. Summing ovet and; from 1 to n in (6.65) and taking into account
that:

Zlfaz )| £ (aiby) Z|fay )| £ (aiby)

i,7=1 i,j=1
Zlfablfaj Zlfa] )| f (aiby) .
3,j=1 2,7=1
> aby) =D P (a5b),
i,j=1 i,j=1
we deduce the desired inequality. O

The following particular inequalities hold![8, p. 27 — p. 28].

(1) Letx = (z1,...,2,),¥ = (v1,...,y,) be sequences of real numbers such that
|z;| < My, 0 < |y;| < My, i€ {l,...,n}.Then foranyr > 1 one has

n n n 2
(6.66) 0<> am )y - (Z \xiyﬂ’”)
=1 =1 =1
n n n 2
< 72 (M Mp) " [Z w ) _vi- (Z |-%‘%|> ] '
=1 =1 =1
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2 If0o<my <|a],0<mg<|yl,i€{l,...,n}andr € (0,1), then

2
(6.67) 0< ZxQ’“Zy - (Z !xiyilr>

=1

2
S(m1m2)2(r—1) ;xz;yz (;m%o

() If0 < |ay| < My, 0 < |ys] < M,,i € {1,...,n},then for any natural numbérone

has
n n
(6.68) 0 < D7 a2t [y [P by PR
’ - (]
=1 i=1
Z 22 |y 2k+1 Z 2h+1 |xi|2k+1
=1

< Z 2(2k:+1 Z 2(2k+1) (Z 1,21@—}—1 2k+1>2

i=1

< (2k+1)° (M M) ™ Z Zyz <Z|x1yz|>

4) If0<my <z;,0<my <y, foranyi € {1,...,n}, then one has the inequality

(6.69) 0 < ”z:; {ln (z_ﬂz - [2: " (2)] |
L seye- (Z y>

m1m2 =1 =1

6.11. An Inequality via Jensen’s Discrete Inequality. The following result hold< [9].

Theorem 6.18.Leta = (ay,...,a,), b = (by,...,b,) be two sequences of real numbers with
a; 0,0 €{1,...,n}. If f: I C R — R is a convex (concave) function drand ; b ¢ [ for
eachi € {1, ... n} andw = (wy,...,w,) is a sequence of nonnegative real numbers then
n 2 b;

o wiab; 2 iz Wi f (i)

(6.70 p(Emrn) < o) S
Dic1 Wit Dic Wi

Proof. We shall use Jensen’s discrete inequality for convex (concave) functions

I « 1 «
(6.71) F 5 dop ) <2 D wif ().

=1 =1
wherep, > 0 with P, := """  p; > 0andz; € I foreachi € {1,...,n}.

If in (-) we choosaﬂ % and p; = wia?, then by {(6.7] .) we deduce the desired result

(6.70). 0

The following corollary holds [9].
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Corollary 6.19. Leta andb be sequences of positive real numbers and assumenthstas
above. Ifp € (—o00,0) U [1,00) (p € (0,1)), then one has the inequality

n p n p=1 5
(6.72) (Z wmﬂ%) <(>) (Z wﬂ?) Zwia?_pbf-

=1 i=1 =1
Proof. Follows by Theorenj 6.18 applied for convex (concave) function [0,¢) — R,
f(x)=aP,pe(-00,0)U[l,00) (pe€(0,1)). O
Remark 6.20. If p = 2, then by [6.7R) we deduce t{¢’BS) —inequality.

6.12. An Inequality via Lah-Ribari € Inequality. The following reverse of Jensen'’s discrete
inequality was obtained in 1973 by Lah and RilgdiqQ].

Lemma 6.21.Let f : I — R be a convex function;; € [m, M| C I for eachi € {1,...,n}
andp = (p1, ..., pn) be a positiven—tuple. Then

1 — M — pL ?:1 Pil; pL ?:1 DiZi — M
) — - ) < n T M).
6739 3o () S S )+ B (0

Proof. We observe for eache {1,...,n}, that
(M —z))m+ (z; —m) M

M—m
If in the definition of convexity, i.e.q,3 >0, a4+ 3 >0
aa + 3b af (a)+ Bf(b)

we choosex = M — x;, § = x; — m, a = m andb = M, we deduce, by (6.75), that
(6.76 o= g (BRI

(M=) [ (m) + (i = m) [ (M)
- M—m

foreachi € {1,...,n}.
If we multiply (6.78) byp; > 0 and sum ovei from 1 to n, we deduce{(6.73). O

The following result holds.

