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ABSTRACT. In the present paper, we estimate the rate of convergence of the recently introduced
generalized sequence of linear positive operatorsGn,c (f, x) with derivatives of bounded varia-
tion.
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1. I NTRODUCTION

Let DBγ (0,∞), (γ ≥ 0) be the class of all locally integrable functions defined on(0,∞),
satisfying the growth condition|f (t)| ≤Mtγ, M > 0 andf ′ ∈ BV on every finite subinterval
of [0,∞). Then for a functionf ∈ DBγ (0,∞) we consider the generalized family of linear
positive operators which includes some well known operators as special cases. The generalized
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sequence of operators is defined by

(1.1) Gn,c (f, x) = n
∞∑

k=1

pn,k (x; c)

∫ ∞

0

pn+c,k−1 (t; c) f (t) dt

+ pn,0 (x; c) f (0) , x ∈ [0,∞)

wherepn,k (x; c) = (−1)k xk

k!
φ

(k)
n,c (x),

(i) φn,c (x) = e−nx for c = 0,
(ii) φn,c (x) = (1 + cx)−n/c for c ∈ N,

and{φn,c}n∈N be a sequence of functions defined on an interval[0, b] , b > 0 having the follow-
ing properties for everyn ∈ N, k ∈ N0 :

(i) φn,c ∈ C∞ ([a, b]) ;
(ii) φn,c (0) = 1;

(iii) φn,c is completely monotone(−1)k φ
(k)
n,c (x) ≥ 0;

(iv) There exists an integerc such thatφ(k+1)
n,c = −nφ(k)

n+c,c, n > max {0,−c} .

Remark 1.1. We may remark here that the functionsφn,c have various applications in different
fields, like potential theory, probability theory, physics and numerical analysis. A collection of
most interesting properties of such functions can be found in [10, Ch. 4].

It is easily verified that the operators (1.1) are linear positive operators. AlsoGn,c (1, x) = 1.
The generalized new sequenceGn,c was recently introduced by Srivastava and Gupta [9].

For c = 0 andφn,c (x) = e−nx the operatorsGn,c reduce to the Phillips operators (see e.g.
[7], [8]), which are defined by

(1.2) Gn,0 (f, x) = n
∞∑

k=1

pn,k (x; 0)

∫ ∞

0

pn,k−1 (t; 0) f (t) dt+ e−nxf (0) , x ∈ [0,∞),

wherepn,k (x; 0) = e−nx

k!
(nx)k.

For c = 1 andφn,c (x) = (1 + cx)−n/c the operatorsGn,c reduce to the new sequence of
summation integral type operators [6], which are defined by

(1.3) Gn,1 (f, x) = n

∞∑
k=1

pn,k (x; 1)

∫ ∞

0

pn+1,k−1 (t; 1) f (t) dt

+ (1 + x)−n f (0) , x ∈ [0,∞),

where

pn,k (x; 1) =

(
n+ k − 1

k

)
xk (1 + x)n−k .

Remark 1.2. It may be noted that forc = 1, we get the Baskakov basis functionspn,k (x; 1)
which are closely related to the well known Meyer-Konig and Zeller basis functionsmn,k (t) =(

n+k−1
k

)
tk (1− t)n , t ∈ [0, 1] because by replacing the variablet with x

1+x
in the above MKZ

basis functions we get the Baskakov basis functions. Zeng [11] obtained the exact bound for
the Meyer Konig Zeller basis functions. Very recently Gupta et al. [6] used the bound of Zeng
[11] and estimated the rate of convergence for the operatorsGn,1 (f, x) on functions of bounded
variation.
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RATE OF CONVERGENCE 3

The operators (1.3) are slightly modified form of the operators introduced by Agarwal and
Thamer [1], which are defined by

(1.4) G∗n,1 (f, t) = (n− 1)
∞∑

k=1

pn,k (x; 1)

∫ ∞

0

pn,k−1 (t; 1) f (t) dt

+ (1 + x)−n f (0) , x ∈ [0,∞),

wherepn,k (x; 1) is as defined by (1.3) above.
Recently Gupta [5] estimated the rate of approximation for the sequence (1.4) for bounded

variation functions. Although the operators defined by (1.3) and (1.4) above are almost the
same, but the main advantage to consider the operators in the form (1.3) rather than the form
(1.4) is that some approximation properties become simpler in the analysis for the form (1.3) in
comparison to the form (1.4). The rate of approximation with derivatives of bounded variation
has been studied by several researchers. Bojanic and Cheng ([2], [3]) estimated the rate of
convergence with derivatives of bounded variation for Bernstein and Hermite-Fejer polynomials
by using different methods.

