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Abstract

We study a certain monotonicity property of ratios of means, which we call a
strong inequality. These strong inequalities were recently shown to be related
to the so-called relative metric. We also use the strong inequalities to derive
new ordinary inequalities. The means studied are the extended mean value of
Stolarsky, Gini's mean and Seiffert's mean.
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In this paper we study a certain monotonicity property of ratios of symmetric
homogeneous means of two variables. In this setting the monotonicity property
can be interpreted as a strong version of an inequality. The means considered
are the extended mean value of Stolarsky],[ Gini's mean [] and Seiffert’s
mean [.5].

These kind of strong inequalities were shownihtp provide sufficient con-
ditions for the so-called relative distance to be a metric. This aspect is described

A Monotonicity Property of

in Section7, which also contains the new relative metrics found in this paper. Ratios of Symmetric
A question by H. Alzer on whether the results @f,[specifically Lemma 4.2, Homogeneous Means
could be generalized was the main incentive for the present paper. Another mo- Peter A. Hasto

tivation for this work was that monotonicity properties of ratios have been found
useful in several studies related to gamma and polygamma functions, see for in-

stance §], [10], [1] and [2]. Such inequalities have also been used, implicitly, i s

in studying means by M. Vamanamurthy and M. Vuorinen in the patidr &n Contents

aspect further exposed in Sectiprz. <« >
Let us next introduce some terminology in order to state the main results. % N

DenoteR~ := (0,00) and letf, g: [1,00) — R~ be arbitrary functions. We
say thatf is strongly greater than or equal tg, in symbolsf > g, if z — Go Back
f(z)/g(x) is increasing. By asymmetric homogeneous increasing méain

two variables) we understand a symmetric functidn R~ x R~ — R~ which Close
satisfies Quit
min{z,y} < M(x,y) < max{z,y} Page 4 of 54
and M (sz,sy) = sM(x,y) for all s,z,y € R~ and for whicht,(z) =
M (z,1) is increasing forz € [1,00). The functiont,, is called thetrace of 3. Ineq. Pure and Appl. Math. 3(3) Art. 71, 2002
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M and uniquely determines/, sinceM (x,y) = yty(x/y). If M and N are
symmetric homogeneous increasing means we saylMh# strongly greater
than orequal tav, M = N, if t); = tn.

Let us next introduce the means that will be considered in this paper. The

extended mean valuéy ;, was first considered by Stolarsky inc] and later
by Leach and Scholander, 1], who gave several basic properties of the mean.
It is defined for distinct:, y € R~ and distincts,t € R\ {0} by

t s — ys 1/(s—t)
st — yt)

Ei(z,y) = (

and E,;(z,z) := x. The extended mean value is defined for the parameter
valuess = 0 ands = t by continuous extension, see Sectibf. Let us also
define the power means by, := Ej; 5, see also Sectiod. L

In the paper [ 7] Leach and Scholander provided a complete description of
the values
s,t,p,q € R for which E,, > E,,. The next theorem is the corresponding
result for strong inequalities. Notice that this result is a generalizatior,of |
Lemma 4.2], which in turn is the strong version of Pittenger’s inequality, see
[14]. We also state a corollary containing the ordinary inequalities implied by
the theorem.

Theorem 1.1.Lets,t,p,q € Rt := [0,00). ThenE,, = E,, if and only if
s+t >p+qgandmin{s,t} > min{p, ¢}.

Corollary 1.2. Lets,t,p,g e R”,s >tandp > q. lf p+¢q > s+ tandt > q
then
Es7t S Ep,q S (q/p)l/(p—q) (s/t)l/(s_t)Es,t-
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Both inequalities are sharp.

Remark 1.1. Let M and N be symmetric homogeneous increasing means.
The inequality < N is understood to mean that the real value inequality

M (z,y) < N(z,y) holds for allz,y € R~. The inequalityM/ < ¢N is said to

be sharp if the constant cannot be replaced by a smaller one. Notice that this
does not necessarily mean that the inequality cannot be improved, for instance
the previous one could possibly be replacedby< ¢cN — log{1 + N}.

Remark 1.2. The first inequality in the previous corollary follows directly from
the result of Leach and Scholander, and is not as good (in terms of the assump-
tions onp, ¢, s andt). The upper bound does not follow from their result,
however.

The Gini mean was introduced ifj][as a generalization of the power means.
It is defined by

s s\ 1/(s—t)
T +y
G&t(x,y) = (.Tt +yt)

for z,y € R~ and distincts,t € R. Like the extended mean value, the Gini
mean is continuously extendedde= ¢, see Sectiol.3.

The Gini means turn out to be less well behaved than the other means that
we consider in terms of strong inequalities. We give here two main results
on inequalities of Gini means, however, the reader may also want to view the
summary of results presented in Sect®f. The following theorem gives a
sufficient condition for the Gini means to be strongly greater than or equal to an
extended mean value and is also a generalization, dffmma 4.2].
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Theorem 1.3.Leta,p,q € R*. ThenG,; = E,,forall s,t > 0withs+t =a
if and only ifp + ¢ < 3a andmin{p, ¢} < a.

If the parameters of the Gini mean are of similar magnitude then we are able
to give a characterization of the extended mean values that are strongly less than
the Gini mean:

Theorem 1.4.Lets,t € R> with 1/3 < s/t < 3 andp,q € R*. Then
Gs+ = E, ifand only ifp + ¢ < 3(s + t)

Again we have a corollary of ordinary inequalities: A Mg;ﬁ;@”;‘gyﬂfﬂ‘gg of
Corollary 1.5. Lets,t,p,qg € R*,p > gandp + ¢ < 3(s +t). Assume also AISTEGATENE 2
that1/3 < s/t <3o0rq <s+t. Then Peter A. Hasto

E,, <G < Y- g
P = et = (p/q) P Title Page
Both inequalities are sharp. Contents
Remark 1.3. Contrary to the corollaries of the other theorems, this one pro- « NS
vides, to the best knowledge of the author, new inequalities.
< >
The Seiffert mean was introduced inf] and is defined by
Go Back
r—1Y
P(x,y) :=
(.9) 4darctan(y/x/y) — 7 Close
" . uit
for distinctz,y € R~ and P(z,z) := x. The next theorem provides a char- °
acterization of those Stolarsky means which are strongly less than the Seiffert Page 7 of 54
mean. Notice that the Stolarsky mean is of particular interest to us, since it has
been implicated in finding relative metrics, as is described in Section 3. Ineq. Pure and Appl. Math. 3(S) Art. 71, 2002
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Theorem 1.6. DenoteS,, := Ey;_, for0 < a < 1. ThenP > S, if and only
if o >1/2.

Remark 1.4. We will call S, = E;,_, Stolarsky means following’[] and

[ 7], since this particular form of the extended mean value was studied in depth
by Stolarsky in 1] and call the familyE ; extended mean values, even though
they too originated from1<] by Stolarsky.

The previous theorem has the following corollary containing the correspond-
ing ordinary inequalities.

Corollary 1.7. 1f 1/2 < o < 1 then
1
Sy <P<=(1-a)Ys,.
T

Both inequalities are sharp.

