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Abstract

We study a certain monotonicity property of ratios of means, which we call a
strong inequality. These strong inequalities were recently shown to be related
to the so-called relative metric. We also use the strong inequalities to derive
new ordinary inequalities. The means studied are the extended mean value of
Stolarsky, Gini’s mean and Seiffert’s mean.
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1. Introduction and Main Results
In this paper we study a certain monotonicity property of ratios of symmetric
homogeneous means of two variables. In this setting the monotonicity property
can be interpreted as a strong version of an inequality. The means considered
are the extended mean value of Stolarsky [18], Gini’s mean [6] and Seiffert’s
mean [15].

These kind of strong inequalities were shown in [7] to provide sufficient con-
ditions for the so-called relative distance to be a metric. This aspect is described
in Section7, which also contains the new relative metrics found in this paper.
A question by H. Alzer on whether the results of [7], specifically Lemma 4.2,
could be generalized was the main incentive for the present paper. Another mo-
tivation for this work was that monotonicity properties of ratios have been found
useful in several studies related to gamma and polygamma functions, see for in-
stance [5], [10], [1] and [2]. Such inequalities have also been used, implicitly,
in studying means by M. Vamanamurthy and M. Vuorinen in the paper [20], an
aspect further exposed in Section2.2.

Let us next introduce some terminology in order to state the main results.
DenoteR> := (0,∞) and letf, g : [1,∞) → R> be arbitrary functions. We
say thatf is strongly greater than or equal tog, in symbolsf � g, if x 7→
f(x)/g(x) is increasing. By asymmetric homogeneous increasing mean(of
two variables) we understand a symmetric functionM : R>×R> → R> which
satisfies

min{x, y} ≤ M(x, y) ≤ max{x, y}

and M(sx, sy) = sM(x, y) for all s, x, y ∈ R> and for whichtM(x) :=
M(x, 1) is increasing forx ∈ [1,∞). The functiontM is called thetrace of
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M and uniquely determinesM , sinceM(x, y) = ytM(x/y). If M andN are
symmetric homogeneous increasing means we say thatM is strongly greater
than or equal toN , M � N , if tM � tN .

Let us next introduce the means that will be considered in this paper. The
extended mean value,Es,t, was first considered by Stolarsky in [18] and later
by Leach and Scholander, [11], who gave several basic properties of the mean.
It is defined for distinctx, y ∈ R> and distincts, t ∈ R \ {0} by

Es,t(x, y) :=

(
t

s

xs − ys

xt − yt

)1/(s−t)

andEs,t(x, x) := x. The extended mean value is defined for the parameter
valuess = 0 ands = t by continuous extension, see Section3.2. Let us also
define the power means byAs := E2s,s, see also Section3.1.

In the paper [12] Leach and Scholander provided a complete description of
the values
s, t, p, q ∈ R for which Es,t ≥ Ep,q. The next theorem is the corresponding
result for strong inequalities. Notice that this result is a generalization of [7,
Lemma 4.2], which in turn is the strong version of Pittenger’s inequality, see
[14]. We also state a corollary containing the ordinary inequalities implied by
the theorem.

Theorem 1.1. Let s, t, p, q ∈ R+ := [0,∞). ThenEs,t � Ep,q if and only if
s + t ≥ p + q andmin{s, t} ≥ min{p, q}.

Corollary 1.2. Let s, t, p, q ∈ R>, s > t andp > q. If p + q ≥ s + t andt ≥ q
then

Es,t ≤ Ep,q ≤ (q/p)1/(p−q)(s/t)1/(s−t)Es,t.
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Both inequalities are sharp.

Remark 1.1. Let M and N be symmetric homogeneous increasing means.
The inequalityM ≤ N is understood to mean that the real value inequality
M(x, y) ≤ N(x, y) holds for allx, y ∈ R>. The inequalityM ≤ cN is said to
be sharp if the constant cannot be replaced by a smaller one. Notice that this
does not necessarily mean that the inequality cannot be improved, for instance
the previous one could possibly be replaced byM ≤ cN − log{1 + N}.

Remark 1.2. The first inequality in the previous corollary follows directly from
the result of Leach and Scholander, and is not as good (in terms of the assump-
tions onp, q, s and t). The upper bound does not follow from their result,
however.

The Gini mean was introduced in [6] as a generalization of the power means.
It is defined by

Gs,t(x, y) :=

(
xs + ys

xt + yt

)1/(s−t)

for x, y ∈ R> and distincts, t ∈ R. Like the extended mean value, the Gini
mean is continuously extended tos = t, see Section3.3.

The Gini means turn out to be less well behaved than the other means that
we consider in terms of strong inequalities. We give here two main results
on inequalities of Gini means, however, the reader may also want to view the
summary of results presented in Section5.3. The following theorem gives a
sufficient condition for the Gini means to be strongly greater than or equal to an
extended mean value and is also a generalization of [7, Lemma 4.2].
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Theorem 1.3.Leta, p, q ∈ R+. ThenGs,t � Ep,q for all s, t ≥ 0 with s+ t = a
if and only ifp + q ≤ 3a andmin{p, q} ≤ a.

If the parameters of the Gini mean are of similar magnitude then we are able
to give a characterization of the extended mean values that are strongly less than
the Gini mean:

Theorem 1.4. Let s, t ∈ R> with 1/3 ≤ s/t ≤ 3 and p, q ∈ R+. Then
Gs,t � Ep,q if and only ifp + q ≤ 3(s + t)

Again we have a corollary of ordinary inequalities:

Corollary 1.5. Let s, t, p, q ∈ R>, p > q andp + q ≤ 3(s + t). Assume also
that1/3 ≤ s/t ≤ 3 or q ≤ s + t. Then

Ep,q ≤ Gs,t ≤ (p/q)1/(p−q)Ep,q.

Both inequalities are sharp.

Remark 1.3. Contrary to the corollaries of the other theorems, this one pro-
vides, to the best knowledge of the author, new inequalities.

The Seiffert mean was introduced in [15] and is defined by

P (x, y) :=
x− y

4 arctan(
√

x/y)− π

for distinct x, y ∈ R> andP (x, x) := x. The next theorem provides a char-
acterization of those Stolarsky means which are strongly less than the Seiffert
mean. Notice that the Stolarsky mean is of particular interest to us, since it has
been implicated in finding relative metrics, as is described in Section7.
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Theorem 1.6. DenoteSα := E1,1−α for 0 < α ≤ 1. ThenP � Sα if and only
if α ≥ 1/2.

Remark 1.4. We will call Sα = E1,1−α Stolarsky means following [20] and
[7], since this particular form of the extended mean value was studied in depth
by Stolarsky in [19] and call the familyEs,t extended mean values, even though
they too originated from [18] by Stolarsky.

The previous theorem has the following corollary containing the correspond-
ing ordinary inequalities.

Corollary 1.7. If 1/2 ≤ α ≤ 1 then

Sα ≤ P ≤ 1

π
(1− α)−1/αSα.

Both inequalities are sharp.