Alternatively we may rewrite the operators (1.1) as

(1.5) Gn,c (f, x) =

∫ ∞

0

Kn (x, t; c) f (t) dt,

where

Kn (x, t; c) = n
∞∑

k=1

pn,k (x; c) pn+c,k−1 (t; c) + pn,0 (x; c) pn,0 (t; c) δ (t) ,

δ (t) being the Dirac delta function. Also let

(1.6) βn (x, t; c) =

∫ t

0

Kn (x, s; c) ds

then

βn (x,∞; c) =

∫ ∞

0

Kn (x, s; c) ds = 1.

In the present paper we extend the results of [4] and [6] and study the rate of convergence
by means of the decomposition technique of functions with derivatives of bounded variation.
More precisely the functions having derivatives of bounded variation on every finite subinterval
on the interval[0,∞) be defined as

f (x) = f (0) +

∫ x

0

ψ (t) dt, 0 < a ≤ x ≤ b,

whereψ is a function of bounded variation on[a, b] andc is a constant.
We denote the auxiliary functionfx, by

fx (t) =


f (t)− f (x−) , 0 ≤ t < x;

0, t = x;

f (t)− f (x+) , x < t <∞.
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2. AUXILIARY RESULTS

In this section we give certain results, which are necessary to prove the main result.

Lemma 2.1. [9]. Let the functionµn,m (x) , m ∈ N0, be defined as

µn,m (x; c) = n
∞∑

k=1

pn,k (x; c)

∫ ∞

0

pn+c,k−1 (t; c) (t− x)m dt+ (−x)m pn,0 (x; c) .

Then

µn,0 (x; c) = 1, µn,1 (x; c) =
cx

(n− c)
,

µn,2 (x; c) =
x (1 + cx) (2n− c) + (1 + 3cx) cx

(n− c) (n− 2c)
,

and there holds the recurrence relation

[n− c (m+ 1)]µn,m+1 (x; c)

= x (1 + cx)
[
µ(1)

n,m (x; c) + 2mµn,m−1 (x; c)
]
+ [m (1 + 2cx) + cx]µn,m (x; c) .

Consequently for eachx ∈ [0,∞), we have from this recurrence relation that

µn,m (x; c) = O
(
n−[(m+1)/2]

)
.

Remark 2.2. In particular, given any numberλ > 2 andx > 0 from Lemma 2.1, we have for
c ∈ N0 andn sufficiently large

(2.1) Gn,c

(
(t− x)2 , x

)
≡ µn,2 (x; c) ≤ λx (1 + cx)

n
.

Remark 2.3. It is also noted from (2.1), that

(2.2) Gn,c (|t− x| , x) ≤
(
Gn,c

(
(t− x)2 , x

)) 1
2 ≤

√
λx (1 + cx)√

n
.

Lemma 2.4. Let x ∈ (0,∞) andKn (x, t) be defined by (1.5). Then forλ > 2 and for n
sufficiently large, we have

(i) βn (x, y; c) =
∫ y

0
Kn (x, t; c) dt ≤ λx(1+cx)

n(x−y)2
, 0 ≤ y < x,

(ii) 1− βn (x, z; c) =
∫∞

z
Kn (x, t; c) dt ≤ λx(1+cx)

n(z−x)2
, x < z <∞.

Proof. First, we prove (i). In view of (2.1), we have∫ y

0

Kn (x, t; c) dt ≤
∫ y

0

(x− t)2

(x− y)2Kn (x, t; c) dt ≤ (x− y)−2 µn,2 (x; c)

≤ λx (1 + cx)

n (x− y)2 .