Theorem 6.22.Leta = (ay,...,a,), b= (b,...,b,) be two sequences of real numbers with
a; #0,i€{1,...,n}.If I CR — Risaconvex (concave) function djrands—i €m,M CI
foreachi € {1,...,n} andw = (wy, ..., w,) is a sequence of nonnegative real numbers, then
D i wial f (Z‘) M — —Zgilwif”gi —Zz?ilwiéii” —m
6.77 < (> 1= 1= M) .
(6.77) S S () ) + S (M)
Proof. Follows by Lemml for the choicps= w;a?, v; = 2, i € {1,...,n}. O
The following corollary holds.

Corollary 6.23. Leta = (ay,...,a,), b = (b1,...,b,) be two sequences of positive real
numbers and such that

bi ‘
(6.78) 0<m< —< M<xforeachi € {1,...,n}.

Q;
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If w = (wy,...,w,) is a sequence of nonnegative real numbers and (—oo, 0) U [1, 00)
(p € (0,1)), then one has the inequality

n

n p—1 p— l P _ p
6.79 w»agfpbz-’—l— (M mn w;a; < (> M m w;a;b
( ) Z 1% 7 7 ASZAY
= =1

Proof. If we write the inequality[(6.77) for the convex (concave) functipf) = 27, p €
(—OO, O) U [17 OO) (p € (07 1)) , We get
Zn: w;aib; Zn: w;a;b;
n 2= M — S5 ——5 Ll —
Zz %wl pbf < (>) Yy wiay -mP + Yy wiay m . Mp’
o wial M —m M —m

which, after elementary calculations, is equivalenf to (6.79). O

Remark 6.24. Forp = 2, we get
(6.80) > wib? + Mm Y wia} < (M +m) > wiaib,

which is the well known Diaz-Metcalf inequality [11].

6.13. An Inequality via Dragomir-lonescu Inequality. The following reverse of Jensen’s
inequality was proved in 1994 by S.S. Dragomir and N.M. lonescu [12].

Lemma6.25.Letf : I C R — R be a differentiable convex function n; i (te{l,...,n})
andp; >0 (i € {1,...,n}) suchthatP, := >"" | p; > 0. Then one has the inequality

1 & 1
(6.81) 0< o izlpz’f (z5) — f (Fn Z}%%)

1 & . 1 1 .
Proof. Sincef is differentiable convex oh one has
(6.82) fla)=fly) = @—y) f ),

foranyz,y el.
If we chooser = 7- 3" | piv; andy = yi, k € {1,...,n}, we get

(6.83) f(%Zm%) - ( sza:z yk> () -

Multiplying (6.83) byp, > 0 and summing ovek from 1 to n, we deduce the desired result

(6.83). 0

The following result holds [9].

Theorem 6.26.Leta = (ay,...,a,), b = (by,...,b,) be two sequences of real numbers Wwith
a; 70,1 € {1,....,n}. If f: I C R — R is a differentiable convex (concave) function ion
and ; "1 ei for eachz € {l,...,n},andw = (wy,...,w,) is a sequence of nonnegative real
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numbers, then

2
- - b; . S w;agb;
ZZ; ; @ ; dic w;a3
& - b; i n b
< wia? wiaib; f' (—Z) - w;a;b; wz‘aff, <—Z) .
izl zzl @i i=1 ZZI Q;

Proof. Follows from Lemm5 on choosing = w;a?, x; = %, i € {1,...,n}. O

The following corollary holds [9].

Corollary 6.27. Leta = (ai1,...,a,), b = (by,...,b,) be two sequences of positive real
numbers withu; # 0,7 € {1,...,n}.If p € [1,00), then one has the inequality

n n n 2-p n p
(6.85) 0< Z w;a? Z wiaf_pbf — (Z wm?) (Z wiaibi>
i=1 i=1 i=1 i=1
<p [i w;a? i wiaf_pbi — i w;a;b; i wiaf’_pbﬁ-’_l] )
i=1 i=1 i=1 i=1
If p € (0,1), then
n 2-p n n n
(6.86) 0< (Z w,a?) (Z wiaibi) — Z w;a? Z wia?_pbf
i=1 i=1 i=1 i=1
<p [i w;a;b; 2”: wiaf’fpbf — 2”: w;ar 2”: wiafpbl-] )
i=1 i=1 i=1 i=1

6.14. An Inequality via a Refinement of Jensen’s Inequality. We will use the following
lemma which contains a refinement of Jensen’s inequality obtainedlin [13].

Lemma 6.28.Let f : I C R —R be a convex function on the intervBlandz; € I, p; > 0
with P, := >""" | p; > 0. Then the following inequality holds:

687)  f (F me) <o D pn---pz-kf( —— k“)
" oi=1 15y TR 1=

S ﬁ Z pi1"'pikf <%)
Mg ,enig=1

IN
AN
|

Ing
=

—

£

wherek > 1, k € N.

