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Abstract

We generalize the result minx>0
eτx

x = τe, (τ > 0), to a function in which the
numerator is the sum

∑n
i=1 pie

τix. Upper and lower estimates are close to the
exact result when min1≤i≤n τi

max1≤i≤n τi
is not far from unity. Computational results are

given to verify the main results.
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1. Introduction
If we let x = ey in the inequalities

xa − ax + a− 1 ≥ 0, a ≥ 1,
xa − ax + a− 1 ≤ 0, 0 < a ≤ 1,

which hold forx > 0 [1], we have the following inequalities for the exponential
function which hold for ally

(1.1) eay − aey + a− 1 ≥ 0, a ≥ 1,

(1.2) eay − aey + a− 1 ≤ 0, 0 < a ≤ 1.

The above results were used in [2] to find some sufficient conditions for the os-
cillation of a delay differential equation. Inequalities for exponential functions
play an important role in the theory of delay equations since the characteris-
tic equation associated with a delay differential equation contains, in general, a
sum of exponential functions. Forτ > 0 the result

(1.3) min
x>0

eτx

x
= τe

is frequently used [3]. Li has employed the inequality

erx ≥ x +
ln(er)

r
for r > 0,
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to find a sufficient condition for the oscillation of a non-autonomous delay equa-
tion. An equivalent result, but more suitable for our purpose, is the following
inequality which holds fora > 0,

(1.4) ex ≥ ax + a(1− ln a).

In this paper we wish to generalize (1.3). Consider

(1.5) s = min
x>0

∑n
i=1 pie

τix

x
,

wherepi, τi ≥ 0, for i = 1, . . . , n. The result

min
x>0

{f(x) + g(x)} ≥ min
x>0

f(x) + min
x>0

g(x)

and a repeated use of (1.3) gives a lower estimate fors. The case when all but
one of theτi vanishes is treated first and this is used to find an upper estimate
for s.
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2. Main Results
Our main results are contained in the following theorems.

Theorem 2.1.Letp > 0, τ > 0, q ≥ 0 then

pτexp

(
1 +

q

pe
e
−

√
q

pe2

)
≤ min

x>0

peτx + q

x
≤ pτ exp

(
1 +

q

pe

)
.

Theorem 2.2.Letpi > 0, τi ≥ 0, i = 1, . . . , n; 0 < τ = max
1≤i≤n

τi, then

e
n∑

i=1

piτi ≤ s ≤

(
n∑

i=1

piτi

)
exp

(
1 +

∑n
i=1 pi(τ − τi)

e
∑n

i=1 piτi

)
.

We shall prove a lemma before taking up the proofs of the theorems.

Lemma 2.3. Leta > 0 andu0 be the unique root of the equation

u = ae−u,

then

a exp

(
−
√

a

e

)
≤ u0 ≤

√
a

e
.

Proof. It is obvious thatu0 is positive. Since we can re-write the equation as

a = ueu,

we have, on using (1.3)
a ≥ eu2

0,
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or

(2.1) u0 ≤
√

a

e
.

Now, sinceu0 = ae−u0 , we make use of (2.1) on the right hand side to obtain

(2.2) u0 ≥ a exp

(
−
√

a

e

)
.

Combining (2.1) and (2.1), we get the inequality of the lemma.

Proof of Theorem2.1. Definey = τx then, forx > 0,

peτx + q

x
=

pτey + qτ

y

≥ pτ{ay + a(1− ln a)}+ qτ

y
,(2.3)

where we have used (1.4).We choosea such thata(1 − ln a) = −q
p

. Note that
this equation possesses a roota0 ≥ e. Seta = e1+b, thenb will satisfy

u =
q

pe
e−u

and (2.3) reduces to

(2.4)
peτx + q

x
≥ pτe1+b.
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Now use the lemma to obtain the left side of the inequality of Theorem2.1. In
order to prove the other side, letf(x) = peτx + q. The tangent to the curve
y = f(x), with slopem will have the equation

y −
(m

τ
+ q
)

= m

(
x− 1

τ
ln

(
m

pτ

))
.

This line will pass through the origin if the slope satisfies the equation

(2.5) m− pτe1+ qτ
m = 0.

Let g(m) denote the left side of (2.5). The case ofq = 0 is covered by (1.3),
therefore we considerq > 0. Sinceg(0+) = −∞, g(∞) = ∞, andg(m) is
an increasing function on(0,∞), it follows that (2.5) has a unique positive root
say,m0. Hence forx > 0 we have

peτx + q ≥ m0x,

or

(2.6) min
x>0

peτx + q

x
= m0.

It is obvious that

m0 ≥ min
x>0

peτx

x
= pτe.

Using this in (2.5), we get

m0 = pτe
1+ qτ

m0 ≤ pτe1+ q
pe

Combining the above result with (2.6), we get the right side of the inequality of
Theorem2.1.
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Proof of Theorem2.2. The left side of the inequality is obtained by using (1.3)
separately for each exponential function and applying the result

s ≥
n∑

i=1

min
x>0

pie
τix

x
,

wheres is defined by (1.5). In order to prove the right hand side of the inequal-
ity, definey = τx. Then

(2.7) min
x>0

∑n
i=1 pie

τix

x
= min

y>0

τ
∑n

i=1 pie
τi
τ

y

y
.

Since
τi

τ
≤ 1, for i = 1, . . . , n,

we have, on using (1.2)

e
τi
τ

y ≤ τi

τ
ey + 1− τi

τ
, for i = 1, . . . , n.

If we make use of the above inequality in (2.7), we get

(2.8) min
x>0

∑n
i=1 pie

τix

x
≤ min

y>0

(
∑n

i=1 piτi) ey +
∑n

i=1 pi(τ − τi)

y
.

Now an application of Theorem2.1 gives the right hand side of the inequality
of the theorem.
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3. Computational Results
In this section we present some numerical results to verify the accuracy of vari-
ous approximate results. If we letp = 3, q = 2 andτ = 1, then the exact value
of minx>0

peτx+q
x

is 9.96696 which occurs atx = 1.2007. For these values of the
parameters, the number on the left of the inequality of Theorem2.1 is 9.7785
while the number on the right hand side is 10.4214. It is obvious that the lower
as well as the upper estimate will come closer to the exact value ifq and/orτ
are decreased.

To verify the inequality given by Theorem2.2, we letp, q andτ retain their
values of the last example and letσ take successive values of 0.3, 0.9 and 0.98.
The results are given in the following table.

Table
σ Left side Exact value Right side

0.3 9.7858 10.6885 11.2909
0.9 13.0478 13.0646 13.2493
0.98 13.4827 13.4833 13.5227

The inequality of Theorem2.2.

In the table, the left side and right side respectively refer to the left and
the right hand sides of the inequality of Theorem2.2, while the exact value
is the value ofs defined by (1.5). It is clear that as the difference betweenτ
andσ decreases the gap between the approximate and the exact values steadily
decreases.
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