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ABSTRACT. In this paper, we introduce the geometric mean of several positive operators de-
fined from a simple and practical recursive algorithm. This approach allows us to construct the
arithmetic-geometric-harmonic mean of three positive operators which has many of the proper-
ties of the standard one.
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1. I NTRODUCTION

The geometric mean of two positive linear operators arises naturally in several areas and
can be used as a tool for solving many scientific problems. Researchers have recently tried to
differently define such operator means because of their useful properties and applications. Let
H be a Hilbert space with its inner product〈·, ·〉 and the associated norm‖ · ‖. We denote by
L(H) the Banach space of continuous linear operators defined fromH into itself. ForA, B ∈
L(H), we writeA ≤ B if A andB are self-adjoint andB − A is positive (semi-definite). The
geometric meang2(A, B) of two positive operatorsA andB was introduced as the solution of
the matrix optimization problem, [1]

(1.1) g2(A, B) := max

{
X; X∗ = X,

(
A X
X B

)
≥ 0

}
.

This operator mean can be also characterized as the strong limit of the arithmetic-harmonic
sequence{Φn(A, B)} defined by, [2, 3]

(1.2)

{
Φ0(A, B) = 1

2
A + 1

2
B

Φn+1(A, B) = 1
2
Φn(A, B) + 1

2
A (Φn(A, B))−1 B (n ≥ 0).
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2 MUSTAPHA RAÏSSOULI, FATIMA LEAZIZI , AND MOHAMED CHERGUI

As is well known, the explicit form ofg2(A, B) is given by

(1.3) g2(A, B) = A1/2
(
A−1/2BA−1/2

)1/2
A1/2.

An interesting question arises from the previous approaches definingg2(A, B): what should be
the analogue of the above algorithm from two positive operators to three or more ones?

We first describe an extended algorithm of (1.2) involving several positive operators. The
key idea of such an extension comes from the fact that the arithmetic, harmonic and geometric
means ofm positive real numbersa1, a2, . . . , am can be written recursively as follows

(1.4) am(a1, . . . , am) :=
1

m

m∑
i=1

ai =
1

m
a1 +

m− 1

m
am−1(a2, . . . , am),

(1.5) hm(a1, . . . , am) :=

(
1

m

m∑
i=1

a−1
i

)−1

=

(
1

m
a−1

1 +
m− 1

m
(hm−1(a2, . . . , am)−1

)−1

,

(1.6) gm(a1, . . . , am) := m
√

a1a2 · · · am = a
1
m
1 (gm−1(a2, . . . , am))

m−1
m .

The extensions of (1.4) and (1.5) when the scalar variablesa1, a2, . . . , am are positive opera-
tors can be immediately given, by settingA−1 = lim

ε↓0
(A + εI)−1. By virtue of the induction

relation (1.6), the extension of the geometric meangm(a1, a2, . . . , am) from the scalar case
to the operator one can be reduced to the following question: what should be the analogue of
a1/mb1−1/m when the variablesa andb are positive operators? As well known, a reasonable
analogue ofa1/mb1−1/m for operators is the power geometric mean ofA andB, namely

(1.7) Φ1/m(A, B) := B1/2
(
B−1/2AB−1/2

)1/m
B1/2.

The appearance of the term
(
B−1/2AB−1/2

)1/m
in (1.7) imposes many difficulties in the compu-

tation context whenA andB are two given matrices. To remove this difficulty, in this paper we
introduce a simple and practical algorithm involving two positive operatorsA andB converging
to

B1/2
(
B−1/2AB−1/2

)1/m
B1/2,

in the strong operator topology. Numerical examples, throughout this paper, show the interest
of this work. Afterwards, inspired by the above algorithm we define recursively the geomet-
ric mean of several positive operators. Our approach has a convex concept and so allows us
to introduce the arithmetic-geometric-harmonic operator mean which possesses many of the
properties of the scalar one.

2. GEOMETRIC OPERATOR M EAN OF SEVERAL VARIABLES

Let m ≥ 2 be an integer andA1, A2, . . . , Am ∈ L(H) bem positive operators. As already
mentioned, this section is devoted to introducing the geometric mean ofA1, A2, . . . , Am. Let
A, B ∈ L(H) be two positive operators. Inspired by the algorithm (1.2), we define the recursive
sequence{Tn} := {Tn(A, B)}

T0 =
1

m
A +

m− 1

m
B;

Tn+1 =
m− 1

m
Tn +

1

m
A
(
T−1

n B
)m−1

(n ≥ 0).
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ARITHMETIC-GEOMETRIC-HARMONIC MEAN 3

In what follows, for simplicity we write{Tn} instead of{Tn(A, B)} and we set

T (−1)
n =

(
Tn(A−1, B−1)

)−1
.

Clearly, form = 2 the above recursive scheme coincides with the algorithm (1.2). The conver-
gence of the operator sequence{Tn} is given by the following main result.

Theorem 2.1. With the above, the sequence{Tn} := {Tn(A, B)} converges decreasingly in
L(H), with the limit

(2.1) lim
n↑+∞

Tn := Φ1/m(A, B) = B1/2
(
B−1/2AB−1/2

)1/m
B1/2.

Further, the next estimation holds

(2.2) ∀n ≥ 0 0 ≤ Tn − Φ1/m(A, B) ≤
(

1− 1

m

)n (
T0 − T

(−1)
0

)
.