Proof. We shall follow the proof in[[13].
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The first inequality follows by Jensen’s inequality for multiple sums

11 yeenyig1=1 pll pzk«l»l k+1

n
zil,...,ik+1:1 pll o 'p’ik+1

f

n Tig ot Ty g
Zil,...,ik+1:1 pil o .pik+1f < k+1

= n
zil,...,ik+1:1 pll o 'pik+1

since
n Tig ot Ty g
Zil,...,l’k+1:1 pzl o .pik+1 < k+1

>:Pkn iZ
> nZ;px

i1yeyipr1=1 Piy = Pigya
and

n

Z pil .. .pik+1 — P£:+1,

015tk +1=1

Now, applying Jensen’s inequality for

Ty + Lig + - + Lig,_y + Ly, Ty, + Lig * - + Ty, + Ligyq
N = y Y2 = )
k k
Ligyq + Tiy + Tiy Tt Lig_y
Yy Y41 =
k
we have

f Yty t YRt YR J )+ f () + -+ f () + f (Yrs1)
k+1 - k+1 ’

which is equivalent to

k41
Tiy TTig +Tiy_ +Tiy Tiy g TTig T Tig++Tiy
f ( - 4+ 4 f -

k+1
Multiplying (6.88) with the nonnegative real numbeys, . . ., p;, ., and summing over
i1, ...,1,41 from1ton we deduce

n $i1+'.'+xi
(6.89) > it ( k*l)

<

E+1

i1yt p1=1

n

1 x“—i——l—xzk
N

U151 =1

+oeee A+ Z Diy Digin S

i1 yensipgp1=1

3 g ()

U1t =1

(xik+l T Ty + T+ xik—l)
k

which proves the second part pf (6.87). O
The following result holds.
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Theorem 6.29.Let f : I C R —R be a convex function on the intervala = (ay, .. ., an),
b = (by,...,b,) real numbers such that; # 0,7 € {1,...,n}and € I,i € {1,...,n} . If
w = (wy, ..., w,) are positive real numbers, then
Zn 1wzazbz
6.90 ==
( ) f ( Zz 1w’0a22
1 - 2 2 Z%11 oot Ziliﬁ
= (>0 wa; )k+1 Z 1wi1 Wi @y G, S k+1
7 217...,’Lk+1:
n i bzk
1 a T,
D — Z w,...w,alz...a?f M Tk
= n k 3% 11 ?
(> i w;ay) i1,eip=1 ' * k

1 & bi
<< - alfr =)
T X wief Z-lezaZf (az)
The proof is obvious by Lemn-28 applied for=w;a?, z; = %, i € {1,...,n}.

The following corollary holds.

Corollary 6.30. Leta, b andw be sequences of positive real numbers. df (—oo, 0) U[1, o0)
(p € (0,1)), then one has the inequalities

n —k—1 n
< Qom wiad) 2 2 b; bipr \"
(=) (k+1)° Z Wiy v Wip Gy~ 7~ Ay —L

015t +1=1

< G wia?)p_ 5 ( bi bi, \"
(2) kp Z Wy = * Wy, 11...aik a—“++a

01500t =1

p—1 ,
< < _
(; ; (g w;a ) g wa; "B
- = i=1

Remark 6.31. If p = 2, then we deduce the following refinement of {li&BS) — inequality

2

n 2 (5, wia? )1 k n k+1 k41
(Zwiaibi> < (k1+l) Z ©r Wiy ; Haij

=1 A 1 j=1
1yeelk4+1= yoy

2

IN

" owa? 2k g - :
<211k2l 2 Z Wiy =+ - Wy, Zb” H i

i1,ein=1 =1 -

(S
~ -

1< 5
S cee S Z Z wiwj (biaj —i—aibj)

ij=1

n n
< E w;a; E w;b3.
i=1 i=1
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6.15. Another Refinement via Jensen’s Inequality. The following refinement of Jensen’s
inequality holds (see [15]).

Lemma 6.32.Let f : [a,b] — R be a differentiable convex function ¢a, b) andz; € (a,b),
p; > 0with P, :== """ | p; > 0. Then one has the inequality
1 n
z (F ijxj>
n j=1

(6.91) Pi > opif(w)—f (% Zm%) > sz
=1 " i=1
P Zpi Ti — PLZP]'IJ'
™ oi=1 "oj=1

1 1
—|f (Fn ;M%) :
Proof. Since f is differentiable convex ofia, b), then for eache,y € (a,b), one has the in-
equality
(6.92) fa)=fy)=@-y) fy).
Using the properties of the modulus, we have
(6.93) f@) =f)—@=y) f' ) =1f(x) = f) = @—y) [ )
> f (&) = fF W) = |z =yl 1f W)l

> 0.

for eachz,y € (a,b).
If we choosey = 2- >~ p;z; andz = x;,4 € {1,...,n}, then we have

1 & T
SERIORI 65 vt B CRSLS oOR FTE5 i)
nj:1 nj:1
I & 1 & 1 E
I\ )| e w7 (5 S
Jj=1 7j=1 j=1
foranyi € {1,...,n}.