Remark 1.5. In the previous corollary the lower bound is decreasing and the
upper bound is increasing in (for any fixedr). Hence the best estimate fbr
given by the previous corollary is

(VZ + v9)°

(Vz + v9)*

< P(z,y) < ,
4 T

sinceS;/, = A; /2. Notice also that the first of these inequalities was given by
A. A. Jager in [L5] in order to solve H.-J. Seiffert’'s problet, ; < P < Ej ;.
Once again however, the upper bound is new. For another inequaliy; sée
Corollary 6.3.
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The structure of the rest of this paper is as follows: in the next section we
state some basic properties of strong inequalities and show how the corollaries
in this section follow from their respective theorems. In Seciome present
the complete definition of the means studied as well as some simple results
on their derivatives. Sectioficontains the complete characterization of strong
inequalities between extended mean values, that is the proof of Theotem
In Section5 we present the proofs of Theorehs and 1.4, relating extended
mean values and Gini means as well as some additional results summarized
in Section5.3. Section6 contains the characterizations of strong inequalities A Monotonicity Property of
between Seiffert's mean and the Stolarsky means. In Sectiva present a Hﬁ‘)‘ggé’; I
brief summary of the result regarding relative metrics fraofhgnd show how
the theorems of this paper yield new families of metrics. peter A. Hasto

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 9 of 54

J. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:peter.hasto@helsinki.fi
http://jipam.vu.edu.au/

In this section we will consider some basic properties of strong inequalities
and show how the corollaries stated in the introduction are derived from their
respective theorems.

Recall from the introduction that we say thats strongly greater than or equal
tog, f = g, if z — f(z)/g(z) is increasing, wher¢, g: [1,00) — R~ are
arbitrary functions. The relatiofi < ¢ is defined to hold if and only iy >

f. The following lemma follows immediately from the definition sinceis
increasing if and only if: is increasing, for > 0.

Lemma 2.1. Let f, g: [1,00) — R~ be arbitrary functions and > 0. Define
fs(x) := f(z®) andg,(x) := g(«*). Then following conditions are equivalent:

1.f=g,
2. fs = gsand
3. f*=g¢°.

Suppose next that, g: [1,00) — R~ are differentiable functions. Then
f = gifandonlyifd(f/g)/dx > 0 if and only if

o dlog{f/gy _ dlogf dlogg

0 dx dx dx
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We see that in this situation the strong inequality is equivalent to an ordinary
inequality between the logarithmic derivatives.

We end this subsection by showing thxais a partial order, as is suggested
by its symbol. A binary relatiord C X x X is called apartial orderin the set
X if

1. x Jzforall z € X (reflexivity),

2. if x <y andy <z thenx = y (antisymmetry) and

A Monotonicity Property of

3. if x Qy andy < z thenz < z (transitivity). [17, Section 3.1]. Ratios of Symmetric
Homogeneous Means

Let f,g,h: [1,00) — R~ be arbitrary functions. Thefi = f, sincef/f =1

is increasing, hence the property of reflexivity is satisfiedt ¥ g andg > h
then f /g andg/h are increasing, hence so is their prodycth, which means
that f > h, hence> is transitive. The antisymmetry condition is not quite
satisfied, though — iff = cg with ¢ > 1thenf > gandg = f butf # g. Contents
One easily sees that the antisymmetry condition holds in the set of symmetric

Peter A. Hast6

Title Page

homogeneous means, hencés a partial order in this set, which is the one that S L
will concern us in what follows. < >
Go Back
Close
In this section we will see how strong inequalities imply ordinary inequali- Quit

ties. The method to be presented has been used in the context of gamma and
polygamma functions by several investigators, as noted in the introduction and
by M. Vamanamurthy and M. VuorinenA([]) in the context of means.

Page 11 of 54
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If M and N are symmetric homogeneous means thefl) = ¢x(1) = 1.
Hence, ifM = N then

tu()/tn(z) =ty (1) /tn(1) =1

for x > 1. To get an upper bound we observe thatjiz)/ty(x) is increasing
on |1, 0c0) then

tn(z) ~— a—oc ty(z)
and soty,(z) < cty(x). Notice also that the constant in neither of the two
inequalities can be improved. Since bdthand N were assumed to be homo-
geneous, the previous inequalities imply that

)

N(z,y) = ytn(z/y) < ytu(z/y) = M(z,y) < cytn(z/y) = cN(z,y),

wherez, y € R~. Notice in particular that the relation implies the relation>,
which is the reason for the terminology “strong inequality”.

Applying this reasoning to the Theorerhg, 1.6and1.3and1.4 gives the
Corollariesl.2 1.7and1.5, respectively, since

Ei(z,1) ~ (s/)C D2 G, y(2,1) ~ zand P(x,1) ~ 22/7

asx — oo for distincts, t € R~.
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In this section we give the precise definitions of the means that are studied. We
will also define and calculate a certain variety of their derivatives.

In this subsection we define some classical means and prove an inequality be-
tween them that is needed in Sectian AM .
i i . . . . . onotonicity Property of
The Arithmetic Geometri¢c Harmonicand Logarithmic meansire defined Ratios of Symmetric
for T,y c R> by Homogeneous Means

Peter A. Hast6

T+y 2xy
Alwy) ===, Gla,y) = Vay, H(ry) =
r+vy .
Title Page
and Contents
L(z,y) = t 4y, =z,

(@) log{fc‘/ I o) « 13
respectively. Moreover, we denote Hy the power mean of order A,(z,y) = < >
[A(2%,y°)]Y/* for s € R\ {0} and A, = G. The next lemma is an improvement
over the well known relatiod. > G, sinceAd > G. Go Back
Lemma 3.1. We havel, = AY/3G2/3, Close

Quit

Proof. We need to prove that
Page 13 of 54

' L3(x,1) (x —1)3
f(ﬁ) = A(:):, 1)G2 (% 1) = (x i 1)1‘ logS T 3.Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002
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is increasing inc for z > 1 (we used Lemma.1(3) with s = 3). A calculation
gives
(22 4+ 4z + 1) log{z} — 3(z* — 1)

"(z) = —1)%
f (-I) (l’ + 1)2.%'2 10g4{$} (I )
Hencef’(x) > 0 if and only if
2% —1
= —3————>0.
9(x) :=loga 3x2+4x+1 =0

Since clearlyg(1) = 0, it suffices to show thag is increasing, which follows
from

(2% + 42 + 1)%xg ()
= (2* + 42+ 1) = 3z(2r(2? + 4z + 1) — (2* — 1)(2z + 4))
= (z —1)*
> 0.

Let z,y € R~ be distinct ands,t € R\ {0}, s # ¢. We define theextended
mean valuavith parameters andt by

t s — ys) 1/(s—t)

sat —yt

Es(x,y) = (
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and also

1 z°logx —vylo
Es75($7y) = €Xp (_ + & s ys gy) )
s s —y

S S

1/s
xt —y
E = —_——— dE = .
8,0(x7 y) (S log{x/y}> an 070(1}, y) \V/ xry

Regardless of whetherandt are distinct we also defing, ;(z, z) := z. Notice

that all the cases are continuous continuations of the first general expression for

Es(x,y) (this was proved to be possible ind]).

It should also be noted thdt, ;, = A, Eyg =G, E_1_o = H andE;, = L,
and more generallyl, = E», ; for s € R. Hence we see that all these classical
means belong to the family of extended mean values.