Remark 1.5. In the previous corollary the lower bound is decreasing and the
upper bound is increasing inα (for any fixedx). Hence the best estimate forP
given by the previous corollary is

(
√

x +
√

y)2

4
≤ P (x, y) ≤

(
√

x +
√

y)2

π
,

sinceS1/2 = A1/2. Notice also that the first of these inequalities was given by
A. A. Jager in [15] in order to solve H.-J. Seiffert’s problemE0,1 ≤ P ≤ E1,1.
Once again however, the upper bound is new. For another inequality ofP , see
Corollary 6.3.
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The structure of the rest of this paper is as follows: in the next section we
state some basic properties of strong inequalities and show how the corollaries
in this section follow from their respective theorems. In Section3 we present
the complete definition of the means studied as well as some simple results
on their derivatives. Section4 contains the complete characterization of strong
inequalities between extended mean values, that is the proof of Theorem1.1.
In Section5 we present the proofs of Theorems1.3 and1.4, relating extended
mean values and Gini means as well as some additional results summarized
in Section5.3. Section6 contains the characterizations of strong inequalities
between Seiffert’s mean and the Stolarsky means. In Section7 we present a
brief summary of the result regarding relative metrics from [7] and show how
the theorems of this paper yield new families of metrics.
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2. Strong Inequalities
In this section we will consider some basic properties of strong inequalities
and show how the corollaries stated in the introduction are derived from their
respective theorems.

2.1. Basic Properties of Strong Inequalities

Recall from the introduction that we say thatf is strongly greater than or equal
to g, f � g, if x 7→ f(x)/g(x) is increasing, wheref, g : [1,∞) → R> are
arbitrary functions. The relationf � g is defined to hold if and only ifg �
f . The following lemma follows immediately from the definition sincexs is
increasing if and only ifx is increasing, fors > 0.

Lemma 2.1. Let f, g : [1,∞) → R> be arbitrary functions ands > 0. Define
fs(x) := f(xs) andgs(x) := g(xs). Then following conditions are equivalent:

1. f � g,

2. fs � gs and

3. f s � gs.

Suppose next thatf, g : [1,∞) → R> are differentiable functions. Then
f � g if and only if d(f/g)/dx ≥ 0 if and only if

0 ≤ d log{f/g}
dx

=
d log f

dx
− d log g

dx
.
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We see that in this situation the strong inequality is equivalent to an ordinary
inequality between the logarithmic derivatives.

We end this subsection by showing that� is a partial order, as is suggested
by its symbol. A binary relationE ⊂ X ×X is called apartial order in the set
X if

1. x E x for all x ∈ X (reflexivity),

2. if x E y andy E x thenx = y (antisymmetry) and

3. if x E y andy E z thenx E z (transitivity). [17, Section 3.1].

Let f, g, h : [1,∞) → R> be arbitrary functions. Thenf � f , sincef/f = 1
is increasing, hence the property of reflexivity is satisfied. Iff � g andg � h
thenf/g andg/h are increasing, hence so is their product,f/h, which means
that f � h, hence� is transitive. The antisymmetry condition is not quite
satisfied, though – iff = cg with c > 1 thenf � g andg � f but f 6= g.
One easily sees that the antisymmetry condition holds in the set of symmetric
homogeneous means, hence� is a partial order in this set, which is the one that
will concern us in what follows.

2.2. Ordinary Inequalities from Strong Inequalities

In this section we will see how strong inequalities imply ordinary inequali-
ties. The method to be presented has been used in the context of gamma and
polygamma functions by several investigators, as noted in the introduction and
by M. Vamanamurthy and M. Vuorinen ([20]) in the context of means.
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If M andN are symmetric homogeneous means thentM(1) = tN(1) = 1.
Hence, ifM � N then

tM(x)/tN(x) ≥ tM(1)/tN(1) = 1

for x ≥ 1. To get an upper bound we observe that iftM(x)/tN(x) is increasing
on [1,∞) then

tM(x)

tN(x)
≤ lim

x→∞

tM(x)

tN(x)
=: c,

and sotM(x) ≤ ctN(x). Notice also that the constant in neither of the two
inequalities can be improved. Since bothM andN were assumed to be homo-
geneous, the previous inequalities imply that

N(x, y) = ytN(x/y) ≤ ytM(x/y) = M(x, y) ≤ cytN(x/y) = cN(x, y),

wherex, y ∈ R>. Notice in particular that the relation� implies the relation≥,
which is the reason for the terminology “strong inequality”.

Applying this reasoning to the Theorems1.1, 1.6 and1.3 and1.4 gives the
Corollaries1.2, 1.7and1.5, respectively, since

Es,t(x, 1) ∼ (s/t)1/(s−t)x, Gs,t(x, 1) ∼ x and P (x, 1) ∼ 2x/π

asx →∞ for distincts, t ∈ R>.
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3. The Means
In this section we give the precise definitions of the means that are studied. We
will also define and calculate a certain variety of their derivatives.

3.1. Classical Means

In this subsection we define some classical means and prove an inequality be-
tween them that is needed in Section4.

The Arithmetic, Geometric, HarmonicandLogarithmic meansare defined
for x, y ∈ R> by

A(x, y) :=
x + y

2
, G(x, y) :=

√
xy, H(x, y) :=

2xy

x + y

and
L(x, y) :=

x− y

log{x/y}
, x 6= y, L(x, x) := x,

respectively. Moreover, we denote byAs the power mean of orders: As(x, y) =
[A(xs, ys)]1/s for s ∈ R \ {0} andA0 = G. The next lemma is an improvement
over the well known relationL ≥ G, sinceA ≥ G.

Lemma 3.1. We haveL � A1/3G2/3.

Proof. We need to prove that

f(x) :=
L3(x, 1)

A(x, 1)G2(x, 1)
=

(x− 1)3

(x + 1)x log3 x
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is increasing inx for x ≥ 1 (we used Lemma2.1(3) with s = 3). A calculation
gives

f ′(x) =
(x2 + 4x + 1) log{x} − 3(x2 − 1)

(x + 1)2x2 log4{x}
(x− 1)2.

Hencef ′(x) ≥ 0 if and only if

g(x) := log x− 3
x2 − 1

x2 + 4x + 1
≥ 0.

Since clearlyg(1) = 0, it suffices to show thatg is increasing, which follows
from

(x2 + 4x + 1)2xg′(x)

= (x2 + 4x + 1)2 − 3x(2x(x2 + 4x + 1)− (x2 − 1)(2x + 4))

= (x− 1)4

≥ 0.

3.2. The Extended Mean Value

Let x, y ∈ R> be distinct ands, t ∈ R \ {0}, s 6= t. We define theextended
mean valuewith parameterss andt by

Es,t(x, y) :=

(
t

s

xs − ys

xt − yt

)1/(s−t)

,
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and also

Es,s(x, y) := exp

(
1

s
+

xs log x− ys log y

xs − ys

)
,

Es,0(x, y) :=

(
xs − ys

s log{x/y}

)1/s

and E0,0(x, y) :=
√

xy.

Regardless of whethers andt are distinct we also defineEs,t(x, x) := x. Notice
that all the cases are continuous continuations of the first general expression for
Es,t(x, y) (this was proved to be possible in [18]).

It should also be noted thatE2,1 = A, E0,0 = G, E−1,−2 = H andE1,0 = L,
and more generally,As = E2s,s for s ∈ R. Hence we see that all these classical
means belong to the family of extended mean values.

Let us next calculate the following variety of the logarithmic derivative:

es,t(x) := x
∂ log Es,t(x, 1)

∂x
− 1.

The reason for choosing this form has to do with the strong inequality (the
logarithm, as was seen in Section2.1) and simplicity of form (multiplying byx
and subtracting1). Assume thatx > 1 and alsos, t ∈ R \ {0}, s 6= t. Then

es,t(x) =
1

s− t

(
s

xs − 1
− t

xs − 1

)
,

es,s(x) =
1

xs − 1
− sxs log x

(xs − 1)2
,

es,0(x) =
1

xs − 1
− 1

s log x
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and
e0,0(x) = −1/2.

