
volume 2, issue 1, article 9,
2001.

Received 23 May, 2000;
accepted 09 November 2000.

Communicated by: P. Cerone

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure and
Applied Mathematics

ON AN INEQUALITY OF GRONWALL

J.A. OGUNTUASE
Department of Mathematical Sciences,
University of Agriculture,
Abeokuta, NIGERIA.
EMail : adedayo@unaab.edu.ng

c©2000Victoria University
ISSN (electronic): 1443-5756
013-00

Please quote this number (013-00) in correspondence regarding this paper with the Editorial Office.

mailto:pc@matilda.vu.edu.au
http://jipam.vu.edu.au/
mailto:adedayo@unaab.edu.ng
http://www.vu.edu.au/


On an Inequality of Gronwall

James Adedayo Oguntuase

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 15

J. Ineq. Pure and Appl. Math. 2(1) Art. 9, 2001

http://jipam.vu.edu.au

Abstract

In this paper, we obtain some new Gronwall-Bellman type integral inequalities,
and we give an application of our results in the study of boundedness of the
solutions of nonlinear integrodifferential equations.
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1. Introduction
Integral inequalities play a significant role in the study of differential and inte-
gral equations. In particular, there has been a continuous interest in the follow-
ing inequality.

Lemma 1.1. Let u(t) and g(t) be nonnegative continuous functions onI =
[0,∞) for which the inequality

u(t) ≤ c +

∫ t

a

g(s)u(s)ds, t ∈ I

holds, wherec is a nonnegative constant. Then

u(t) ≤ c exp

(∫ t

a

g(s)ds

)
, t ∈ I.

Due to various motivations, several generalizations and applications of this
lemma have been obtained and used extensively, see the references under [1, 3].

Pachpatte [5] obtained a useful general version of this lemma. The aim of
this work is to establish some useful generalizations of the inequalities obtained
in [5]. Some consequences of our results are also given.
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2. Statement of Results
Our main results are given in the following theorems:

Theorem 2.1. Let u(t), f(t) be nonnegative continuous functions in a real in-
terval I = [a, b]. Suppose thatk(t, s) and its partial derivativeskt(t, s) exist
and are nonnegative continuous functions for almost everyt, s ∈ I. If the in-
equality

(2.1) u(t) ≤ c +

∫ t

a

f(s)u(s)ds

+

∫ t

a

f(s)

(∫ s

a

k(s, τ)u(τ)dτ

)
ds, a ≤ τ ≤ s ≤ t ≤ b,

holds, wherec is a nonnegative constant, then

(2.2) u(t) ≤ c

[
1 +

∫ t

a

f(s) exp

(∫ s

a

(f(τ) + k(τ, τ))dτ

)
ds

]
.

Proof. Define a functionv(t) by the right hand side of (2.1). Then it follows
that

(2.3) u(t) ≤ v(t).

Therefore

v′(t) = f(t)u(t) + f(t)

∫ t

a

k(t, τ)u(τ)dτ, v(a) = c(2.4)

≤ f(t)

(
v(t) +

∫ t

a

k(t, τ)v(τ)dτ

)
. (by (2.3))
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If we put

(2.5) m(t) = v(t) +

∫ t

a

k(t, τ)v(τ)dτ,

then it is clear that

(2.6) v(t) ≤ m(t).

Therefore

m′(t) = v′(t) + k(t, t)v(t) +

∫ t

a

kt(t, τ)v(τ)dτ, m(a) = v(a) = c(2.7)

≤ v′(t) + k(t, t)v(t),

≤ f(t)m(t) + k(t, t)v(t), (by (2.4))

≤ (f(t) + k(t, t)) m(t). (by (2.6))

Integrate (2.7) from a to t, we obtain

(2.8) m(t) ≤ c exp

(∫ t

a

(
f(s) + k(s, s)

)
ds

)
.

Substitute (2.8) into (2.4), we have

(2.9) v′(t) ≤ cf(t) exp

(∫ t

a

(
f(s) + k(s, s)

)
ds

)
.

Integrating both sides of (2.9) from a to t, we obtain

v(t) ≤ c

[
1 +

∫ t

a

f(s) exp

(∫ s

a

(
f(τ) + k(τ, τ)

)
dτ

)
ds

]
.

By (2.3) we have the desired result.
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Remark 2.1. If in Theorem2.1 we setk(t, s) = g(s), our estimate reduces to
Theorem 1 obtained in [5].

Theorem 2.2.Letu(t), f(t), h(t) andg(t) be nonnegative continuous functions
in a real interval I = [a, b]. Suppose thath′(t) exists and is a nonnegative
continuous function. If the following inequality

u(t) ≤ c +

∫ t

a

f(s)u(s)ds

+

∫ t

a

f(s)h(s)

(∫ s

a

g(τ)u(τ)dτ

)
ds a ≤ τ ≤ s ≤ t ≤ b,

holds, wherec is a nonnegative constant, then

u(t) ≤ c

[
1 +

∫ t

a

f(s) exp

(∫ s

a

(f(τ) + g(τ)h(τ) + h′(τ)

∫ τ

a

g(σ)dσ)dτ

)
ds

]
.