Let us next calculate the following variety of the logarithmic derivative:

xalog Es,t(xv 1) -1
Ox

The reason for choosing this form has to do with the strong inequality (the
logarithm, as was seen in Sectidri) and simplicity of form (multiplying byz
and subtracting). Assume that > 1 and alsos,¢ € R\ {0}, s # ¢. Then

() 1 S t
st\T) = - s
Cot s—t\z5—1 x5-—1

est(z) ==

(z) = 1 sx®logx
Cl) T T T o)

1 1
eso(z) =

-1 slog x
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and

6070(1') = —1/2
Note that for alls,t € R we havee,;(1+) := lim,_,; es,(z) = —1/2. It will
be of much use to us that

ess(x) = limeg (), es0(2)

t—s

= lime, () and ego(x) = lim ez4(x),
t—0 t,s—0

since this will allow us to consider only the general formula (with distin¢te
R \ {0}) and have the remaining cases follow by continuity. Let us record the
following simple result which will be needed further on.

Lemma 3.2. For every pairs,t € R we have:;,(x) < 0forall z € (1, 00).
Proof. It suffices to show this for distinet, ¢ € R \ {0}. Assume further that
s > t. We have to show that
S t
< :
xs—1 " at—1

If ¢ > 0 we just multiply by(a* — 1)(z* — 1), whereupon the claim is clear,
sincesx! — tz® is decreasing in- and hence less than or equakte- t. Next if
s > 0 > t we have to prove that

S —tx
< .
zs—1 "zt -1

or, equivalentlys — ¢t < (—t)z® + sz*. Since the right hand side is increasing
in z this is clear. The case > s > t follows like the case¢ > 0, since
(zt —1)(«* — 1) is again positive. O
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We conclude this subsection by stating that forsatl € R we have

. Oegy(T) s+t
lim - = ,
rz—1+ ox 12

a fact which is easy, though tedious, to check (differentiate and use I’'Hospital’s
rule four times; the proof is quite similar to that of Lem\8).

A Monotonicity Property of
L. i . i . i Ratios of Symmetric
The Gini mean was introduced if][and is a generalization of the power means. Homogeneous Means
It is defined by

Peter A. Hast6

s s\ 1/(s—)
Coslrry) = (%) |
Title Page
wherezx, y € (0,00) ands, ¢t € R are distinct. We also define
Contents
G (y) = exp (:c 10g387+y: logy>. <« >
5+ y p >
Notice that the power means are the eleméhts = A; in this family of means. Go Back
The logarithmic mean is not part of the Gini mean family, in fact, Alzer and
Ruscheweyh have recently shown that the only means common to the extended Close
mean value and the Gini mean familes are the power medns, [ Quit

We easily find that Page 17 of 54

O0log Gs4(z,1) 1 t s
gs,t(‘r) = aﬂ? - ]' = s — t :Et + 1 - .ZUS + 1 ) J. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002
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for s # tandz > 1 and

sx®logx 1
(xs+1)2 a5+1

gs.s(T) =

As with the extended mean value we find that = lim, . g, ;. We again have
gs(1) = —1/2 and it is easily derived that, ,(1) = (s +t)/4.

The Seiffert mean was introduced inf] and is defined by

Pla,y) = darctan(y/z/y) —n  2arcsin((z —y)/(z +y))

for distinctz, y € R~ andP(x, z) := x. For this mean we have

Odlog P(x, 1 1 2 1
o) o o8P ) 1 2E |
Oz r—1 x+1darctan(\/z/y) — 7
for x > 1. Also, it can be calculated tha{1+) = —1/2. Let us for once

explicitly calculate the limiting value of the derivative at

Lemma 3.3. We have
. dp(x) 1
lim = —.
z—1+ dx 6
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Proof. A direct calculation gives

YRR S 1
PA® = (x—1)2  a(x+1)?4arctan(y/z) — 7
4 1
(x +1)2 (4 arctan(y/x) — )2

B 2 1 1 2 1 N 1
\z+1da—7 -1 z+14a—7 x-—1

+

r—1 1 A Monotonicity Property of
5 Ratios of Symmetric
\/E(x + 1)2 da — Homogeneous Means
where we have denoted = arctan(y/z). Hence, when we writéarctan(y/z)— Peter A. Hasto
7 =c(x — 1), we have
Title Page
P(14) = lim 2 1 B 1 1 2 1
s—1 \ &+ ldarctan(y/z) — 7 x—1) 2z —1 \c(x+1) Contents
y «“ »»
cvr(x +1)2 p N
lim 2 2 1 1 1 n 1
= lim — -
e—1" \x+ ldarctan(y/z) -7 z—1)2z—-1 4’ Go Back
sincec — 1 asz — 1+ and all the factors are continuous. It remains to evaluate Close
Quit
. i—ﬁ —4arctan(y/r) + 7 ] T —4y —2cos(2y) Page 19 of 54
im = lim coS
=1+ (x — 1)?(4arctan(y/x) — )  y—n/a+ 4cos?(2y)(dy — ) 4 2o
where we used the substitutign= arctan(y/z). We have, using I'Hospital’s 3. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:peter.hasto@helsinki.fi
http://jipam.vu.edu.au/

rule and the substitution := 2y

lim m— 22 —2c0S%2 ~ lim —2+42sinz
zom/2 (22 — m)(1 4 cos(2z))  2—n/2 2(1 + cos(2z2)) — 2(2z — 7) sin(2z)
~ lim cos z
z—m/2 —4sin(2z) — 2(2z — ) cos(22)
~ lim —sinz
z—m/2 —12 cos(2z) + 4(2z — 7) sin(22)
1
=T
Sincelim,_../4 cos*(y) = 1/2 we find thatp’(1+) = 2(—1/12)(1/2) + 1/4 =
1/6, as claimed. O

Let us also introduce another mean of Seiffert’s, frord][ for which we
will prove just one inequality. Define

r—=y
2 arctan £
T+y

T(z,y) =

for distinctz,y € R andT'(z,z) = x. This mean satisfied < 7' < A,, see
[16]. We have

dlog T(x, 1 1 —1\!
t(z) := 28 ) (1) _ 1= R arctan — :
ox r—1 x2+1 z+1
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In this section we will prove Theoreth 1, which is the used in the proof of the
other theorems. The proof consists essentially of two lemmas which show that
the extended mean value behaves nicely with respect to the strong inequality as
we move in the parameter plane. We start with the horizontal direction and then

go for the diagonal.

Lemma4.l.Letr,t € R. ThenE, ; > E, ; if and only ift > 7.

Proof. It suffices to show that, ; is increasing in-. We differentiate with re-

spect tor and find thak, ; is increasing when

' —1—2a"logx" S r

506 B B
(xzr —1)2 rs—1 am—1

0<(r—s) 9 =(r—-s)

2 f(s).