Note that for alls, t ∈ R we havees,t(1+) := limx→1 es,t(x) = −1/2. It will
be of much use to us that

es,s(x) = lim
t→s

es,t(x), es,0(x) = lim
t→0

es,t(x) and e0,0(x) = lim
t,s→0

es,t(x),

since this will allow us to consider only the general formula (with distincts, t ∈
R \ {0}) and have the remaining cases follow by continuity. Let us record the
following simple result which will be needed further on.

Lemma 3.2. For every pairs, t ∈ R we havees,t(x) ≤ 0 for all x ∈ (1,∞).

Proof. It suffices to show this for distincts, t ∈ R \ {0}. Assume further that
s > t. We have to show that

s

xs − 1
≤ t

xt − 1
.

If t > 0 we just multiply by(xt − 1)(xs − 1), whereupon the claim is clear,
sincesxt − txs is decreasing inx and hence less than or equal tos− t. Next if
s > 0 > t we have to prove that

s

xs − 1
≤ −tx−t

x−t − 1
.

or, equivalently,s − t ≤ (−t)xs + sxt. Since the right hand side is increasing
in x this is clear. The case0 > s > t follows like the caset > 0, since
(xt − 1)(xs − 1) is again positive.
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We conclude this subsection by stating that for alls, t ∈ R we have

lim
x→1+

∂es,t(x)

∂x
=

s + t

12
,

a fact which is easy, though tedious, to check (differentiate and use l’Hospital’s
rule four times; the proof is quite similar to that of Lemma3.3).

3.3. The Gini Mean

The Gini mean was introduced in [6] and is a generalization of the power means.
It is defined by

Gs,t(x, y) :=

(
xs + ys

xt + yt

)1/(s−t)

,

wherex, y ∈ (0,∞) ands, t ∈ R are distinct. We also define

Gs,s(x, y) := exp

(
xs log x + ys log y

xs + ys

)
.

Notice that the power means are the elementsGs,0 = As in this family of means.
The logarithmic mean is not part of the Gini mean family, in fact, Alzer and
Ruscheweyh have recently shown that the only means common to the extended
mean value and the Gini mean familes are the power means, [3].

We easily find that

gs,t(x) := x
∂ log Gs,t(x, 1)

∂x
− 1 =

1

s− t

(
t

xt + 1
− s

xs + 1

)
,
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for s 6= t andx > 1 and

gs,s(x) =
sxs log x

(xs + 1)2
− 1

xs + 1
.

As with the extended mean value we find thatgs,s = limt→s gs,t. We again have
gs,t(1) = −1/2 and it is easily derived thatg′s,t(1) = (s + t)/4.

3.4. The Seiffert Mean

The Seiffert mean was introduced in [15] and is defined by

P (x, y) :=
x− y

4 arctan(
√

x/y)− π
=

x− y

2 arcsin((x− y)/(x + y))

for distinctx, y ∈ R> andP (x, x) := x. For this mean we have

p(x) := x
∂ log P (x, 1)

∂x
− 1 =

1

x− 1
− 2

√
x

x + 1

1

4 arctan(
√

x/y)− π
,

for x > 1. Also, it can be calculated thatp(1+) = −1/2. Let us for once
explicitly calculate the limiting value of the derivative at1:

Lemma 3.3. We have

lim
x→1+

dp(x)

dx
=

1

6
.
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Proof. A direct calculation gives

p′(x) = − 1

(x− 1)2
+

x− 1√
x(x + 1)2

1

4 arctan(
√

x)− π

+
4

(x + 1)2

1

(4 arctan(
√

x)− π)2

=

(
2

x + 1

1

4a− π
− 1

x− 1

) (
2

x + 1

1

4a− π
+

1

x− 1

)
+

x− 1√
x(x + 1)2

1

4a− π
,

where we have denoteda := arctan(
√

x). Hence, when we write4 arctan(
√

x)−
π = c(x− 1), we have

p′(1+) = lim
x→1

(
2

x + 1

1

4 arctan(
√

x)− π
− 1

x− 1

)
1

x− 1

(
2

c(x + 1)
+ 1

)
+

1

c
√

x(x + 1)2

= lim
x→1

2

(
2

x + 1

1

4 arctan(
√

x)− π
− 1

x− 1

)
1

x− 1
+

1

4
,

sincec → 1 asx → 1+ and all the factors are continuous. It remains to evaluate

lim
x→1+

2x−1
x+1

− 4 arctan(
√

x) + π

(x− 1)2(4 arctan(
√

x)− π)
= lim

y→π/4+

π − 4y − 2 cos(2y)

4 cos2(2y)(4y − π)
cos4 y,

where we used the substitutiony = arctan(
√

x). We have, using l’Hospital’s
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rule and the substitutionz := 2y

lim
z→π/2

π − 2z − 2 cos z

(2z − π)(1 + cos(2z))
= lim

z→π/2

−2 + 2 sin z

2(1 + cos(2z))− 2(2z − π) sin(2z)

= lim
z→π/2

cos z

−4 sin(2z)− 2(2z − π) cos(2z)

= lim
z→π/2

− sin z

−12 cos(2z) + 4(2z − π) sin(2z)

= − 1

12
.

Sincelimy→π/4 cos4(y) = 1/2 we find thatp′(1+) = 2(−1/12)(1/2) + 1/4 =
1/6, as claimed.

Let us also introduce another mean of Seiffert’s, from [16], for which we
will prove just one inequality. Define

T (x, y) :=
x− y

2 arctan x−y
x+y

for distinctx, y ∈ R andT (x, x) = x. This mean satisfiesA ≤ T ≤ A2, see
[16]. We have

t(x) := x
∂ log T (x, 1)

∂x
− 1 =

1

x− 1
− x

x2 + 1

(
arctan

x− 1

x + 1

)−1

.
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4. The Extended Mean Value
In this section we will prove Theorem1.1, which is the used in the proof of the
other theorems. The proof consists essentially of two lemmas which show that
the extended mean value behaves nicely with respect to the strong inequality as
we move in the parameter plane. We start with the horizontal direction and then
go for the diagonal.

Lemma 4.1. Let r, t ∈ R. ThenEt,s � Er,s if and only ift ≥ r.

Proof. It suffices to show thater,s is increasing inr. We differentiate with re-
spect tor and find thater,s is increasing when

0 ≤ (r − s)2∂er,s

∂r
= (r − s)

xr − 1− xr log xr

(xr − 1)2
+

s

xs − 1
− r

xr − 1
=: f(s).

We havef(r) = 0, hence it suffices to show thatf ′(s) ≤ 0 if and only if s ≤ r.
Differentiating with respect tos gives

f ′(s) =
xr log xr − xr + 1

(xr − 1)2
− xs log xs − xs + 1

(xs − 1)2
.

Sincexs ≤ xr if and only if s ≤ r it suffices to show thatg(y) = (y log y− y +
1)(y − 1)−2 is decreasing. We calculate

g′(y) =
(y − 1) log y − 2(y log y − y + 1)

(y − 1)3
=

2(y − 1)− (y + 1) log y

(y − 1)3
.
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Henceg′(y) ≤ 0 if and only if 2(y − 1) ≤ (y + 1) log y exactly wheny > 1.
Since

log y − 2
y − 1

y + 1

is increasing iny and equals0 for y = 1, this is seen to be so.

Lemma 4.2. Leta ≥ 2s ≥ 2q ≥ 0. Then

Ea−s,s � Ea−q,q.

Proof. We show thatea−s,s is increasing ins < a/2, which is clearly equivalent
to the claim. Now

∂ea−s,s(x)

∂s
=

2

(a− 2s)2

(
a− s

xa−s − 1
− s

xs − 1

)
+

1

a− 2s

(
1− xa−s + (a− s)xa−s log x

(xa−s − 1)2
− xs − 1− sxs log x

(xs − 1)2

)
.