Proof. This follows by similar argument as in the proof of Theorem2.1. We
omit the details.

Remark 2.2. If in Theorem2.2, we seth(t) = 1, then our result reduces to
Theorem 1 obtained in [5].

Remark 2.3. If in Theorem2.2, h′(t) = 0 then our estimate is more general
than Theorem 1 obtained by Pachpatte in [5].

Lemma 2.3.Letv(t) be a positive differentiable function satisfying the inequal-
ity

(2.10) v′(t) ≤ f(t)v(t) + g(t)vp(t), t ∈ I = [a, b],
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where the functionsf(t) andg(t) are continuous inI, andp ≥ 0, p 6= 1, is a
constant. Then

(2.11) v(t) ≤ exp

(∫ t

a

f(s)ds

)
×

[
vq(a) + q

∫ t

a

g(s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

,

for t, s ∈ [a, β), whereq = 1− p andβ is chosen so that the expression[
vq(a) + q

∫ t

a

g(s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

is positive in the subinterval[a, β).

Proof. We reduce (2.10) to a simpler differential inequality by the following
substitution. Let

z(t) =
vq(t)

q
.

Then

z′(t) = vq−1(t)× v′(t)(2.12)

≤ vq−1(t) (f(t)v(t) + g(t)vp(t)) , (by (2.10))

= qf(t)z(t) + g(t) (since q = 1− p).

By Lemma1.1[1], (2.12) gives

z(t) ≤ vq(a)

q
exp

(∫ t

a

qf(s)ds

)
+

∫ t

a

g(s) exp

(∫ t

s

qf(τ)dτ

)
ds.

http://jipam.vu.edu.au/
mailto:adedayo@unaab.edu.ng
http://jipam.vu.edu.au/


On an Inequality of Gronwall

James Adedayo Oguntuase

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 8 of 15

J. Ineq. Pure and Appl. Math. 2(1) Art. 9, 2001

http://jipam.vu.edu.au

That is

vq(t) ≤ exp

(∫ t

a

qf(s)ds

) [
vq(a) +

∫ t

a

g(s) exp

(
−

∫ s

a

qf(τ)dτ

)
ds

]
.

From this, it follows that

v(t) ≤ exp

(∫ t

a

f(s)ds

) [
cq + q

∫ t

a

g(s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

.

Theorem 2.4. Let u(t), f(t) be nonnegative continuous functions in a real in-
terval I = [a, b]. Suppose that the partial derivativeskt(t, s) exist and are
nonnegative continuous functions for almost everyt, s ∈ I. If the the inequality

(2.13) u(t) ≤ c +

∫ t

a

f(s)u(s)ds

+

∫ t

a

f(s)

(∫ s

a

k(s, τ)up(τ)dτ

)
ds, a ≤ τ ≤ s ≤ t ≤ b

holds, where0 ≤ p < 1, q = 1− p and c > 0 are constants.
Then

(2.14) u(t) ≤ c +

∫ t

a

f(s) exp

(∫ s

a

f(τ)dτ

)
×

[
c1−p + (1− p)

∫ s

a

k(τ, τ) exp

(
−(1− p)

∫ τ

a

f(σ)dσ

)
dτ

] 1
1−p

ds.
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Proof. Define a functionv(t) by the right hand side of (2.13) from which it
follows that

(2.15) u(t) ≤ v(t).

Then

v′(t) = f(t)u(t) + f(t)

∫ t

a

k(t, τ)up(τ)dτ, v(a) = c(2.16)

≤ f(t)

(
v(t) +

∫ t

a

k(t, τ)vp(τ)dτ

)
. (by (2.15))

If we put

(2.17) m(t) = v(t) +

∫ t

a

k(t, τ)vp(τ)dτ,

then it is clear that

(2.18) v(t) ≤ m(t).

Hence

m′(t) = v′(t) + k(t, t)vp(t)(2.19)

+

∫ t

a

kt(t, τ)vp(τ)dτ, m(a) = v(a) = c

≤ v′(t) + k(t, t)vp(t),

≤ f(t)m(t) + k(t, t)vp(t), (by (2.16))

≤ f(t)m(t) + k(t, t)mp(t). (by (2.18))
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By Lemma2.3we have

(2.20) m(t) ≤ exp

(∫ t

a

(f(s)ds

)
×

[
mq + q

∫ s

a

k(s, s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

.

Substituting (2.21) into (2.16), we have

(2.21) v′(t) ≤ f(t) exp

(∫ t

a

(f(s)ds

)
×

[
mq + q

∫ s

a

k(s, s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

.

Integrate both sides of (2.22) from a to t and using (2.15), we obtain

u(t) ≤ c +

∫ t

a

f(s) exp

(∫ s

a

f(τ)dτ

) [
c1−p

+ (1− p)

∫ s

a

k(τ, τ) exp

(
−(1− p)

∫ τ

a

f(σ)dσ

)
dτ

] 1
1−p

ds.