We havef(r) = 0, hence it suffices to show thgt(s) < 0if and only if s < r.
Differentiating with respect te gives

_2"logx” —a"+1  xflogx® —a® +1

T =y (@17

Sincez® < z" if and only if s < r it suffices to show thag(y) = (ylogy —y +
1)(y — 1)72 is decreasing. We calculate

_(y—1)logy —2(ylogy —y + 1)

: 2 = 1) = (y+ Dlogy

(y—1)°
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Henceg'(y) < O ifand only if 2(y — 1) < (y + 1) logy exactly wheny > 1.
Since

y—1
logy — 2=——
&Y y+1
is increasing iny and equal$ for y = 1, this is seen to be so. O

Lemma4.2.Leta > 2s > 2¢g > 0. Then
Eafs,s i Eafq,q-

Proof. We show that,_ ; is increasing irs < a/2, which is clearly equivalent
to the claim. Now

Oeq—ss(x) 2 a—s S
Os ~ (a—2s)? (xas—l_xs—1>

1 1—a+ (a—s)z**loge 2°—1—sz®logx
(e )

+

a— 2s
Let us denote: — s =: . The inequalityde,_, ;/0s > 0 becomes

x*log w - 1 (2 s r r—s r—s)

x" log x” 5
(x*—=1)2 " r—s

=17

xs—l_ :ET—1+$5—1 xr —1
_r+s 1 1
Cr—s\z°—1 a27—1)°

Let us multiply both sides byr® — 1)(z” — 1). The inequality becomes

s —1 -1 r+s

x" logx” + x®log x® >
rr—1 5 —1 rT—38

(" — z%).
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Let us next use the equalitiés® — 1) /(z" — 1) =1 — (2" — 2*) /(2" — 1) and
(" =1)/(z®* = 1) =1+ (2" — 2®)/(2* — 1) and divide byz" — z*:

sz’ ra’ rx’ + sx® r—+s
frs(z) = - + logx —
rs—1 ar—1 " — xs r—s
S r sx" + ra’ r+s
= — + logx —
(xs—l " —1 xr—x5> r—3s
> 0.
. L . A Monotonicity Property of
We will demonstrate that this is so by showing tliat(z) = 0, that Ratios of Symmetric
Homogeneous Means
Ifrs 0 fr.s o
1 = d that 2 > (). Peter A. Hasto
s—0 Or ) AU 5 8 =
The last two conditions imply thalf, ;/Or > 0. This, together with the first Title Page
condition implies thaff, ; > 0 if s > 0, which completes the proof.
We first show thayf, . (z) = 0: Contents
_ . (sa" 4+ ra®)(r—s)logx — (r+s)(ax” — z°) « dd
lim f, ((z) = lim p >
s—r "’ s—r (ZET — $S)<T — S)
~ lim —2(z" 4 ra®log x) logx 4+ 22°log = + (r + s)2° log® Go Back
o 2z° log Close
=0. _
Quit
Upon calculatingf, s /Or, Page 23 of 54
Ofrs x" log z” 1 " log 2" TS s 2s
(97‘ = (IT . 1)2 - .CUT - 1 - (Ir - .',US>2 + Ir o .’,US logI + (T o 8)27 J. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002
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we immediately find thad f,. . /Or|s—o = 0. Next we calculate

Pfrs  alog?x 2 (a" —a*)log?x + (r + ) (2" + %) log’ @

ords  (zr — x°)2 (xr — z%)3
r—s+2s
yol 2T
(r—s)3
(r +s)(z" + 2%)a"* log® x r+s
_— . +2 .
(xm — z%) (r—s)

Therefored? f, . /Ords is positive when

2 (z" + 2%)2"+* log® x
CEn A s

where we used that+ s = a > 0.
Sincez” > z° this last inequality is equivalent with

L(z", 938)3 > A(ZBT7$S)G(ZL‘T,[ES)2,
which follows from Lemma3.1, and so we are done. O]

Proof of Theoreni.l Let us assume without loss of generality that ¢ and
p=q.

Suppose first that’s; >~ E,, holds. This is equivalent with the condi-
tion es+(z) > e,4(x). Asx — 1+ there is equality in the inequality. Hence
ey +(1+) > e, (1+), for otherwisee, ;(x) < e,q(z) in some neighborhood
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(with respect td1, c0)) of = 1. It follows that(s + ¢)/12 > (p + ¢)/12, or,
equivalently,s +t > p 4+ q. Asx — oo we have

t
ZE_t
s—t

€st ™~ —

if 0 <t<s, ey ~—teloga andes o ~ —1/log{z*}. Hence we see that the
conditione, () > e, (x) implies thatt > .
Assume conversely that+ ¢t > p + ¢ andt > ¢. Then we have

Es,t = ES“,(M = Ep+qfq,q = Ep,q’

where the first inequality follows from Lemma2 sincet > ¢ and the second
inequality follows from Lemmal.1, sinces +t > p + q. O
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The Gini mean was defined in SectidrB. In this section we will derive partial
results on when a Gini mean is strongly greater than or equal to an extended
mean value. We will see that although the Gini mean was easier to define (re-
quired less cases) than the extended mean value, it is a lot more difficult to
handle, since it does not satisfy the kinds of lemmas that were proved for the
extended mean value in Sectién

It is well known thatG, , > G, if and only if s > ¢ (proved for instance

A Monotonicity Property of

in [13, Theorem 1.1 (h)]). The next example shows that this inequality does not Ratios of Symmetric
generalize to a strong inequality. FanER IRl s
Example 5.1.Lets > t > ¢ > 0. ThenG,, andG,, are not comparable in peter A Hasto
the partial order>. Indeedy; ,(z) > ¢:,(x) holds for smalk: > 1, since both

have the same limit (viz:1/2) asz — 1+ andgy; , has a greater derivative at Title Page

xr = 14, as was shown in Sectiéh3. On the other hand ,(z) < g ,(x) for

. Contents
x large enough, since
_ _ 44 44
9sq ~ qr /(s —q) <qr/(t —q) ~ guq
< >
asr — oo.
Go Back
Close
Quit
Despite the previous example we can derive some strong inequalities between Page 26 of 54
Gini means, which is what we will do next. Note the_, , is the power mean
A Tt J. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002
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Lemma5.1.1f s,t > 0thenG,; = Gyivp.

Proof. Assume without loss of generality that- ¢ > 0. Using the transforma-
tion z — 22/ we may assume that+ ¢ = 2 (here we use Lemma 1(2)).
Assume further that = 1+ d andt = 1 — d whered > 0 and for the time being

suppose further that > 0. The claim of the lemma is that

1 1—d 1+d 1
grear-al) = oq \grmag1 ~atrig 1) 2 e~ ol

Let us multiply this inequality bd(z!~¢ + 1)(2'*? 4 1) (which is obviously

positive) to get the equivalent inequality

2 1+d 1-d 1
(=)@ 1) — (1 +d) (e 1) > gt T8 T2 F

2 +1
Collect the terms multiplied by:
x1+d _ xlfd — ($1+d + 1) _ (xlfd + 1)

2?4t a4l
2?2 +1

> (M 4 2 4 2)d — 2d

= (2" + 2N (1 - 2/(2* +1))d
= (2" + 2N (2 — 1)d/ (2 + 1).