Let us denotea− s =: r. The inequality∂ea−s,s/∂s ≥ 0 becomes

xr log xr

(xr − 1)2
+

xs log xs

(xs − 1)2
≥ 1

r − s

(
2

s

xs − 1
− 2

r

xr − 1
+

r − s

xs − 1
+

r − s

xr − 1

)
=

r + s

r − s

(
1

xs − 1
− 1

xr − 1

)
.

Let us multiply both sides by(xs − 1)(xr − 1). The inequality becomes

xs − 1

xr − 1
xr log xr +

xr − 1

xs − 1
xs log xs ≥ r + s

r − s
(xr − xs).
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Let us next use the equalities(xs − 1)/(xr − 1) = 1− (xr − xs)/(xr − 1) and
(xr − 1)/(xs − 1) = 1 + (xr − xs)/(xs − 1) and divide byxr − xs:

fr,s(x) :=

(
sxs

xs − 1
− rxr

xr − 1
+

rxr + sxs

xr − xs

)
log x− r + s

r − s

=

(
s

xs − 1
− r

xr − 1
+

sxr + rxs

xr − xs

)
log x− r + s

r − s

≥ 0.

We will demonstrate that this is so by showing thatfr,r(x) = 0, that

lim
s→0

∂fr,s

∂r
= 0, and that

∂2fr,s

∂r∂s
≥ 0.

The last two conditions imply that∂fr,s/∂r ≥ 0. This, together with the first
condition implies thatfr,s ≥ 0 if s ≥ 0, which completes the proof.

We first show thatfr,r(x) = 0:

lim
s→r

fr,s(x) = lim
s→r

(sxr + rxs)(r − s) log x− (r + s)(xr − xs)

(xr − xs)(r − s)

= lim
s→r

−2(xr + rxs log x) log x + 2xs log x + (r + s)xs log2 x

2xs log x

= 0.

Upon calculating∂fr,s/∂r,

∂fr,s

∂r
=

(
xr log xr

(xr − 1)2
− 1

xr − 1
− xr+s log xr+s

(xr − xs)2
+

xs

xr − xs

)
log x +

2s

(r − s)2
,
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we immediately find that∂fr,s/∂r|s=0 = 0. Next we calculate

∂2fr,s

∂r∂s
=

xr+s log2 x

(xr − xs)2
− xr+s(xr − xs) log2 x + (r + s)(xr + xs)xr+s log3 x

(xr − xs)3

+ 2
r − s + 2s

(r − s)3

= −(r + s)(xr + xs)xr+s log3 x

(xr − xs)3
+ 2

r + s

(r − s)3
.

Therefore∂2fr,s/∂r∂s is positive when

2

(r − s)3
≥ (xr + xs)xr+s log3 x

(xr − xs)3
,

where we used thatr + s = a > 0.
Sincexr ≥ xs this last inequality is equivalent with

L(xr, xs)3 ≥ A(xr, xs)G(xr, xs)2,

which follows from Lemma3.1, and so we are done.

Proof of Theorem1.1. Let us assume without loss of generality thats ≥ t and
p ≥ q.

Suppose first thatEs,t � Ep,q holds. This is equivalent with the condi-
tion es,t(x) ≥ ep,q(x). As x → 1+ there is equality in the inequality. Hence
e′s,t(1+) ≥ e′p,q(1+), for otherwisees,t(x) < ep,q(x) in some neighborhood
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(with respect to[1,∞)) of x = 1. It follows that(s + t)/12 ≥ (p + q)/12, or,
equivalently,s + t ≥ p + q. As x →∞ we have

es,t ∼ −
t

s− t
x−t

if 0 < t < s, et,t ∼ −tx−t log x andes,0 ∼ −1/ log{xs}. Hence we see that the
conditiones,t(x) ≥ ep,q(x) implies thatt ≥ q.

Assume conversely thats + t ≥ p + q andt ≥ q. Then we have

Es,t � Es+t−q,q � Ep+q−q,q = Ep,q,

where the first inequality follows from Lemma4.2 sincet ≥ q and the second
inequality follows from Lemma4.1, sinces + t ≥ p + q.
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5. The Gini Mean
The Gini mean was defined in Section3.3. In this section we will derive partial
results on when a Gini mean is strongly greater than or equal to an extended
mean value. We will see that although the Gini mean was easier to define (re-
quired less cases) than the extended mean value, it is a lot more difficult to
handle, since it does not satisfy the kinds of lemmas that were proved for the
extended mean value in Section4.

It is well known thatGs,q ≥ Gt,q if and only if s ≥ t (proved for instance
in [13, Theorem 1.1 (h)]). The next example shows that this inequality does not
generalize to a strong inequality.

Example 5.1. Let s > t > q > 0. ThenGs,q andGt,q are not comparable in
the partial order�. Indeed,gs,q(x) > gt,q(x) holds for smallx > 1, since both
have the same limit (viz.−1/2) asx → 1+ andgs,q has a greater derivative at
x = 1+, as was shown in Section3.3. On the other handgs,q(x) < gt,q(x) for
x large enough, since

gs,q ∼ qx−q/(s− q) < qx−q/(t− q) ∼ gt,q

asx →∞.

5.1. The Easy Case – when there are strong inequalities be-
tween Gini means

Despite the previous example we can derive some strong inequalities between
Gini means, which is what we will do next. Note theGs+t,0 is the power mean
As+t.
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Lemma 5.1. If s, t ≥ 0 thenGs,t � Gs+t,0.

Proof. Assume without loss of generality thats + t > 0. Using the transforma-
tion x 7→ x2/(s+t) we may assume thats + t = 2 (here we use Lemma2.1(2)).
Assume further thats = 1+d andt = 1−d whered ≥ 0 and for the time being
suppose further thatd > 0. The claim of the lemma is that

g1+d,1−d(x) =
1

2d

(
1− d

x1−d + 1
− 1 + d

x1+d + 1

)
≥ − 1

x2 + 1
= g2,0(x).

Let us multiply this inequality by2d(x1−d + 1)(x1+d + 1) (which is obviously
positive) to get the equivalent inequality

(1− d)(x1+d + 1)− (1 + d)(x1−d + 1) ≥ −2d
x2 + x1+d + x1−d + 1

x2 + 1
.

Collect the terms multiplied byd:

x1+d − x1−d = (x1+d + 1)− (x1−d + 1)

≥ (x1+d + x1−d + 2)d− 2d
x2 + x1+d + x1−d + 1

x2 + 1

= (x1+d + x1−d)(1− 2/(x2 + 1))d

= (x1+d + x1−d)(x2 − 1)d/(x2 + 1).

Multiplying the first and the last expression byxd−1 gives the inequality

x2d − 1 ≥ (x2d + 1)(x2 − 1)d/(x2 + 1).
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Let us setxd =: z or, equivalently,d = log{z}/ log x. Then we get the equiva-
lent inequality

z2 + 1

z2 − 1
log z ≤ x2 + 1

x2 − 1
log x,

which is further equivalent with the functionf(y) := (y + 1) log{y}/(y − 1)
being increasing, sincex ≥ z. Now

f ′(y) =
y2 − 1− 2y log y

y(y − 1)2
≥ 0

if and only if y2 − 1 − 2y log y ≥ 0, which follows, sincey − y−1 − 2 log y is
increasing iny for y ≥ 1. This ends the proof for the cased > 0. The case
d = 0 follows, sinceg1+d,1−d is continuous ind.