If we multiply (6.94) byp; > 0, sum overi from 1 to n, and divide byP,, > 0, we deduce

>

v

=

ing
=

f! (Pi ZPﬂj)
[
1 n
sz z (F ijxj)
n 4
1 n
j=1

n
Ly =Y ||
Pn : ? ? Pn ' 773
=1 7j=1
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Since
1 < 1 ¢
szi %‘—szﬂj =0,
" oi=1 =1
the inequality[(6.9]1) is proved.

In particular, we have the following result for unweighted means.

Corollary 6.33. With the above assumptions fflandz;, one has the inequality

(6.95) I (z1) +~7-1~+f(xn) iy (:c1+--~—|—acn)

n

xi_f<x1+~7~l'+xn))

1 n
w2

i=1

>

B I SRR 1 — 1 —
The following refinement of theC' B.S) —inequality holds.
Theorem 6.34.1f a;,b; € R, i € {1,...,n}, then one has the inequality;
n n n 2
(6.96) > a’ ) b — (Z aibi>
=1 =1 =1
1 i a; b;
> " 12 n 2 n 2
N Zi:l b? i—1 <Zj:1 ajbj) (Zj:l b?)
=2| > anbi| Dbl [Yobs| |l =0
k=1 i=1 j=1 7o
Proof. If we apply Lemma 6.32 fof (z) = 2%, we get
n 1 n 2
2
(6.97) - Zp:c — (Fn pr>
n n 2
1 ) 1
> szi Ty — szﬂj
" oi=1 =1
1 & 1 & I «
-2 szkﬂ% : szi T; — szjajj > 0.
" k=1 " i=1 " =1
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If in (), we choose; = b7, z; = %,i € {1,...,n}, we get

2? 1 af _ (Z? 1 a1b2>2

n n 2
> 1 sz-a—?— M
SITLEsE T\ oL

i=1"1 ;—q j=1"77

Zk 1akbk Zz 1b12 _Z - Z] 1a]b /Z] 1 ]
Zz 1 b% Zz 1 sz ’
which is clearly equivalent t¢ (6.96). O

6.16. An Inequality via Slater’'s Result. Suppose that is an interval of real numbers with
interior f and f : I — R is a convex function od. Then f is continuous ory and has finite

left and right derivatives at each point Bf Moreover, ifx, y e; andx < y,thenD~ f (z) <
DY f(z) < D™ f(y) < D*f(y) which shows that bottD~ f and D* f are nondecreasing

functions on}. It is also known that a convex function must be differentiable except for at most
countably many points.
For a convex functiory : I — R, the subdifferentialof f denoted by f is the set of all

functionsy : I — [—o0, 00| such thatp <}) Cc Rand

(6.99) f(x)>f(a)+ (x—a)p(a) forany z,a € I.

It is also well known that iff is convex onl, thendf is nonempty,D" f, D~ f € 0f and if
p € df, then

(6.100) D f(x) < ¢(x) < D' f (x)

[e]
for everyx €]. In particular,p is a nondecreasing function.

If f is differentiable convex on, thenof = {f'}.
The following inequality is well known in the literature as Slater’s inequality [16].

Lemma 6.35.Let f : I — R be a nondecreasing (nonincreasing) convex functigne 1,
p; > 0with P, :== >"" ' p; > 0and} " pip(z;) # 0 wherep € Jf. Then one has the
inequality:

_ T Zz 1 Pili®p (CBZ))
(6.101) Zpl i <f( S () )

Proof. Firstly, observe that since, for exampfeis nondecreasing, them(xz) > 0 foranyz € I
and thus

(6.102) Zz‘? piTip (:) el
zizl pitp ()
since it is a convex combination of with the positive weights
M7 1=1,...,n.
> i1 Pitp (i)

A similar argument applies if is nonincreasing.
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Now, if we use the inequality (6.99), we deduce

(6.103) f@)=f(z) > (x—ax)p(z;) forany z,z; €1, i=1,... n.
Multiplying (6-103) byp; > 0 and summing overfrom 1 to n, we deduce
1 1 < 1 <
(6.104) f(x)— 2 Zpif () > - 2 ZPW (zi) — 2 ZPi»’UW (@)
" oi=1 " =1 =1
foranyz € I.

If in (6.104) we choose
Z?zl pixip (%)
Sy pisp ()
which, we have proved that it belongsitowe deduce the desired inequality (6..01). O

Tr=

If one would like to drop the assumption of monotonicity for the functfothen one can
state and prove in a similar way the following result.

Lemma 6.36.Let f : I — R be a convex functiony; € I, p;, > 0 with P, > 0 and
S e (;) # 0, wherep € Of. If

Z?:l Dikip (xl)
(6.105) S o (@)

el

then the inequality (6.101) holds.
The following result in connection to tH€'B.S) —inequality holds.