Multiplying the first and the last expression by ' gives the inequality

22— 1> (2* 4 1)(2® — 1)d/(2* + 1).
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Let us setr? =: z or, equivalentlyd = log{z}/log x. Then we get the equiva-
lent inequality

2241 |
2 —1

5 log z <

z¢—1

which is further equivalent with the functiof(y) := (y + 1) log{y}/(y — 1)
being increasing, since > z. Now

log x,

2
y°—1—2ylogy
f'(y) = >0
) y(y — 1)
if and only if y*> — 1 — 2ylogy > 0, which follows, since; — y~! — 2logy is
increasing iny for y > 1. This ends the proof for the cage> 0. The case
d = 0 follows, sinceg; ;41— IS continuous ind. O

Proof of Theoreni.3. If s,¢ > 0 anda = s + ¢ then
Gs,t t Ga,O - Aa - EQa,m

where the strong inequality follows from Lemnial. It then follows from
Theoreml.1that
Gs,t t EZa,a i Ep,qa

if p+ g < 3aandmin{p, ¢} < a.
Suppose conversely that,, >~ E, , holds for alls,t > 0 with s + ¢ = a.
Then it holds in particular fos = a andt = 0 and so

Ga,O = EQa,a = Ep,q-

It then follows from Theoreni.1 thatp + ¢ < 2a + a and min{p, ¢} <
min{2a, a} = a, as claimed. O

A Monotonicity Property of
Ratios of Symmetric
Homogeneous Means

Peter A. Hast6

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 28 of 54

J. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:peter.hasto@helsinki.fi
http://jipam.vu.edu.au/

We now turn to deriving strong inequalities between Gini means and extended
mean values that are not mediated by power means. Since it was shown in
Example5.1that there is not much possibility of deriving auxiliary inequalities
between Gini means and since the author has had no success in direct derivation
of inequalities between extended mean values and Gini means, another scheme
of mediation is developed. It consists of using a Gini mean as an intermediary

A Monotonicity Property of

for a small value ofr and the fact that most Gini means grow asymptotically Ratios of Symmetric
faster than extended mean values to take care of large values of Homogeneous Means
We start by considering a certain monotonicity propertyQf This lemma Peter A. Hasto
corresponds to Lemmé@a2 for the extended mean value.
Lemma 5.2. The quantityg; .41—4(z) is decreasing i) < d < 1 for fixed Title Page
T [1,491/2]- Contents
Proof. Let us assume thdt> 0; the casel = 0 follows by continuity. A simple 44 (44
calculation gives < >
9914d,1-d Go Back
d) :=d—F—
f( ) od Close
L 1 x/zlog{x/z} 1 zzlog{zz}
 (z/z+1)d (x/z+41)2 (xz+1)d  (zz+1)%2"° Quit

. . . Page 29 of 54
where we have denoted’ =: z. Let us multiply the inequalityf(d J

)
which is equivalent with the claim of the lemma, by + 1)(xz/z + 1) an

<0
nd u
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d =log z/ log x:

(x/z — xz)lng - (¢° + z/z)log{w/z} | (2* + xz)log{zz}

log z x/z+1 xz+1
log = log{xz/z} log{zz} 9
- — —1)+21
(/2 xz)logz+(x/z+1 xz+1 (@ )+ 2logx

<0.

Let us divide this inequality by log x and rearrange
(5.1) log{z/z} N log{zz}\ z —1/z N 2 <
x/z+1 xz+1 log x log z

We will show that the left hand side is decreasing ia [1, 2] and that the right
hand side is increasing in Now the latter claim is equivalent with

dz-1/z (Z2+1)logz—(2*-1)

— >0
dz logz 22log? = -

z—1/z

which is clear, sincéog 2z — (22 —
positive. It remains to prove that
g(z) = l(;ii{ Zl} +
is decreasing in. A calculation gives
vz +1—azlog{zz} w/z+1— (x/z)log{z/z}
(xz+1)2 (x/z+1)2
= h(zz) — h(z/z),

1)/(2* + 1) is increasing inz and hence

log{xz}
rz+1

zg'(2) =
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whereh(y) := (y+1—ylogy)/(y+1)% The functionh is sketched in Figuré
and has the following pertinent characteristics: its only zeroig at 3.591...,
its only minimum aty; = 11.016... and it is then increasing, but negative.

0.4 A Monotonicity Property of

Ratios of Symmetric
Homogeneous Means

- m Peter A. Hasto
(x+1)?
0.2
Title Page
Contents
5 10 15 X 44 44
yk 4 >
I —
Go Back
Y1
Close
Figure 1: The functiorh. _
Quit

Suppose now that is such that the condition Page 31 of 54
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holds for allz € [1, z]. We then claim thak(xz/z) < h(zz) holds: because, for
a givenz, one of the following conditions holds:

1.y >z,

2. y1 < zzandx/z < yyor

3.y1 <zxzz<l4andz/z <T.

If (1) holds them(z/z) > h(zz) sinceh is decreasing ofl, y;] andxz > /2.
If (2) holds thenh(x/2) > 0 > h(xz). If (3) holds then we have ATy 1 ey
atios of Symmetric
Homogeneous Means
h(z/z) > h(7) > —0.088 > —0.097 > h(14) > h(zz).

Peter A. Hast6

If x < 7 then the conditiong.2) holds. For ifx £ yoz thenz/z < x <7
andzz < z%/y, < 49/3.6 < 13.7 so that the second condition holds. We have Title Page
shown, then, that for < 7 we havezg¢'(z) = h(zz) — h(z/z) < 0 for all

. . . Contents
z € [1, ] and so we see thatis decreasing in the same range.

Let us now return to inequalitys(1). Since the left hand side is decreasing A »
in z and the right hand side is increasing in the same, it clearly suffices to show < >
that the inequality holds for = 1+. Calculating, we see we have to show that

Go Back
2logrx —1/x 2<27 Close
r+1 logx x

Quit

which is actually an equality and hence the claim is clear. ] Page 32 of 54

Remark 5.1. The restriction one in the previous lemma is not superfluous, for

the claim does not hold for large and all d. However, numerical evidence J. Ineq. Pure and Appl. Matf. 3(5) Art. 71,2002
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does suggest thatg,(z)/0d has character— or —|+, hence we would have a
certain monotonicity property for large also. Unfortunately the author has
not been able to prove this fact.

We now proceed to the second phase of the scheme presented, showing that

for largex, G, has a large derivative. Note that the constenti89 is chosen
to suffice for Remark.3.

Lemma 5.3.1f 11/189 < s/t < 189/11 ands + ¢t = 1 theng,,(x) > 0 for
T > 47.

Proof. Assume without loss of generality that> ¢t. We have to prove that
f@):=(s—t)(x® + 1) (2" + 1)gss(z) = t(z® + 1) — s(a' +1) >0
for x > 47. Since
xf'(x) =ts(x® —a') >0
it suffices to show that(47) > 0. Let us dividef (47) by s and denote := t/s.

The inequality becomes

g(v) = w47V L 1) — 470/ ] >,
Clearlyg(1) = 0 and we also find thaj(11/189) > 0.035. Hence it suffices to
show thaty’(v) has characteristi¢-|— for v € [11/189, 1]. A calculation gives
log 47
/ = 471/(1+v) 1 === 470/(1+U) 471/(1+v) )
g (v) + (1+0)2 ( +v )
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Let us write the inequality/(v) > 0 in terms of the original variables =
1/(1 4 v), divide bylog{47°} and rearrange some:

475 + 1 17
> 47 7° 1 — 5)47°.
g a7 = s47 0+ (1 —s)

We will show that the left hand side is increasingsiand that the right hand
side is decreasing in. From this it follows, on checking the boundary values
s = 1/2 ands = 189/200, thatg’ has characteristie-|4-, which completes the
proof.