Proof of Theorem1.3. If s, t ≥ 0 anda = s + t then

Gs,t � Ga,0 = Aa = E2a,a,

where the strong inequality follows from Lemma5.1. It then follows from
Theorem1.1that

Gs,t � E2a,a � Ep,q,

if p + q ≤ 3a andmin{p, q} ≤ a.
Suppose conversely thatGs,t � Ep,q holds for alls, t ≥ 0 with s + t = a.

Then it holds in particular fors = a andt = 0 and so

Ga,0 = E2a,a � Ep,q.

It then follows from Theorem1.1 that p + q ≤ 2a + a and min{p, q} ≤
min{2a, a} = a, as claimed.
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5.2. The Difficult Case – when there are no strong inequali-
ties between Gini means

We now turn to deriving strong inequalities between Gini means and extended
mean values that are not mediated by power means. Since it was shown in
Example5.1that there is not much possibility of deriving auxiliary inequalities
between Gini means and since the author has had no success in direct derivation
of inequalities between extended mean values and Gini means, another scheme
of mediation is developed. It consists of using a Gini mean as an intermediary
for a small value ofx and the fact that most Gini means grow asymptotically
faster than extended mean values to take care of large values ofx.

We start by considering a certain monotonicity property ofgs,t. This lemma
corresponds to Lemma4.2for the extended mean value.

Lemma 5.2. The quantityg1+d,1−d(x) is decreasing in0 ≤ d ≤ 1 for fixed
x ∈ [1, 491/2].

Proof. Let us assume thatd > 0; the cased = 0 follows by continuity. A simple
calculation gives

f(d) := d
∂g1+d,1−d

∂d

= − 1

(x/z + 1)d
+

x/z log{x/z}
(x/z + 1)2

+
1

(xz + 1)d
+

xz log{xz}
(xz + 1)2

,

where we have denotedxd =: z. Let us multiply the inequalityf(d) ≤ 0,
which is equivalent with the claim of the lemma, by(xz + 1)(x/z + 1) and use
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d = log z/ log x:

(x/z − xz)
log x

log z
+

(x2 + x/z) log{x/z}
x/z + 1

+
(x2 + xz) log{xz}

xz + 1

= (x/z − xz)
log x

log z
+

(
log{x/z}
x/z + 1

+
log{xz}
xz + 1

)
(x2 − 1) + 2 log x

≤ 0.

Let us divide this inequality byx log x and rearrange

(5.1)

(
log{x/z}
x/z + 1

+
log{xz}
xz + 1

)
x− 1/x

log x
+

2

x
≤ z − 1/z

log z
.

We will show that the left hand side is decreasing inz ∈ [1, x] and that the right
hand side is increasing inz. Now the latter claim is equivalent with

d

dz

z − 1/z

log z
=

(z2 + 1) log z − (z2 − 1)

z2 log2 z
≥ 0,

which is clear, sincelog z − (z2 − 1)/(z2 + 1) is increasing inz and hence
positive. It remains to prove that

g(z) :=
log{x/z}
x/z + 1

+
log{xz}
xz + 1

is decreasing inz. A calculation gives

zg′(z) =
xz + 1− xz log{xz}

(xz + 1)2
− x/z + 1− (x/z) log{x/z}

(x/z + 1)2

= h(xz)− h(x/z),
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whereh(y) := (y+1−y log y)/(y+1)2. The functionh is sketched in Figure1
and has the following pertinent characteristics: its only zero is aty0 = 3.591...,
its only minimum aty1 = 11.016... and it is then increasing, but negative.

y

x5 10 15

0.2

0.4

y
0

y
1

x+1−x log x

(x+1)2
y =

Figure 1: The functionh.

Suppose now thatx is such that the condition

(5.2) (x/z ≤ y0) ∨ (xz ≤ 14 ∧ x/z ≤ 7)
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holds for allz ∈ [1, x]. We then claim thath(x/z) ≤ h(xz) holds: because, for
a givenz, one of the following conditions holds:

1. y1 ≥ xz,

2. y1 < xz andx/z ≤ y0 or

3. y1 < xz ≤ 14 andx/z ≤ 7.

If (1) holds thenh(x/z) ≥ h(xz) sinceh is decreasing on[1, y1] andxz ≥ x/z.
If (2) holds thenh(x/z) ≥ 0 ≥ h(xz). If (3) holds then we have

h(x/z) ≥ h(7) > −0.088 > −0.097 > h(14) ≥ h(xz).

If x ≤ 7 then the condition (5.2) holds. For ifx 6≤ y0z thenx/z ≤ x ≤ 7
andxz ≤ x2/y0 < 49/3.6 < 13.7 so that the second condition holds. We have
shown, then, that forx ≤ 7 we havezg′(z) = h(xz) − h(x/z) ≤ 0 for all
z ∈ [1, x] and so we see thatg is decreasing in the same range.

Let us now return to inequality (5.1). Since the left hand side is decreasing
in z and the right hand side is increasing in the same, it clearly suffices to show
that the inequality holds forz = 1+. Calculating, we see we have to show that

2 log x

x + 1

x− 1/x

log x
+

2

x
≤ 2,

which is actually an equality and hence the claim is clear.

Remark 5.1. The restriction onx in the previous lemma is not superfluous, for
the claim does not hold for largex and all d. However, numerical evidence
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does suggest that∂gd(x)/∂d has character− or −|+, hence we would have a
certain monotonicity property for largex also. Unfortunately the author has
not been able to prove this fact.

We now proceed to the second phase of the scheme presented, showing that
for largex, Gs,t has a large derivative. Note that the constant11/189 is chosen
to suffice for Remark5.3.

Lemma 5.3. If 11/189 ≤ s/t ≤ 189/11 and s + t = 1 thengs,t(x) ≥ 0 for
x ≥ 47.

Proof. Assume without loss of generality thats > t. We have to prove that

f(x) := (s− t)(xs + 1)(xt + 1)gs,t(x) = t(xs + 1)− s(xt + 1) ≥ 0

for x ≥ 47. Since
xf ′(x) = ts(xs − xt) ≥ 0

it suffices to show thatf(47) ≥ 0. Let us dividef(47) by s and denotev := t/s.
The inequality becomes

g(v) := v(471/(1+v) + 1)− 47v/(1+v) − 1 ≥ 0.

Clearlyg(1) = 0 and we also find thatg(11/189) > 0.035. Hence it suffices to
show thatg′(v) has characteristic+|− for v ∈ [11/189, 1]. A calculation gives

g′(v) := 471/(1+v) + 1− log 47

(1 + v)2

(
47v/(1+v) + v471/(1+v)

)
.
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Let us write the inequalityg′(v) ≥ 0 in terms of the original variable,s =
1/(1 + v), divide bylog{47s} and rearrange some:

47s + 1

log 47s
≥ s471−s + (1− s)47s.

We will show that the left hand side is increasing ins and that the right hand
side is decreasing ins. From this it follows, on checking the boundary values
s = 1/2 ands = 189/200, thatg′ has characteristic−|+, which completes the
proof.

Since47s is obviously increasing ins we have first to show thath(y) :=
(y + 1)/ log y is increasing fory ∈ [471/2, 470.945]. We have

(log y)2h′(y) = log y − 1− 1/y.

Sincelog y − 1− 1/y is increasing iny, it is clear that

h′(y) ≥ log
√

47− 1− 47−1/2

log2 47
≈ 0.058 > 0.

Next we want to show thatm(s) := s471−s + (1 − s)47s is decreasing ins
for s ∈ [1/2, 189/200]. Let us differentiate:

m′(s) = 471−s − 47s + ((1− s)47s − s471−s) log 47.