This completes the proof of the theorem

Remark 2.4. If in Theorem2.4, we putk(t, s) = g(s), then our result reduces
to Theorem 2 obtained in [5].
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Theorem 2.5.Letu(t), f(t), h(t) andg(t) be nonnegative continuous functions
in a real interval I = [a, b]. Suppose thath′(t) exists and is a nonnegative
continuous function. If the following inequality

(2.22) u(t) ≤ c +

∫ t

a

f(s)u(s)ds

+

∫ t

a

f(s)h(s)

(∫ s

a

g(τ)up(τ)dτ

)
ds a ≤ τ ≤ s ≤ t ≤ b,

holds, where0 ≤ p < 1, q = 1− p andc > 0 are nonnegative constant. Then

(2.23) u(t) ≤ c +

∫ t

a

f(s) exp

(∫ s

a

f(τ)dτ

) [
c1−p + (1− p)

∫ s

a

(h(τ)f(τ)

+ h′(τ)

∫ τ

a

f(σ)dσ

)
exp

(
−(1− p)

∫ τ

a

f(σ)dσ

)
dτ

] 1
1−p

ds.

Proof. This follows by similar argument as in the proof of Theorem2.4. We
also omit the details.

Remark 2.5. If in Theorem2.5, we seth(t) = 1 then our result reduces to the
estimate in Theorem 2 obtained by Pachpatte in [5].

Remark 2.6. If in Theorem2.5, h′(t) = 0 then our result is more general than
Theorem 2 obtained in [5].
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3. Applications
There are many applications of the inequalities obtained in Section2. Here we
shall give an application which is just sufficient to convey the importance of our
results. We shall consider the nonlinear integrodifferential equation

(3.1) x′(t) = f(t, u(t)) +

∫ t

t0

g (t, s, x(s)) ds,

and the corresponding perturbed equation

(3.2) u′(t) = f(t, u(t))+

∫ t

t0

g (t, s, u(s)) ds+h

(
t, u(t),

∫ t

t0

k(t, s, u(s))ds

)
for all t0, t ∈ R+ andx, u, f, g, h ∈ Rn.

If we let x(t) = x(t; t0, x0) andu(t) = u(t; t0, x0) be the solutions of (3.1)
and (3.2) respectively withx(t0) = u(t0) = x0 andf : R+ × Rn → Rn, fx :
R+×Rn → Rn×n, g, k : R+×R+×Rn → Rn, gx : R+×R+×Rn → Rn×n and
h : R+ ×R+ ×Rn → Rn are continuous functions in their respective domains.
Then we have by [2] that ∂x

∂x0
(t, t0, x0) = Φ(t, t0, x0) exists and satisfies the

variational equation

(3.3) x′(t) = fx(t, x(t; t0, x0))z(t)

+

∫ t

t0

gx (t, s, x(s; t0, x0)) z(s)ds, z(t0) = I

and

(3.4)
∂x

∂t0
(t; t0, x0) + Φ(t, t0, x0)f(t0, x0)

∫ t

t0

Φ(t, s, x0)g(s, t0, x0)ds = 0.
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Thus the solutionsx(t) andu(t) are related by

(3.5) u(t) = x(t)

∫ t

t0

Φ(t, s, u(s))h

(
s, u(s),

∫ t

t0

k(s, τ, u(τ))dτ

)
ds.

Theorem 3.1.Letf , fx, g, gx, k, h, as earlier defined, be nonnegative continu-
ous functions. Suppose that the following inequalities hold:

|Φ(t, s, u)| ≤ Me−α(t−s),(3.6)

|Φ(t, s, u)h(s, u, z)| ≤ p(s) (|u|+ |z|) ,(3.7)

|k(t, s, u)| ≤ q(s, s) |y|(3.8)

for 0 ≤ s ≤ t, u, z ∈ Rn, M ≥ 1 andα > 0 are constants. Ifp(t) andq(t, t)
are continuous and nonnegative and

(3.9)
∫ ∞

p(s)ds < ∞,

∫ ∞
q(s, s)ds < ∞.

Then for any bounded solutionx(t; t0, x0) of (3.1) in R+, then the corresponding
solutions of (3.2) is bounded inR+.

Proof. We have from (3.6)– (3.8) that equation (3.2) gives

|u(t)| ≤ M |x0|+
∫ t

t0

p(s) |u(s)| ds +

∫ t

t0

p(s)

(∫ t

t0

q(τ, τ) |u(τ)| dτ

)
ds.

Hence by Theorem2.1, we have

|u(t)| ≤ M |x0|
[
1 +

∫ t

t0

p(s) exp

(∫ s

s0

(p(τ) + q(τ, τ))dτ

)
ds

]
.
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Hence by (3.9), we easily see that|u(t)| is bounded and the proof is complete.
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