The proof of (ii) is similar. �

3. M AIN RESULT

In this section we prove the following main theorem.
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Theorem 3.1. Let f ∈ DBγ (0,∞) , γ > 0, and x ∈ (0,∞). Then forλ > 2 and for n
sufficiently large, we have

|Gn,c (f, x)− f (x)| ≤ λ (1 + cx)

n

[
√

n]∑
k=1

x+x
k∨

x−x
k

((f ′)x) +
x√
n

x+ x√
n∨

x− x√
n

((f ′)x)


+
λ (1 + cx)

n

(∣∣f (2x)− f (x)− xf ′
(
x+

)∣∣ + |f (x)|
)

+

√
λx (1 + cx)√

n

(
M2γO

(
n−γ/2

)
+

∣∣f ′ (x+
)∣∣)

+
1

2

√
λx (1 + cx)√

n

∣∣f ′ (x+
)
− f ′

(
x−

)∣∣
+

cx

2 (n− c)

∣∣f ′ (x+
)

+ f ′
(
x−

)∣∣ ,
where

∨b
a (fx) denotes the total variation offx on [a, b].

Proof. We have

Gn,c (f, x)− f (x) =

∫ ∞

0

Kn (x, t; c) (f (t)− f (x)) dt

=

∫ ∞

0

(∫ t

x

Kn (x, t; c) f ′ (u) du

)
dt.

Using the identity

f ′ (u) =
1

2

[
f ′

(
x+

)
+ f ′

(
x−

)]
+ (f ′)x (u) +

1

2

[
f ′

(
x+

)
− f ′

(
x−

)]
sgn (u− x)

+

[
f ′ (x)− 1

2

[
f ′

(
x+

)
+ f ′

(
x−

)]]
χx (u) ,

it is easily verified that∫ ∞

0

(∫ t

x

f ′ (x)− 1

2

[
f ′

(
x+

)
+ f ′

(
x−

)]
χx (u) du

)
K (x, t; c) dt = 0.

Also ∫ ∞

0

(∫ t

x

1

2

[
f ′

(
x+

)
− f ′

(
x−

)]
sgn (u− x) du

)
Kn (x, t; c) dt

=
1

2

[
f ′

(
x+

)
− f ′

(
x−

)]
Gn,c (|t− x| , x)

and ∫ ∞

0

(∫ t

x

1

2

[
f ′

(
x+

)
+ f ′

(
x−

)]
du

)
K (x, t; c) dt

=
1

2

[
f ′

(
x+

)
+ f ′

(
x−

)]
Gn,c ((t− x) , x) .
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Thus we have

|Gn,c (f, x)− f (x)|(3.1)

≤
∣∣∣∣∫ ∞

x

(∫ t

x

(f ′)x (u) du

)
Kn (x, t; c) dt−

∫ x

0

(∫ t

x

(f ′)x (u) du

)
Kn (x, t; c) dt

∣∣∣∣
+

1

2

∣∣f ′ (x+
)
− f ′

(
x−

)∣∣Gn,c (|t− x| , x)

+
1

2

∣∣f ′ (x+
)

+ f ′
(
x−

)∣∣Gn,c ((t− x) , x)

= |An (f, x; c) +Bn (f, x; c)|+ 1

2

∣∣f ′ (x+
)
− f ′

(
x−

)∣∣Gn,c (|t− x| , x)

+
1

2

∣∣f ′ (x+
)

+ f ′
(
x−

)∣∣Gn,c ((t− x) , x) .

To complete the proof of the theorem it is sufficient to estimate the termsAn (f, x; c) and
Bn (f, x; c). Applying integration by parts, using Lemma 2.4 and takingy = x − x/

√
n, we

have

|Bn (f, x; c)| =
∣∣∣∣∫ x

0

(∫ t

x

(f ′)x (u) du

)
dt (βn (x, t; c))

∣∣∣∣ ,
∫ x

0

βn (x, t; c) (f ′)x (t) dt ≤
(∫ y

0

+

∫ x

y

)
|(f ′)x (t)| |βn (x, t; c)| dt

≤ λx (1 + cx)

n

∫ y

0

x∨
t

((f ′)x)
1

(x− t)2dt+

∫ x

y

x∨
t

((f ′)x) dt

≤ λx (1 + cx)

n

∫ y

0

x∨
t

((f ′)x)
1

(x− t)2dt+
x√
n

x∨
x− x√

n

((f ′)x) .

Let u = x/ (x− t). Then we have

λx (1 + cx)

n

∫ y

0

x∨
t

((f ′)x)
1

(x− t)2dt =
λx (1 + cx)

n

∫ √
n

1

x∨
x− x

u

((f ′)x) du

≤ λ (1 + cx)

n

[
√

n]∑
k=1

x∨
x− x

u

((f ′)x) .