Theorem 6.37.Assume thaf : R, — R is a convex function oR; := [0, 00), a;, b; > 0 with
a; #0,i€{l,....,n}and "  aZp (Z—) # 0 wherep € 0f.

7

(7) If fis monotonic nondecreasing (nonincreasing)imo) then

A S abie (%)
(6.106) 2 (—) <> al-f Z
2o\ =& S ()
(1) If
D i1 Gibip (%)
(6.107) > 0,
D i aFp (b—:)
then [6.10p) also holds.

Remark 6.38. Consider the functiorf : [0,00) — R, f (z) = 2P, p > 1. Thenf is convex and
monotonic nondecreasing apdz) = pz?~t. Applying (6.106), we may deduce the following
inequality:

n p+1 n n p
(6.108) p <Z af’pbﬁ“> <Y a? (Z a?”bf)
=1 =1 =1

fOt‘pZ1,ai,bi20,i:1,...,n.
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6.17. An Inequality via an Andrica-Ragsa Result. The following Jensen type inequality has
been obtained in [17] by Andrica and Rasa.

Lemma 6.39.Let f : [a,b] — R be a twice differentiable function and assume that

m= inf f"(t)>—oco and M = sup f"(t) < .
tG(a,b) tG(a,b)

If 2; € [a,b] andp; > 0 (¢ =1,...,n)with """  p; = 1, then one has the inequalities:
1 n n 2
2
1 u ’
5 sz (Z pﬂi)
1=1

Proof. Consider the auxiliary functiof,, () := f (¢) — 2mt?. This function is twice differen-
tiable andf” (t) > 0, t € (a,b), showing thatf,, is convex.
Applying Jensen’s inequality fof,,, i.e.,

Zpifm (€5) 2 fn (szfﬂz) )

we deduce, by a simple calculation, the first inequality in (§.109).
The second inequality follows in a similar way for the auxiliary functjon(¢) = %Mﬁ —
f (). We omit the details. O

The above result may be naturally used to obtain the following inequality related to the
(C'BS) —inequality.

Theorem 6.40.Leta = (ai,...,a,), b = (by,...,b,) be two sequences of real numbers with
the property that there exists I' € R such that

(6.110) —00 <y < b—z I' < oo, foreachi € {1,...,n},
andb; # 0,17 = ;n. 0f f:(v,T') — Ris twice differentiable and
m = inf f”() and M = sup f"(t),
te(nr te(7.I)

then we have the inequality

(6.111) %m Zn:afzn:bf— (Zn:ab>
<Zb22b2 ( ) (Zb?) f( “a”)

1 2

<M Z Zb
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2

Proof. We may apply LemmE .89 for the chmqgs_ ST andz; = 3 to get

1| X e (ZZ 16”9)
20 | 2k b

=1 b
2 n
< Zz 1b2f( Z) _f(zzzlazbl)
D= 2= b
1 Zn_ (12 <Zn_ aibi>2
< M 727’—1 i 17—11
2 [zkl i\ i
giving the desired resuft (6.1]11). O

The following corollary is a natural consequence of the above theorem.
Corollary 6.41. Assume thai, b are sequences of nonnegative real numbers and

6.112) 0< §%§¢<ooforeachz‘e 1,....n}.

Then for anyp € [1, c0) one has the inequalities

(6.113) % p—1) P2 Z Zzﬂ (i )

=1

< 2_: G (i a! b?"’)p - (2_; g ) B (Z aibi>p

i=1 i=1
1 n n n 2
i=1 i=1

if p € [2,00) and

(6.114) %p (p—1)pr2 Xn: a? Xn: by — (Xn: aibi)
=1 =1 =1

n n p n 2-p n p
< Z b; (Z aszz_p) - (Z b; (Z aibi>
i=1 =1

i=1 i=1

n n n 2
< %p (p—1)" 2 D> al Y b} - (Z az’bi)
=1 =1 =1

if pell,2].

6.18. An Inequality via Jensen’s Result for Double Sums.The following result for convex
functions via Jensen’s inequality also holds|[18].

Lemma 6.42.Let f : R — R be a convex (concave) function akd= (x1,...,2,), p =
(p1, ..., pn) real sequences with the property that> 0 (: = 1,...,n)and}_" , p; = 1. Then
one has the inequality:

St = (0, piv)” < (>) Dnicjen Pty | Sasf (Ao Axl)]

(6.115) f —— — | < (= — — )
> i1 P20 — (Do ipi) Do P — (i Zpi)
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whereAzy, .= x4 —zx (k=1,...,n — 1) is the forward difference.
Proof. We have, by Jensen’s inequality for multiple sums that

n n 2 2
(6116) f Zi:l pix% - (Zizl pil’z‘) —f Zl<l<]<n bipj (X ( - ZU]) ]

n . n . 2 2
Zi:1 i%p; — (Zi:1 ip;) i Zl§i<j§n DPiPj (j—1)

Tj—XT; 2
D i<icj<n Pili (J — i)’ %

. N2
Zl§i<j§n piDj (j—1)

=f

Xj—T4 2
iyt G- i) f (2220)
< =:71.