Thenm′(s) ≤ 0 if and only if

n(471−s) =
log 471−s − 1

471−s
≤ log 47s − 1

47s
= n(47s),
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where we have denotedn(z) := (log z − 1)/z. This function has the following
relevant characteristics: only zero ate and only maximum ate2. In what follows
we will essentially approximaten(z) by a step function which allows us to
arrive at the desired conclusion.

Since47s ≥ 471−s by assumption ons, we see thatn(471−s) ≤ n(47s) if
47s ≤ e2 or, equivalently,s ≤ 0.5194, sincen(z) is increasing forz ≤ e2. If
s > 0.5194 then471−s < 6.363 andn(471−s) < 0.1336. Sincen(8.7) > 0.1337
it follows that

n(47s) ≥ min{n(470.5194), n(8.7)} > n(470.4806) ≥ n(471−s)

for 0.5194 ≤ s ≤ 0.5618 < log 8.7/ log 47. Making a second iteration, we find
that fors ≥ 0.5618 we haven(471−s) < 0.1272, andn(10.8) > 0.1277. Hence

n(47s) ≥ n(10.8) > n(470.4382) ≥ n(471−s)

for 0.5618 ≤ s ≤ 0.6180 < log 10.8/ log 47. Continuing with a third and a
fourth iteration we find that

n(47s) ≥ n(16) > n(470.382) ≥ n(471−s)

for 0.6180 ≤ s ≤ 0.72 < log 16/ log 47 and that

n(47s) ≥ n(47) > n(470.28) ≥ n(471−s)

for 0.72 ≤ s ≤ 1 = log 47/ log 47 and so we are done.

Using the previous two lemmas we will be able to derive strong inequalities
for many Gini means by proving just a few simple inequalities, which effec-
tively amount to solving polynomial inequalities.
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Lemma 5.4. Let r > 0. ThenG3r,r � Ep,q if and only ifp + q ≤ 12r.

Proof. Assume first thatp + q ≤ 12r. SinceEp,q � Eu,u, whereu ≥ (p + q)/2,
by Theorem1.1, it suffices to prove thatG3r,r � Eu,u with u = 6r. This is
equivalent with

xr − 2

x2r − xr + 1
=

1

2r

(
r

xr + 1
− 3r

x3r + 1

)
= g3r,r ≥ eu,u =

1

xu − 1
− uxu log x

(xu − 1)2
.

Let us sety := xr and multiply by(xu − 1)2/xu:

(y6 − 1)2

2y6

y − 2

y2 − y + 1
≥ 1− y−6 − 6 log y.

This inequality surely holds fory = 1, hence it suffices to show that the left
hand side has a greater derivative than the right hand side fory > 1:

3(y5 − y−7)
y − 2

y2 − y + 1
− (y6 − 1)2

2y7

y2 − 4y + 1

(y2 − y + 1)2
≥ 6y−7 − 6/y.

Let us multiply both sides byy7/(y6 − 1):

3(y6 + 1)
y − 2

y2 − y + 1
− y6 − 1

2

y2 − 4y + 1

(y2 − y + 1)2
y ≥ −6.

We can then move the two terms with minus signs to the opposite sides, divide
by y(y2 − 1) and multiply by2(y2 − y + 1)2 to get

6(y4 − 2y3 + y2 − 2y + 1)(y2 − y + 1) ≥ (y4 + y2 + 1)(y2 − 4y + 1).
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Multiplying out and rearranging gives the inequality

5y6 − 14y5 + 22y4 − 26y3 + 22y2 − 14y + 5 ≥ 0.

Dividing by (y − 1)2 gives

5y4 − 4y3 + 9y2 − 4y + 5 ≥ 0,

which holds since5y4 ≥ 4y3 and9y2 ≥ 4y for y ≥ 1.
The converse implication, thatG3r,r � Ep,q implies p + q ≤ 12r, follows

sincer = g3r,r(1+) ≥ ep,q(1+) = (p + q)/12, which concludes the proof.

Proof of Theorem1.4. Suppose first thatGs,t � Ep,q.Then

(s + t)/4 = gs,t(1+) � ep,q = (p + q)/12,

hencep + q ≤ 3(s + t), which proves one implication.
Suppose conversely thatp+q ≤ 3(s+t) and1/3 ≤ s/t ≤ 3. It follows from

Lemma5.2 thatgs,t(x) ≥ g3r/4,r/4(x) for x ∈ [1, 491/(s+t)] andr := s + t. It
follows from Lemma5.4thatg3r/4,r/4(x) ≥ e3r/2,3r/2(x) for the samex. Using
e3r/2,3r/2(x) ≥ ep,q(x) from Theorem1.1 completes the proof in the case of
small values ofx.

If x > 471/(s+t) we have

gs,t(x) ≥ 0 ≥ ep,q(x),

where the first inequality follows from Lemma5.3 and the second one from
Lemma3.2. Hence the claim is clear in this case as well.
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Let us now give one more specific Gini mean extended mean value inequality
(with corollary) before moving on to summarize the results of this section.

Lemma 5.5. We haveG9,1 � E16,14.

Proof. We have to show that

1

8

(
1

x + 1
− 9

x9 + 1

)
≥ 1

2

(
16

x16 − 1
− 14

x14 − 1

)
.

Let us multiply this by8(x + 1)(x9 + 1)(x16 − 1)(x14 − 1)x−20 and move all
the terms to the same side. We get the equivalent inequality

f(x) := x19 − x−19 − 9(x11 − x−11)− 8(x10 − x−10) + 56(x6 − x−6)

+ 55(x5 − x−5)− 64(x4 − x−4)− 65(x3 − x−3) ≥ 0.

Sincef(1) = 0 it suffices to show thatf ′(x) ≥ 0 for x ≥ 1. Let g(x) :=
xf ′(x). We will show thatg is increasing inx, from which it follows that
g(x) ≥ 0 for x ≥ 1, sinceg(1) = f ′(1) = 0. Sinceg is positive if and only iff ′

is (for x > 0), it follows thatf ′(x) ≥ 0. Now

h(x) := xg′(x)

= 361(x19 − x−19)− 1089(x11 − x−11)− 800(x10 − x−10)

+ 2016(x6 − x−6) + 1375(x5 − x−5)

− 1024(x4 − x−4)− 585(x3 − x−3),

andg is increasing if and only ifh(x) ≥ 0. Sinceh(1) = 0, it suffices to show
thath is increasing and sinceh′(1) = 0, thatm(x) := xh′(x) is increasing. We
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have

m′(x) = 130123(x19 − x−19)− 131769(x11 − x−11)− 80000(x10 − x−10)

+ 72576(x6 − x−6) + 34375(x5 − x−5)

− 16384(x4 − x−4)− 5265(x3 − x−3).

Since

72576(x6 − x−6) + 34375(x5 − x−5) ≥ 16384(x4 − x−4) + 5265(x3 − x−3)

we may drop the last four terms in the expression ofm′(x). It then suffices to
show that (we have divided by10000 and rounded suitably)

n(x) := 13(x19 − x−19)− 14(x11 − x−11)− 8(x10 − x−10) ≥ 0

for x ≥ 1. Differentiating one last time we find

xn′(x) = 247(x19 + x−19)− 154(x11 + x−11)− 80(x10 + x−10).

Sincexy+x−y is increasing iny > 0 for fixedx ≥ 1, we clearly haven′(x) ≥ 0,
hencen(x) ≥ n(1) = 0 and so we are done.

Corollary 5.6. Let s > t > 0 and p > q > 0 be such thats/t ≤ 9 and
p/q ≥ 8/7. ThenGs,t � Ep,q if and only ifp + q ≤ 3(s + t).