Since47¢ is obviously increasing i we have first to show thdi(y) :=
(y + 1)/ log y is increasing foy € [47%/2, 47%94%]. We have

(logy)*h'(y) =logy — 1 — 1/y.

Sincelogy — 1 — 1/y isincreasing iny, it is clear that

_ log VAT — 1 — 47712

h ~ 0.058 > 0.
(v) 2 log2 47

Next we want to show thati(s) := s47'7% 4 (1 — s)47¢ is decreasing in
for s € [1/2,189/200]. Let us differentiate:

m'(s) = 47'75 — 475 + ((1 — 5)47% — 547" ) log 47.
Thenm/(s) < 0 if and only if

o logd7t—1  logdr —1 .
n(477%) = T S = n(47%),
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where we have denotedz) := (log z — 1)/z. This function has the following
relevant characteristics: only zeracand only maximum at?. In what follows
we will essentially approximate(z) by a step function which allows us to
arrive at the desired conclusion.

Since47® > 47'~* by assumption o, we see that(47'7%) < n(47°) if
47° < €? or, equivalentlys < 0.5194, sincen(z) is increasing for: < e2. If
s > 0.5194 thend7'~* < 6.363 andn(47'~*) < 0.1336. Sincen(8.7) > 0.1337
it follows that

n(47%) > min{n(47°°9) n(8.7)} > n(47°48%) > n(47' %)

for 0.5194 < s < 0.5618 < log 8.7/ log 47. Making a second iteration, we find
that fors > 0.5618 we haven(47'~*) < 0.1272, andn(10.8) > 0.1277. Hence

n(47%) > n(10.8) > n(47°3%) > n(47'7%)

for 0.5618 < s < 0.6180 < log10.8/log47. Continuing with a third and a
fourth iteration we find that

n(47%) > n(16) > n(47%%%) > n(47" %)
for 0.6180 < s < 0.72 < log 16/ log 47 and that
n(47%) > n(47) > n(47%%) > n(47'7%)
for 0.72 < s <1 =log47/log47 and so we are done. O

Using the previous two lemmas we will be able to derive strong inequalities
for many Gini means by proving just a few simple inequalities, which effec-
tively amount to solving polynomial inequalities.
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Lemma 5.4. Letr > 0. ThenGs,, = E, , ifand only ifp + ¢ < 12r.

Proof. Assume first thap + ¢ < 12r. SinceE, , =< E, ., whereu > (p+q)/2,
by Theoreml.], it suffices to prove thafss,, >~ E,, with v = 6r. This is
equivalent with

1 uz"log x
¢ —1 (zv—1)2

" -2 _1 T 3r
a2 —ar+1 2 \ar+1 a3 +1

) = G3rr > Cuu =
Let us sety := 2" and multiply by(z* — 1)?/x*:

<y6_1)2 y_2 -6
500 yQ—y—i-lZl—y — 6logy.

This inequality surely holds foy = 1, hence it suffices to show that the left
hand side has a greater derivative than the right hand side>or:

Y2 ¥ —1)? v —dy+1 _
3(y5_y 7) 2 _< 7) 2 2 269 7_6/y
yv—y+1 207 (P —y+1)

Let us multiply both sides by"/(y% — 1):

y—2 -1y —dy+1

—6.
yr—y+1 2 (P -yr1p’”

3(y° +1)

We can then move the two terms with minus signs to the opposite sides, divide
by 3/(3/2 — 1) and multiply by2(y2 —y+ 1)2 to get

6(y" =20 +v* —2y+ 1)y —y+1) > (y' + "+ 1)(y* — 4y + 1).
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Multiplying out and rearranging gives the inequality
5y5 — 149° 4 22y* — 269 + 22y* — 14y + 5 > 0.

Dividing by (y — 1) gives

Syt —4y® +9y° — 4y +5 >0,

which holds sincéy* > 4y3 and9y? > 4y for y > 1.

The converse implication, thats,, = E,, impliesp + ¢ < 12r, follows A MG PEE 07 6l
. ’ ’ . Ratios of Symmetric
sincer = gs,.(14) > e,,(14) = (p + ¢)/12, which concludes the proof. [J Homogeneous Means
Proof of Theorenm..4. Suppose first that’,, = £, ,.Then Peter A. Hasto
(s +1)/4 = o (14) = ey = (0 + )12, il Page
hencep + ¢ < 3(s + t), which proves one implication. Contents
Suppose conversely that- ¢ < 3(s+t) and1/3 < s/t < 3. It follows from « N
Lemma5.2that g, (z) > ga,/4,4(z) for € [1,49Y6)] andr := s + t. It
follows from Lemmab.4thatgs, /s ,/4(x) > e3,/2.3,/2(z) for the samer. Using < >
esr/2,3r/2(x) > epq(x) from Theoreml.1 completes the proof in the case of Go Back
small values ofr.
If z > 47'/(+1) we have Clozz
Quit

gst(x) = 0 > €,4(2), Page 37 of 54

where the first inequality follows from Lemmna3 and the second one from

Lemma3.2. Hence the claim is clear in this case as well. O] 3 I, (UTETTEILT T, ) ANk T HE
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Let us now give one more specific Gini mean extended mean value inequality

(with corollary) before moving on to summarize the results of this section.
Lemma 5.5. We haveZy ; > Fig14.

Proof. We have to show that

1 1 9 S 1 16 14

S\z+1 29+1) 2 \a6-1 2¥—-1)°
Let us multiply this by8(z + 1)(2? + 1)(2*® — 1)(2** — 1)2=2° and move all
the terms to the same side. We get the equivalent inequality

flx) =2 =27 —9(z™ — 27 — 8(2™ — 271%) + 56(2® — 27°)

+55(2° —27%) — 64(z* — ™) — 65(z® —273) > 0.

Since f(1) = 0 it suffices to show that’(z) > 0 for z > 1. Letg(x) :=
xf'(x). We will show thatg is increasing inz, from which it follows that
g(x) > 0forz > 1, sinceg(1l) = f/(1) = 0. Sincey is positive if and only iff’
is (for x > 0), it follows that f'(x) > 0. Now

=361(z" — 271?) — 1089(z'" — x7 1) — 800(z'" — 2717)
+2016(2® — 27°) + 1375(z° — 277)
—1024(2* — 27*) — 585(x® — 27?),

andg is increasing if and only ifi(z) > 0. Sinceh(1) = 0, it suffices to show
thath is increasing and sindé (1) = 0, thatm(z) := zh/(z) is increasing. We
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have

m’(z) = 130123(z" — 271%) — 131769(z'* — 2~ 1) — 80000(x** — 2~'9)
+ 72576(x% — 27%) + 34375(2° — 27°)
— 16384(x* — 27%) — 5265(2 — 27?).
Since
72576(x% — x7%) + 34375(2° — 27°) > 16384(x* — 27*) + 5265(2 — 27?)

we may drop the last four terms in the expressiom0fz). It then suffices to
show that (we have divided by000 and rounded suitably)

n(z) == 13(z" —27) = 4@ =27 = 8(2x" —271%) >0

for x > 1. Differentiating one last time we find
aon'(z) = 247(2" + 27) — 154(a™ + 7)) — 80(2' + 271).