Thus

(3.2) |Bn (f, x; c)| ≤ λ (1 + cx)

n

[
√

n]∑
k=1

x∨
x− x

u

((f ′)x) +
x√
n

x∨
x− x√

n

((f ′)x) .
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On the other hand, we have

|An (f, x; c)|(3.3)

=

∣∣∣∣∫ ∞

x

(∫ t

x

(f ′)x (u) du

)
Kn (x, t; c) dt

∣∣∣∣
=

∣∣∣∣∫ ∞

2x

(∫ t

x

(f ′)x (u) du

)
Kn (x, t; c) dt

+

∫ 2x

x

(∫ t

x

(f ′)x (u) du

)
dt (1− βn (x, t; c))

∣∣∣∣
≤

∣∣∣∣∫ ∞

2x

(f (t)− f (x))Kn (x, t; c) dt

∣∣∣∣ +
∣∣f ′ (x+

)∣∣ ∣∣∣∣∫ ∞

2x

(t− x)Kn (x, t; c) dt

∣∣∣∣
+

∣∣∣∣∫ 2x

x

(f ′)x (u) du

∣∣∣∣ |1− βn (x, 2x; c)|+
∫ 2x

x

|(f ′)x (t)| |1− βn (x, t; c)| dt

≤ M

x

∫ ∞

2x

Kn (x, t; c) tγ |t− x| dt+
|f (x)|
x2

∫ ∞

2x

Kn (x, t; c) (t− x)2 dt

+
∣∣f ′ (x+

)∣∣ ∫ ∞

2x

Kn (x, t; c) |t− x| dt+
λ (1 + cx)

nx

∣∣f (2x)− f (x)− xf ′
(
x+

)∣∣
+
λ (1 + cx)

n

[
√

n]∑
k=1

x+x
k∨

x

((f ′)x) +
x√
n

x+ x√
n∨

x

((f ′)x) .

Next applying Hölder’s inequality, and Lemma 2.1, we proceed as follows for the estimation of
the first two terms in the right hand side of (3.3):

M

x

∫ ∞

2x

Kn (x, t; c) tγ |t− x| dt+
|f (x)|
x2

∫ ∞

2x

Kn (x, t; c) (t− x)2 dt(3.4)

≤ M

x

(∫ ∞

2x

Kn (x, t; c) t2γdt

) 1
2
(∫ ∞

0

Kn (x, t; c) (t− x)2 dt

) 1
2

+
|f (x)|
x2

∫ ∞

2x

Kn (x, t; c) (t− x)2 dt

≤M2γO
(
n−γ/2

) √
λx (1 + cx)√

n
+ |f (x)| λ (1 + cx)

nx
.

Also the third term of the right side of (3.3) is estimated as∣∣f ′ (x+
)∣∣ ∫ ∞

2x

Kn (x, t; c) |t− x| dt

≤
∣∣f ′ (x+

)∣∣ ∫ ∞

0

Kn (x, t; c) |t− x| dt

≤
∣∣f ′ (x+

)∣∣ (∫ ∞

0

Kn (x, t; c) (t− x)2 dt

) 1
2
(∫ ∞

0

Kn (x, t; c) dt

) 1
2

=
∣∣f ′ (x+

)∣∣ √
λx (1 + cx)√

n
.

Combining the estimates (3.1) – (3.4), we get the desired result.
This completes the proof of Theorem 3.1. �

J. Inequal. Pure and Appl. Math., 4(2) Art. 34, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 VIJAY GUPTA, V IPIN VASISHTHA, AND M.K. GUPTA

Remark 3.2. For negative values ofc, the operatorsGn,c may be defined in different ways.
Here we consider one such example, whenc = −1 thenφn,c (x) = (1− x)n , the operator
reduces to

Gn,−1 (f, x) = n
n∑

k=1

pn,k (x;−1)

∫ 1

0

pn−1,k−1 (t;−1) f (t) dt

+ (1− x)n f (0) , x ∈ [0, 1] ,

where
pn,k (x;−1) =

(n
k

)
xk (1− x)n−k .

The rate of convergence for the operatorsGn−1 (f, x) is analogous so we omit the details.

REFERENCES

[1] P.N. AGARWAL AND K.J. THAMAR, Approximation of unbounded function by a new sequence
of linear positive operators,J. Math. Anal. Appl.,225(1998), 660–672.
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