= . N2
Zl§i<j§n pipj (J — 1)

On the other hand, fof > i, one has

7j—1

(6.117) Tj— T = Z Ty — Tg) Z Axy,
k=i

and thus

j-1 2
x )2 = (Z Axk> = Z Az, - Axy.
k=i

k=i
Applying once more the Jensen inequality for multiple sums, we deduce

(z; — z;)° Zkl —; Az - Az Zkl _; J (Azy - Axy)
6.118 =LY =
©119) f[u—ﬁ] f[ i G-
and thus, by[(6.118), we deduce

<(>)

S ; f(Azy-Azy)
Zl<z<]<nplpj (] - Z>2 kl G— Z)Qk l

Zl<i<j<n pip; (J — i>2
B D i<icjen PiPi |2 hims L [ (Axy, - Axy)
N Doie Ppi — (0 ipi) 7
and then, by[(6.116) and (6.119), we deduce the desired ineqliality|(6.115).
The following inequality connected with tHé€'BS) —inequality may be stated.

(6.119) 1<(>)

O

Theorem 6.43.Let f : R — R be a convex (concave) function aad= (a;,...,a,), b =
(b1,...,b,), W = (wy,...,w,) sequences of real numbers suchthat 0,w;, >0(i=1,...,n)
and not allw,; are zero. Then one has the inequality

(6 120) f Z? lwl 2 Zz 1 U)sz (Z?:l wiaibz’)2
Z w;b; Z¢ | Pw; by — (Z?:1 iwibz‘)2
Zl<z<j<n w,w]bsz [ ;c_lizf (A (%) A (%))}
Z? 1 w;b} Z¢ | 2w b7 — (Z?zl iwibz‘)Q '

Proof. Follows by Lemm-z on choosing = w;b? andz; = ©,i=1,...,n. We omit the

details. O

<(>)
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6.19. Some Inequalities for the CebySev Functional. For two sequences of real numbers
a=(an...,an), b= (by,...,b,) andp = (p1,...,pn) Withp; > 0 (i € {1,...,n}) and
>+ pi = 1, consider theCebySev functional

(6.121) (p.a Zplaz ; szazzpz i

By Korkine’s identity [1, p. 242] one has the representation

(6.122) T (p,a,b) = Zplpj — a;) (b; — by)
z] 1
Z PiP; (aj - ai) (bj - bi) .
1<i<j<n

Using the(C'BS) —inequality for double sums one may state the following result
(6.123) [T (p,a,b)]" <7 (p,a,a 7 (p,b,b),
where, obviously

(6.124) T(p,aa Z pip; (a; — a;)°
lj 1
2
- Z pip; (a; — a;)” .
1<i<j<n

The following result holdg [14].

Lemma 6.44. Assume thad = (ai,...,a,), b = (by,...,b,) are real numbers such that for
eachi,j € {1,...,n},i < j,one has

wherem, M are given real numbers.
If p = (p1,...,p,) is anonnegative sequence Wih;_, p; = 1, then one has the inequality

(6.126) (m+M)T (p,a,b) > T (p,a,a) +mMT (p,b,b).
Proof. If we use the conditior] (6.125), we get
(6.127) [M (b = bj) = (ai — a;)] [(a; — a;) —m (b = b;)] = 0

fori,j € {1,. n}z'<j
If we multlply in ( ) then, obV|oust, foranyj € {1,...,n},i < j we have

Multiplying (6.128) byp,p; > 0, i,j € {1,...,n},4 < j, summing ovei andj, i < j from1
to n and using the identities (6.122) apd (6.1124), we deduce the required ineduality (6.125).

The following result holds [14].

Theorem 6.45.1f a, b, p are as in Lemmp 6.44 antl > m > 0, then one has the inequality
providing a reverse forf (6.123)

(6.129) [T (p,a,b)]” > ————T(p,a,a)T (p,b,b).

QJI
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Proof. We use the following elementary inequality
1

(6.130) ar? 4+ —y? > 2y, x,y>0, a>0
(0%

to get, for the choices

the following inequality:

- 1
6.131 VmMT (p,b,b) +
(6131)  VmMT(p.bb)+ 7o
Using (6.130) and (6.131), we deduce
(m+M) = = —=\qi I
—FT 3 7b 2 T 7b7b T ) Ay 2
v L (P.ab) > [T'(p,b,b)]* [T'(,5,3)]
which is clearly equivalent t¢ (6.1R9). O

The following corollary also holds [14].
Corollary 6.46. With the assumptions of Theorgm 6.45, we have:

(6.132) 0 < [T (p.b,b)]? [T (p.,a)] — T (p.a,b)
(Var—ym)
< Wy T(p,a, b)
and
(6.133) 0<T(p,aa)T (p,b,b) - [T (p,a b)]’
< B 17 (p.a.b)]

The following result is useful in practical applications|[14].