Sincex?+z~ Y isincreasing iry > 0 for fixedz > 1, we clearly have)/'(z) > 0,
hencen(z) > n(1) = 0 and so we are done. O

Corollary 5.6. Lets > ¢t > 0andp > ¢ > 0 be such thats/t < 9 and
p/q > 8/7. ThenG,, = E,,ifand only ifp + ¢ < 3(s + ).

Proof. We have already seen th@}, >~ E, , implies thatp+¢ < 3(s+t) sowe
need only show that/t < 9,p/q > 8/7 andp + ¢ < 3(s + t) imply the strong
inequality. The proof of this is exactly the same as the proof of Thedrém
use Lemma.2and Corollarys.6and finish up by Theorerh.1for small values
of  and use Lemmas.3and3.2for large values of. O
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Let us now summarize the results from Theordniand1.4and Corollary5.6
in pictorial form. Since the inequality

Gs,t = Ep,q

has one degree of homogeneity in the parameters (by Letihave are left
with a three dimensional graph. On this graph we will show only the case
p+ q = 3(s + t), which is the critical case in the sense that the inequality does
not hold for smalles + t.

We next give a result which shows that the inequality does not hold for cer-
tain values ok, ¢, p andq.

Lemmab5.7.Lets >t > 0andp > ¢ > Owithp+ ¢ = 3(s+¢) > 0. Then
Got # Epqforz <9 —4V5if

- 5z +1) —3(x + 1)Va? — 18z +1

422 + 18x + 4

Y

wherez :=t/s andy := ¢/p.

Remark 5.2. The curve determined by the inequality in the lemma is show in
the upper left corner of Figurg.

Proof. Assume that,; >~ E,, so thatg,,(z) > e,4(2) holds for allz €
[1,00). We may assume without loss of generality thatq = 3 = 3(s+t) and
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a/p
1
?
718
Does not —
hold there
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12 A Monotonicity Property of
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Peter A. Hasto
e Title Page
° 0 19 113 1 g Contents
Figure 2: When doe&',; = E, , hold? « dd
< 4
thats, ¢, p, ¢ > 0. If we multiply the inequality by z*+1) (2°+1)(2* —1)(27—1) Co ZEice
we get the equivalent inequality Close
t s _ t t _ q __ P - i
fo) = TSNS e PR TR gy g Quli
s—1 p—q Page 41 of 54
> 0.
Since f(1) = 0 it follows that f'(1) > 0 (sincef € C*). Upon calculating 3. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002
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f'(1) we find that it equals zero, as well. Continuing in this manner we find
that f”(1) = f®(1) = f#(1) = 0. With the fifth derivative we start getting
somewhere, indeed, we find that

1) =@ -1 —2)+5s(1-s),
hence the conditiorf® (1) > 0 implies that

(2—y)(1 —2y) Sx >0,

(p—1D(p—2)+5s(1—s)= e +(1+x>2 >

where we have solveg from the system of equations+ ¢ = 3 andq/p = y
andzx from s + ¢t = 1 andt/s = z. Solving this second degree equatioryin
gives the desired result. O

Remark 5.3. It follows from the previous lemma thét, ; = £, , does not hold
for everyp, ¢ € R™ withp 4+ ¢ = 3(s + t) unless

V-2 9-4V5
— < s/t <4(V5+2).
T S/ S
Moreover, numerical evidence suggests that this bound is also sharp, that is
to say thatG,, = E,, would hold if and only ifs and¢ satisfy 6.3). Since
11/189 < (v/5 — 2)/4, it would suffice to show that

(5.3)

G4\/5—8,9—4\/5 = E3/273/2

in order to prove this claim, using Lemnaa2.
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In this section we derive exact bounds on when Stolarsky’s mean is strongly

less than or equal to the Seiffert medt{;, y), defined in Sectio.4. We also

give an example of an extended mean value which is strongly greater than the

Seiffert mean.

Proof of Theoreni.6. Assume first that? = S,, or, equivalently,p(z) >
So(x), Wheres,, := e 1_,. We know from Sectior® thatp(1+) = s,(1+) =
—1/2 and we see thai(z) > s,(x) implies that the derivative of is greater
than that ofs,, at 1+. Now the conditionp/’(1+) > s/ (1+) is equivalent to
1/6 > (2 — a)/12 or a > 0, again using results from Sectién

We see that as — oo we havep(z) ~ —(2/7)z~ /2 ands,(z) ~ (1 —
1/a)z* tif a > 0ands,(z) ~ —x~log{z} for a = 0, and s > s, implies
thator — 1/2 > 0.

Suppose conversely then that> 1/2. SinceS; = S, if and only ifa >
by Theorem.1, it suffices to show thaP > 5, ,, or equivalently

1 27 1 2 1
r—1 ax+ldarctan(y/x)—m ~ax—1 2a/2-1

which can be written as
1 Ly S 2y 1
y—1 y2—1 y2—1" y2+ldarctany — 7’

where we used the substitutign= /2. This is equivalent to

f(y) :=4arctany — 7 —2(y* = 1)/(y* + 1) > 0.
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Clearly f(1) = 0. Since
(W +1)°f(y) =4(y" +1) =8y =4(y —1)* > 0
it is clear thatf(y) > f(1) = 0, which concludes the proof. O

Although it does not have any relevance to the question of relative metrics,
we will now give a reverse type inequality, which in turn gives a better ordinary
inequality that the previous result, as is seen in CoroltaBy This proposition
is the strong version of the inequality < A, /3 proved by A. A. Jager in1[].
Recall that4, denotes the power mediy,, .

Proposition 6.1. Letp € R. ThenA, = P if and only ifp > 2/3.

Proof. Suppose first thatl, = P. Theney, (14+) = (2p +p)/12 > 1/6 =
p'(14), by the formulae derived in Sectiéhhencep > 2/3.

Suppose conversely that> 2/3. SinceA, = A, if and only ifp > ¢
by Theoreml.l, we see that it suffices to check the claim for= 2/3. The
conditionA, /3 = P is equivalent with

1 2T 1 1

< — .
r—1 x+1darctan(y/x)—m — 223 +1

Let z =: 3® and rearrange to get

(v =Dy +1)

W E DT Dy > 4arctan(y®) — .

A Monotonicity Property of
Ratios of Symmetric
Homogeneous Means

Peter A. Hast6

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 44 of 54

J. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:peter.hasto@helsinki.fi
http://jipam.vu.edu.au/

Since this equation holds for = 1, it suffices to check that the left hand side
has a greater derivative than the right hand side. Let us differentiate both sides
of the inequality and multiply byy® + 1)%(y? + 1)%y?:

(10" + 6y° — 49°)(y° + D (y* + 1)
—(° =D+ 19" + 79" + 3y +1) > 6(y° +1)(v* +1)%y".
This eighteenth degree polynomial can be written as
(v = D(y" = D> = 1)°[y* +5y° +1] > 0,
which clearly holds. [

Corollary 6.2. Letp,q € R” with1/2 < p/q < 2. ThenP < E, , if and only
ifp+q>2.