Proof. We have already seen thatGs,t � Ep,q implies thatp+q ≤ 3(s+t) so we
need only show thats/t ≤ 9, p/q ≥ 8/7 andp + q ≤ 3(s + t) imply the strong
inequality. The proof of this is exactly the same as the proof of Theorem1.4;
use Lemma5.2and Corollary5.6and finish up by Theorem1.1for small values
of x and use Lemmas5.3and3.2for large values ofx.
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5.3. Summary of Results on Gini Means

Let us now summarize the results from Theorems1.3and1.4and Corollary5.6
in pictorial form. Since the inequality

Gs,t � Ep,q

has one degree of homogeneity in the parameters (by Lemma2.1) we are left
with a three dimensional graph. On this graph we will show only the case
p + q = 3(s + t), which is the critical case in the sense that the inequality does
not hold for smallers + t.

We next give a result which shows that the inequality does not hold for cer-
tain values ofs, t, p andq.

Lemma 5.7. Let s ≥ t ≥ 0 andp ≥ q ≥ 0 with p + q = 3(s + t) > 0. Then
Gs,t 6� Ep,q for x ≤ 9− 4

√
5 if

y >
5(x2 + 1)− 3(x + 1)

√
x2 − 18x + 1

4x2 + 18x + 4
,

wherex := t/s andy := q/p.

Remark 5.2. The curve determined by the inequality in the lemma is show in
the upper left corner of Figure2.

Proof. Assume thatGs,t � Ep,q so thatgs,t(z) ≥ ep,q(z) holds for all z ∈
[1,∞). We may assume without loss of generality thatp+q = 3 = 3(s+ t) and
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q/p

0

1/2

7/8

1

t/s

0 1/9 1/3 1

Holds here

Does not

hold there

?

Figure 2: When doesGs,t � Ep,q hold?

thats, t, p, q > 0. If we multiply the inequality by(zt+1)(zs+1)(zp−1)(zq−1)
we get the equivalent inequality

f(z) :=
tzs − szt + t− s

s− t
(zp − 1)(zq − 1)− pzq − qzp + q − p

p− q
(zt + 1)(zs + 1)

≥ 0.

Sincef(1) = 0 it follows that f ′(1) ≥ 0 (sincef ∈ C∞). Upon calculating
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f ′(1) we find that it equals zero, as well. Continuing in this manner we find
thatf ′′(1) = f (3)(1) = f (4)(1) = 0. With the fifth derivative we start getting
somewhere, indeed, we find that

f (5)(1) = (p− 1)(p− 2) + 5s(1− s),

hence the conditionf (5)(1) ≥ 0 implies that

(p− 1)(p− 2) + 5s(1− s) =
(2− y)(1− 2y)

(1 + y)2
+

5x

(1 + x)2
≥ 0,

where we have solvedp from the system of equationsp + q = 3 andq/p = y
andx from s + t = 1 andt/s = x. Solving this second degree equation iny
gives the desired result.

Remark 5.3. It follows from the previous lemma thatGs,t � Ep,q does not hold
for everyp, q ∈ R+ with p + q = 3(s + t) unless

(5.3)

√
5− 2

4
=

9− 4
√

5

4
√

5− 8
≤ s/t ≤ 4(

√
5 + 2).

Moreover, numerical evidence suggests that this bound is also sharp, that is
to say thatGs,t � Ep,q would hold if and only ifs and t satisfy (5.3). Since
11/189 < (

√
5− 2)/4, it would suffice to show that

G4
√

5−8,9−4
√

5 � E3/2,3/2

in order to prove this claim, using Lemma5.2.
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6. Seiffert’s Mean
In this section we derive exact bounds on when Stolarsky’s mean is strongly
less than or equal to the Seiffert mean,P (x, y), defined in Section3.4. We also
give an example of an extended mean value which is strongly greater than the
Seiffert mean.

Proof of Theorem1.6. Assume first thatP � Sα, or, equivalently,p(x) ≥
sα(x), wheresα := e1,1−α. We know from Section3 thatp(1+) = sα(1+) =
−1/2 and we see thatp(x) ≥ sα(x) implies that the derivative ofp is greater
than that ofsα at 1+. Now the conditionp′(1+) ≥ s′α(1+) is equivalent to
1/6 ≥ (2− α)/12 or α ≥ 0, again using results from Section3.

We see that asx → ∞ we havep(x) ∼ −(2/π)x−1/2 andsα(x) ∼ (1 −
1/α)xα−1 if α > 0 andsα(x) ∼ −x−1 log{x} for α = 0, and sop ≥ sα implies
thatα− 1/2 ≥ 0.

Suppose conversely then thatα ≥ 1/2. SinceSβ � Sα if and only if α ≥ β
by Theorem1.1, it suffices to show thatP � S1/2, or equivalently

1

x− 1
− 2

√
x

x + 1

1

4 arctan(
√

x)− π
≥ 2

x− 1
− 1

x1/2 − 1
,

which can be written as

1

y − 1
− 1

y2 − 1
=

y

y2 − 1
≥ 2y

y2 + 1

1

4 arctan y − π
,

where we used the substitutiony =
√

x. This is equivalent to

f(y) := 4 arctan y − π − 2(y2 − 1)/(y2 + 1) ≥ 0.

http://jipam.vu.edu.au/
mailto:peter.hasto@helsinki.fi
http://jipam.vu.edu.au/


A Monotonicity Property of
Ratios of Symmetric

Homogeneous Means

Peter A. Hästö

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 44 of 54

J. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002

http://jipam.vu.edu.au

Clearlyf(1) = 0. Since

(y2 + 1)2f ′(y) = 4(y2 + 1)− 8y = 4(y − 1)2 ≥ 0

it is clear thatf(y) ≥ f(1) = 0, which concludes the proof.

Although it does not have any relevance to the question of relative metrics,
we will now give a reverse type inequality, which in turn gives a better ordinary
inequality that the previous result, as is seen in Corollary6.3. This proposition
is the strong version of the inequalityP ≤ A2/3 proved by A. A. Jager in [15].
Recall thatAp denotes the power meanE2p,p.

Proposition 6.1. Letp ∈ R. ThenAp � P if and only ifp ≥ 2/3.

Proof. Suppose first thatAp � P . Thene′2p,p(1+) = (2p + p)/12 ≥ 1/6 =
p′(1+), by the formulae derived in Section3, hencep ≥ 2/3.

Suppose conversely thatp ≥ 2/3. SinceAp � Aq if and only if p ≥ q
by Theorem1.1, we see that it suffices to check the claim forp = 2/3. The
conditionA2/3 � P is equivalent with

1

x− 1
− 2

√
x

x + 1

1

4 arctan(
√

x)− π
≤ − 1

x2/3 + 1
.

Let x =: y6 and rearrange to get

2
(y6 − 1)(y4 + 1)

(y6 + 1)(y2 + 1)y
≥ 4 arctan(y3)− π.
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Since this equation holds fory = 1, it suffices to check that the left hand side
has a greater derivative than the right hand side. Let us differentiate both sides
of the inequality and multiply by(y6 + 1)2(y2 + 1)2y2:

(10y10 + 6y6 − 4y5)(y6 + 1)(y2 + 1)

− (y6 − 1)(y4 + 1)(9y8 + 7y6 + 3y2 + 1) ≥ 6(y6 + 1)(y2 + 1)2y4.

This eighteenth degree polynomial can be written as

(y6 − 1)(y4 − 1)(y2 − 1)2[y4 + 5y2 + 1] ≥ 0,

which clearly holds.

Corollary 6.2. Let p, q ∈ R> with 1/2 ≤ p/q ≤ 2. ThenP � Ep,q if and only
if p + q ≥ 2.

Proof. A trivial modification of the first paragraph of the previous proof shows
thatEp,q � P implies thatp + q ≥ 2.