Theorem 6.47.Let f, ¢ : [a, 5] — R be continuous offtr, 5] and differentiable orjc, ) with
g (x) #0forz € (o, 3) . ASsume

f' () f' ()
ze(a) g (z) xé”}i% g ()

If X is a real sequence with; € [«, 3] andx; # z; for i # j and if we denote by (X) :=
(f (x1),...,f (z,)), then we have the inequality:

(6.135)  (y+D)T(p,f(X),g(X) =T (pf(%),f(X)+TT (p,g(X),g(X))
foranypwithp, >0 (i e {1,...,n}),> " pi=1.
Proof. Applying the Cauchy Mean-Value Theorem, there exjsts («, ) (i < j) such that
fxg) = fz) (&)
== € v,

g —g() g <
fori,j e {1,...,n},i < j Then
f(x;) — f(%)} [f(%‘) — [ (i)
g () —g(zi)] Lg(x;) —g(x)
which, by a similar argument to the one in Lemma 6.44 will give the desired rgsult [6.13b).

The following corollary is natural [14].

(6.134) —00 < 7y = =I < 0.

(6.136)

(6.137) r—

—y|>0, 1<i<j<n,
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Corollary 6.48. With the assumptions in Theor¢m §.47 andl i ~+ > 0, then one has the
inequalities:

6138)  [T(P.EE).g@P> I T(p.8®),f)7T(P.g(X).8(X),
(y+T)
(6.139) 0<[T(p,f(X),f(X)) [T/ egX),egX): —T[H (%), eX)
V- A7)
( 2\/7—F) P.f(X),8(X)
and
(6.140) 0<T(®f(%),f(X)T B g%),gX) -1 f(%),gX)
(T —9)?

<

TR B ().

6.20. Other Inequalities for the éebyé.ev Functional. For two sequences of real numbers
a=(ay,...,a,), b= (by,...,b,) andp = (p1,...,p,) With p; > 0 (i € {1,...,n}) and
>, pi = 1, consider theCebySev functional

(6.141) (p,a szaz i Zplazsz i

By Sonin’s identity [1, p. 246] one has the representation
(6.142) T (p,a,b) = sz a; — A, (p,a)) (b — A, (p,b)),
where
p,a) := ZPJ%A A, (p,b) = ijbj
j=1 j=1
Using the(C'BS) —inequality for weighted sums, we may state the following result
(6.143) [7(p.a,b)]" <T(p,a,8) T (p,b,b),

where, obviously
(6.144) T(p,a,a) = sz a; — A, (p,a))”.

The following result holdg [14].

Lemma 6.49.Assume thaid = (ay,...,a,),b = (b,. .. ,b,) are real numbersp = (py, ..., pn)
are nonnegative numbers with;_, p; = 1 andb; # A, (f), b) foreachi € {1,... ,n}.If

— A, (P, )
bi — A, (p, b)

wherel, L are given real numbers, then one has the inequality
(6.146) (I+L)T (p,a,b) >T(p,a a)+ LIT (p,b,b).

(6.145) —oo<l§ <L<oo forallie{l,...,n},
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Proof. Using [6.145) we have

al_An<f)75-

6.147 L— 3

(6147 ( b= An (5. D)
foreachi € {1,...,n}.

If we multiply (6.147) by(b; — A, (B, b)) > 0, we get

(6.148) (a; — An (,8))” + LI (b — A, (B,B))”
< (L+1) (a; — A, (p,3)) (bi — A, (B, b))

foreachi € {1,...,n}.
Finally, if we multlply (6.148) byp; > 0, sum overi from 1 ton and use the |dent|t)[(B;I{42)

and [6.144), we obtainf (6.146).

Using Lemmd 6.49 and a similar argument to that in the previous section, we may state the
following theorem[[14].

Theorem 6.50. With the assumption of Lemma §.49 and.if> [ > 0, then one has the
inequality

AL
(L+1)°

The following corollary is natural [14].