Proof. A trivial modification of the first paragraph of the previous proof shows
thatE, , = P implies thatp + ¢ > 2.
Assume conversely thay2 < p/q < 2anda :=p+ ¢ > 2. Then

Epq = Eqszass = Eijzo3 = Agss = P,

where the first inequality follows from Lemma2 sincep + g = 2a/3 + a/3
anda/3 < p,q < 2a/3 and the second inequality follows from Lemmd. as
a > 2. O]

Remark 6.1. Itis not clear how far the conditioh/2 < p/q < 2in the previous
corollary can be relaxed. By considering— oo, as was done in the proof of
Theoreml.6, we see that the claim does not hold fo# ¢ = 2 withp < 1/2,

i.e.p/q <1/3.
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We also have the following corollary of ordinary inequalities, which follows
by the method presented in Sectipi.

Corollary 6.3. Letz,y € R” Then

23/2
TAZ/S(xay) < P(x,y) < Ays(z,y).

Both inequalities are sharp.

. : . : A Monotonicity Property of
Remark 6.2. The estimate aoP in Corollary 6.3is better than the one in Corol- Ratios of Symmetric

lary 1.7in the sense that the former has the rati®®/? ~ 1.1107 between the Homogeneous Means
upper and lower bounds, whereas the latter has a ratio of at lasts 1.2732. et [
Note also that it is probably possible to find an extended mean value which has
a smaller such ratio but satisfies neith&r> P nor P > E.

Title Page
Let us end this section by proving the following strong version of the in- Contents
equalityA < T', whereT' denotes the second Seiffert mean. In fact, the proofis
so simple, that it would not be worth giving, were it not for the fact that we will ) 44
be able to put the lemma to good use in Secfion < >
Lemma 6.4. Letp € R. ThenA4, < Tif p < 1 and alsoT" > S, for all Go Back
a € (0,1].
Close
Proof. Clearly it suffices to prove the claim fgr= 1. Using the formulae for Quit

ez1(z) andt(z) we find that it suffices to show that
Page 46 of 54
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This becomes
r—1 S 122 -1

r+1 - 222 +1
There is equality forr = 1, so we differentiate to find the sufficient condition

arctan

1 S 2x
224+1 7 (224 1)%

which is immediately clear. Sincé = S, for all « € (0, 1] by Theoreml.1the
second claim follows by the transitivity of. O
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In this section we show how the results of this paper relate to the so-called
M-relative metric, which has been recently studied by the authai,ips] and
[9]. Let us remind the reader that by a Stolarsky mean we understand a extended
mean value with parametetsandl — «, henceS,, = E; ;_,.

Let us denote byX := R" \ {0} for the rest of this section. Let/: R~ x
R~ — R~ be a symmetric function and lgt,;: X x X — R~ be defined by

|:L‘ — y| A Monotonicity Property of
pu(z,y) = — . .
T Ml Jy) Fre e

forall z,y € X. The functionp,, is called thelM—relative distance, and, when
it is a metric, theM—relative metric The following result gives the connec-
tion between strong inequalities and-relative metric that has been alluded to

Peter A. Hast6

previously in this paper. Title Page
Theorem 7.1.[7, Lemma 3.1]Let0 < o < 1 andM: R> x R> — R> be a Contents
symmetric homogeneous increasing mean. <« S
1. If M = S, thenp, is a metric inX. < >
2. If ppre is @ metric inX thenM > S,,. Go Back
3. I1f pare iS a metric inX thenty (z?)/ty(z) > ts, (22)/ts, (z) for all z > Close
. . . uit
Remark 7.1. The second condition of the previous theorem says almost that <
tum/ts, is increasing in a neighborhood dfand the third almost that it is in- Page 48 of 54
creasing in a neighborhood ob. It turns out that all the means studied in this
paper are sufficiently regular for this “almost” result becomes a real result. 3. Ineq. Pure and Appl. Math. 3(S) Art. 71, 2002
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Combining this result with the theorems from Sectiogives the following
corollaries:

Corollary 7.2. Let0 < ¢ <panda € (0,1]. Thenpg, isametricinX if and
onlyifp+¢>2—aandg>1-a.

Proof. Assume firstthap + ¢ > 2 — a«andg > 1 — a. Then by Theorem.1
E,, > Ei1_,and S is a metric inX by Theorem7.1(1).
Ifp+qg < 2—athenkE,, (z,1)/E1-o(x,1) is decreasing for smalt,

sincee, , < e1,1—, IN SOMe neighborhood af. This means that the inequality A Monotonicity Property of
’ ’ . . Ratios of Symmetric
E,.(z,1) > Ey1_4(z,1) does not hold, and S@gg  is not a metric inX, by Homogeneous Means

Theorem7.1(2).
If p=gandq < 1—athenp+q < 2—2a < 2—aandwe proceed as in the
previous paragraph to show that. is notametric. Iy < pandg < 1—athen

Peter A. Hast6

E, (x,1)/E11_o(z,1)is decreasmg for large, sincee,, , ~ —qz™7/(p—q) < Title Page
(1/a—1)z*t ~e;1_o Whena < 1ande,, ~ —qz~%/(p—q) < —1/logz ~ Contents
e1po (the case; = 0 follows similarly). It follows that the third condition of
Theorem?7.1is not satisfied for large, which means thatp. is not a metric « dd
in X. ’ 0 < >
Remark 7.2. If we setp = ¢/2 in the previous corollary we get Theorem 1.1 Go Back
of [7], which is thus a special case of the previous result. Similarly, in Corol- Close
lary 7.3we regain this theorem if we set= 0.

Quit

Corollary 7.3. Letp, g € [0,00). If p+¢ > max{(2 — «)/3,1 — a} thenpgs

is a metric inX . Page 49 of 54

Proof. Follows immediately from Theoreh3and Theoren7.1(1). O 3. Ineq. Pure and Appl. Math. 3(5) Art. 71, 2002
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Corollary 7.4. Letp,q € [0,00) andp/q < 3. Thenpgs  is a metric inX if
andonly if3(p +¢) > 2 — a.

Proof. Thatpgq  is a metric inX implies that3(p + q) > 2 — «a follows from
the last paragraph of the proof of Theorém3. The other implication follows
from Theoreml.4and Theoren7.1(1). O

Corollary 7.5. If « € (0, 1] thenpp. is a metric inX if and only if1/2 < a <
1.

Proof. If « > 1/2 thenpp. is a metric by Theoreni.1(1). If o« < 1/2 then
P/S, is decreasing for large, as was seen in the proof of Theoréng, hence
ppe IS NOt a metric, by Theorem.1(3). O

For the Seiffert mean we get particularly simple metrics, which was the prin-
cipal reason for considering strong inequalities of this mean. For instance

. (Ix! - Iyl)
arcsin ,
|| + [yl
for |z| # |y| andpp(z,y) = | — y|/|z| for |x| = |y|. We get an even simpler
form for x andy on the same ray originating in the origin:

|z — 9]
2| — |yl

pP(Ivy) =

pp(se,te) = 2arcsin{(s —t)/(s+1)}
wheres > ¢t > (0 ande is a vector inX.
Corollary 7.6. If 0 < a < 1 thenpra is a metric inX.

Proof. Follows directly from Lemmd.4 and Theoren?.1(1). O
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As in the previous case we get some very simple metrics from this corollary.
For instance ift > y > 0 and0 < « < 1 then

pra(ze,ye) = (x —y)' "*(2arctan{(z — y)/(z + y) )%,

wheree is an arbitrary unit vector iX. Again, the caser = 1 is particularly
simple: pra (ze, ye) = 2arctan{(x — y)/(z + y)}.
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