Assume conversely that1/2 ≤ p/q ≤ 2 anda := p + q ≥ 2. Then

Ep,q � E2a/3,a/3 � E4/3,2/3 = A2/3 � P,

where the first inequality follows from Lemma4.2 sincep + q = 2a/3 + a/3
anda/3 ≤ p, q ≤ 2a/3 and the second inequality follows from Lemma4.1 as
a ≥ 2.

Remark 6.1. It is not clear how far the condition1/2 ≤ p/q ≤ 2 in the previous
corollary can be relaxed. By consideringx → ∞, as was done in the proof of
Theorem1.6, we see that the claim does not hold forp + q = 2 with p < 1/2,
i.e. p/q < 1/3.
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We also have the following corollary of ordinary inequalities, which follows
by the method presented in Section2.2.

Corollary 6.3. Letx, y ∈ R> Then

23/2

π
A2/3(x, y) ≤ P (x, y) ≤ A2/3(x, y).

Both inequalities are sharp.

Remark 6.2. The estimate ofP in Corollary 6.3is better than the one in Corol-
lary 1.7 in the sense that the former has the ratioπ/23/2 ≈ 1.1107 between the
upper and lower bounds, whereas the latter has a ratio of at least4/π ≈ 1.2732.
Note also that it is probably possible to find an extended mean value which has
a smaller such ratio but satisfies neitherE � P nor P � E.

Let us end this section by proving the following strong version of the in-
equalityA ≤ T , whereT denotes the second Seiffert mean. In fact, the proof is
so simple, that it would not be worth giving, were it not for the fact that we will
be able to put the lemma to good use in Section7.

Lemma 6.4. Let p ∈ R. ThenAp � T if p ≤ 1 and alsoT � Sα for all
α ∈ (0, 1].

Proof. Clearly it suffices to prove the claim forp = 1. Using the formulae for
e2,1(x) andt(x) we find that it suffices to show that

1

x− 1
− x

x2 + 1

(
arctan

x− 1

x + 1

)−1

≥ − 1

x + 1
.
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This becomes

arctan
x− 1

x + 1
≥ 1

2

x2 − 1

x2 + 1
.

There is equality forx = 1, so we differentiate to find the sufficient condition

1

x2 + 1
≥ 2x

(x2 + 1)2
,

which is immediately clear. SinceA � Sα for all α ∈ (0, 1] by Theorem1.1the
second claim follows by the transitivity of�.
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7. New Relative Metrics
In this section we show how the results of this paper relate to the so-called
M–relative metric, which has been recently studied by the author in [7], [8] and
[9]. Let us remind the reader that by a Stolarsky mean we understand a extended
mean value with parameters1 and1− α, henceSα = E1,1−α.

Let us denote byX := Rn \ {0} for the rest of this section. LetM : R> ×
R> → R> be a symmetric function and letρM : X ×X → R> be defined by

ρM(x, y) :=
|x− y|

M(|x|, |y|)
for all x, y ∈ X. The functionρM is called theM–relative distance, and, when
it is a metric, theM–relative metric. The following result gives the connec-
tion between strong inequalities andM–relative metric that has been alluded to
previously in this paper.

Theorem 7.1. [7, Lemma 3.1]Let 0 < α ≤ 1 andM : R> × R> → R> be a
symmetric homogeneous increasing mean.

1. If M � Sα thenρMα is a metric inX.

2. If ρMα is a metric inX thenM ≥ Sα.

3. If ρMα is a metric inX thentM(x2)/tM(x) ≥ tSα(x2)/tSα(x) for all x >
1.

Remark 7.1. The second condition of the previous theorem says almost that
tM/tSp is increasing in a neighborhood of1 and the third almost that it is in-
creasing in a neighborhood of∞. It turns out that all the means studied in this
paper are sufficiently regular for this “almost” result becomes a real result.
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Combining this result with the theorems from Section1 gives the following
corollaries:

Corollary 7.2. Let0 ≤ q ≤ p andα ∈ (0, 1]. ThenρEα
p,q

is a metric inX if and
only if p + q ≥ 2− α andq ≥ 1− α.

Proof. Assume first thatp + q ≥ 2 − α andq ≥ 1 − α. Then by Theorem1.1
Ep,q � E1,1−α and soρEα

p,q
is a metric inX by Theorem7.1(1).

If p + q < 2 − α thenEp,q(x, 1)/E1,1−α(x, 1) is decreasing for smallx,
sinceep,q < e1,1−α in some neighborhood ofx. This means that the inequality
Ep,q(x, 1) ≥ E1,1−α(x, 1) does not hold, and soρEα

p,q
is not a metric inX, by

Theorem7.1(2).
If p = q andq < 1−α thenp+q < 2−2α ≤ 2−α and we proceed as in the

previous paragraph to show thatρEα
p,q

is not a metric. Ifq < p andq < 1−α then
Ep,q(x, 1)/E1,1−α(x, 1) is decreasing for largex, sinceep,q ∼ −qx−q/(p− q) <
(1/α−1)xα−1 ∼ e1,1−α whenα < 1 andep,q ∼ −qx−q/(p− q) < −1/ log x ∼
e1,0 (the caseq = 0 follows similarly). It follows that the third condition of
Theorem7.1 is not satisfied for largex, which means thatρEα

p,q
is not a metric

in X.

Remark 7.2. If we setp = q/2 in the previous corollary we get Theorem 1.1
of [7], which is thus a special case of the previous result. Similarly, in Corol-
lary 7.3we regain this theorem if we setq = 0.

Corollary 7.3. Letp, q ∈ [0,∞). If p + q ≥ max{(2− α)/3, 1− α} thenρGα
p,q

is a metric inX .

Proof. Follows immediately from Theorem1.3and Theorem7.1(1).
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Corollary 7.4. Let p, q ∈ [0,∞) andp/q ≤ 3. ThenρGα
p,q

is a metric inX if
and only if3(p + q) ≥ 2− α.

Proof. ThatρGα
p,q

is a metric inX implies that3(p + q) ≥ 2 − α follows from
the last paragraph of the proof of Theorem1.3. The other implication follows
from Theorem1.4and Theorem7.1(1).

Corollary 7.5. If α ∈ (0, 1] thenρP α is a metric inX if and only if1/2 ≤ α ≤
1.

Proof. If α ≥ 1/2 thenρP α is a metric by Theorem7.1(1). If α < 1/2 then
P/Sα is decreasing for largex, as was seen in the proof of Theorem1.6, hence
ρP α is not a metric, by Theorem7.1(3).

For the Seiffert mean we get particularly simple metrics, which was the prin-
cipal reason for considering strong inequalities of this mean. For instance

ρP (x, y) = 2
|x− y]

|x| − |y|
arcsin

(
|x| − |y|
|x|+ |y|

)
,

for |x| 6= |y| andρP (x, y) = |x − y|/|x| for |x| = |y|. We get an even simpler
form for x andy on the same ray originating in the origin:

ρP (se, te) = 2 arcsin{(s− t)/(s + t)}

wheres > t > 0 ande is a vector inX.

Corollary 7.6. If 0 < α ≤ 1 thenρT α is a metric inX.

Proof. Follows directly from Lemma6.4and Theorem7.1(1).
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As in the previous case we get some very simple metrics from this corollary.
For instance ifx > y > 0 and0 < α ≤ 1 then

ρT α(xe, ye) = (x− y)1−α(2 arctan{(x− y)/(x + y)})α,

wheree is an arbitrary unit vector inX. Again, the caseα = 1 is particularly
simple:ρT α(xe, ye) = 2 arctan{(x− y)/(x + y)}.
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