(6.149) [T (p,a,b)]” >

Corollary 6.51. With the assumptions in Theorém §.50 one has

(6.150) 0<[I'(p,5a)? [T (p.b,b)]* — T (p.ab)
(vi-vi)
< N T (p,a,b),
and
(6.151) 0<T(p,aa)T (p,b,b) — [T (p,a b)]’
< 1r . )

6.21. Bounds for the Cebyev Functional. The following result holds.

Theorem 6.52.Leta = (ay,...,a,), b = (by,...,b,) (With b; # b; for i # j) be two
sequences of real numbers with the property that there exists the real constavtsuch that
foranyl <i < j <none has

(6.152) mgz_ng

Then we have the inequality

(6.153) mT (p,b,b) < T (p,a,b) < MT (p,b,b),
for any nonnegative sequenpe= (pi,...,p,) With """  p; = 1.
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Proof. From (6.159), by multiplying witt{b; — b;)* > 0, one has
m (b — b;)* < (a; — a;) (b — b)) < M (b; — b;)°
foranyl <i < j <mn, giving by multiplication withp;p; > 0, that

m > pipi(bi—=b)" < > pips (a5 — ) (b — by)

1<i<j<n 1<i<j<n

<M Z pip; (b

1<i<j<n

Using Korkine’s identity (see for example Subsecfion 5.19), we deduce the desired resuljt (6.153).
U

The following corollary is natural.

Corollary 6.53. Assume that the sequerisén Theoren] 6.52 is strictly increasing and there
existsm, M such that

Aayg
6.154 <—<M k=1....,n—1,;

whereAaqy, := a;41 — ay, is the forward difference, thep (6.153) holds true.
Proof. Follows from Theorem 6.52 on taking into account that;for : and from [(6.154) one

has
Jj—1 Jj—1 J—1
k=1 k=i k=i
giVing m (b] — bl) < a; — a; <M (bj — bl) . O

Another possibility is to use functions that generate similar inequalities.

Theorem 6.54.Let f, g : [«, 5] — R be continuous ofty, 5] and differentiable orfc, 3) with
g (z) # 0forx € (a, 3) . Assume that

O 0

—o0o < m = inf , u =M < o0
z€(a,p) g/ <I> z€(a,3) gl (.73)
If X = (x1,...,z,) is areal sequence with; € [«, 3] andxz; # x; fori # j and if we denote
f(x):=(f(x1),...,f(z,)),then we have the inequality
(6.155) mT (p.g (%),8 (%)) < T (p.f(%).g(X) < MT (p.g (%) g (X))

Proof. Applying the Cauchy Mean-Value Theorem, for any i there existg;; € (a, 3) such

that
f () = f(2) _ I (&)
g (x;) — g (i) g (&)
Then, by Theorerh 6.52 applied foy = f (z;), b; = g (z;) , we deduce the desired inequality
(6.153). O

The following inequality related to th@”' BS) —inequality holds.

€ [m, M].

Theorem 6.55.Let a, X, § be sequences of real numbers such that 0 and £ # 2 for
i# 7, (1,5 € {1,...,n}). If there exist the real numbers I" such that

a; — a; . .
(6.156) vy<g—p STfor1<i<j<n,
xj i
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then we have the inequality

n n

n n n 2 n n
(6.157) v Z 7 Z y? — (Z :clyz> <y a7 Z aiTY; — Z a;x; Z Ty
=1 =1 =1 [ =1 i=1

i=1 i=1

3

n n 2
Sy (z )
=1 =1 =1

Proof. Follows by Theorem 6.52 on choosipg= Zf—%, by =%, m=~yandM =T. We
k=1%"k ?
omit the detalils. O

The following different approach may be considered as well.

Theorem 6.56.Assume thad = (a1,...,a,), b = (by,...,b,) are sequences of real numbers,
p = (p1,...,pn) IS @ sequence of nonnegative real numbers With , p, = 1 and b, #

A,
(6.158) —oo<l§¢<L<ooforeachze{1 ,n},
bi - An (p> b)
wherel, L are given real numbers, then one has the inequality
(6.159) IT (p,b,b) < T (p,a,b) < LT (p,b,b).

Proof. From (6.158), by multiplying with{; — 4,, (P, 15))2 > 0, we deduce
L (b — A, (5.D))” < (a: — A, (5.@)) (b — Au (B, D))

<L (A, (p.5))"

foranyi € {1,...,n}.
By multiplying with p; > 0, and summing ovei from 1 to n, we deduce

13 = A () Yo A 9,3 1~ 4. (9.6)
<szz i — A, (B, b))°.

Using Sonin’s identity (see for example Sec.20), we deduce the desired[result (6 159).
The following result in connection with the&' BS) —inequality may be stated.

Theorem 6.57.Leta, X, b be sequences of real numbers such tha¢ 0 and

Yi 1 — Y
= A, [ x2,=
Ty Z?:l xzz ( X)

fori € {1,...,n}. If there exists the real numbe¢s & such that

(6.160) ¢§M__ig&%if>§®
% - s (23)

Zi i=1%;

wherex? = (22,...,22) and¥ = (y—l ,g-z) , then one has the inequality (6.157).

x1’
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Proof. Follows by Theorem 6.%6 on choosipg= - b =L 1=¢andl = &. We omit

T
n 2 )
21:1 Z; z;

the details. 0
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