Proof. We divide it into three steps:

Step 1: Let a > 0 be a real number and consider the scheme

(2.3)


x0 =

1

m
a +

m− 1

m
;

xn+1 =
m− 1

m
xn +

1

m

a

xm−1
n

(n ≥ 0).

This is a formal Newton’s algorithm to calculatem
√

a with a chosen initial datax0 > 0. We wish
to establish its convergence. By induction, it is easy to see thatxn > 0 for all n ≥ 0. Using the
concavity of the functiont −→ Logt (t > 0), we can write

Logxn+1 ≥
m− 1

m
Log xn +

1

m
Log

a

xm−1
n

,

or again

Logxn+1 ≥
m− 1

m
Log xn +

1

m
(Loga− (m− 1)Logxn).

It follows that, after reduction
∀n ≥ 0 xn ≥ m

√
a,

which, with a simple manipulation, yields

∀n ≥ 0
a

xm−1
n

≤ m
√

a.

Now, writing

xn+1 − m
√

a =
m− 1

m

(
xn − m

√
a
)

+
1

m

(
a

xm−1
n

− m
√

a

)
,

we can deduce that

0 ≤ xn+1 − m
√

a ≤ m− 1

m
(xn − m

√
a),

and by induction

0 ≤ xn+1 − m
√

a ≤
(

m− 1

m

)n+1 (
x0 − m

√
a
)
,

from which we conclude that the real sequence{xn} converges tom
√

a.
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4 MUSTAPHA RAÏSSOULI, FATIMA LEAZIZI , AND MOHAMED CHERGUI

Step 2:Let A ∈ L(H) be a positive definite operator and define the following iterative process

(2.4)


X0 =

1

m
A +

m− 1

m
I;

Xn+1 =
m− 1

m
Xn +

1

m
AX1−m

n (n ≥ 0).

It is clear thatA commutes withXn for eachn ≥ 0. By Guelfand’s representation, the conver-
gence of the matrix algorithm (2.4) is reduced to the number case (2.3) discussed in the previous
step. It follows that{Xn} converges inL(H) to A1/m. Further, one can easily deduce that

∀n ≥ 0 0 ≤ Xn − A1/m ≤
(

m− 1

m

)n (
X0 − A1/m

)
≤
(

m− 1

m

)n (
X0 −X

(−1)
0

)
.

Step 3: By virtue of the second step, the next sequence{Yn}

(2.5)


Y0 =

1

m
B−1/2AB−1/2 +

m− 1

m
I;

Yn+1 =
m− 1

m
Yn +

1

m
B−1/2AB−1/2Y 1−m

n (n ≥ 0),

converges inL(H) to
(
B−1/2AB−1/2

)1/m
and

∀n ≥ 0 0 ≤ Yn −
(
B−1/2A1/mB−1/2

)1/m ≤
(

m− 1

m

)n (
Y0 − Y

(−1)
0

)
.

It is clear that the algorithm (2.5) is equivalent to
B1/2Y0B

1/2 =
1

m
A +

m− 1

m
B;

B1/2Yn+1B
1/2 =

m− 1

m
B1/2YnB

1/2 +
1

m
AB−1/2Y 1−m

n B1/2 (n ≥ 0).

Now, writing

B−1/2Y 1−m
n B1/2 =

(
B−1/2Y −1

n B−1/2
)
B
(
B−1/2Y −1

n B−1/2
)
B · · ·

(
B−1/2Y −1

n B−1/2
)
B,

and setting
Tn = B1/2YnB

1/2,

we obtain the desired conclusion. �

Let us remark that we haveΦ1/m(A, B) = A1/mB1−1/m whenA andB are two commuting
positive operators and so,Φ1/m(A, I) = A1/m, Φ1/m(I, B) = B1−1/m for all positive operators
A andB. Let us also note the following remark that will be needed later.

Remark 1. The map(A, B) 7−→ Φ1/m(A, B) satisfies the conjugate symmetry relation, i.e

(2.6) Φ1/m(A, B) = A1/2
(
A−1/2BA−1/2

)m−1
m A1/2 = Φm−1

m
(B, A),

which is not directly obvious.

Further properties of(A, B) 7−→ Φ1/m(A, B) are summarized in the following corollary.

Corollary 2.2. With the above conditions, the following assertions are met:

(i) For a fixed positive operatorB, the mapX 7−→ Φ1/m(X, B) is operator increasing and
concave.
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ARITHMETIC-GEOMETRIC-HARMONIC MEAN 5

(ii) For every invertible operatorL ∈ L(H) there holds

Φ1/m(L∗AL, L∗BL) = L∗Φ1/m(A, B)L.

(iii) For a fixed positive operatorA, the mapX 7−→ Φ1/m(A, X) is operator increasing and
concave.

Proof. (i) Follows from the fact that the mapX 7−→ X1/m, with m ≥ 1, is operator increasing
and concave, see [4] for instance.

(ii) Since the sequence{Tn} of Theorem 2.1 depends onA, B, we can setTn := Tn(A, B). We
verify, by induction onn, that

Tn(L∗AL, L∗BL) = L∗Tn(A, B)L,

for all n ≥ 0. Letting n → +∞ in this last relation we obtain, by an argument of continuity
and the definition ofΦ1/m(A, B), the desired result.

(iii) By (2.6) and similarly to (i), we deduce the desired result. �

Now, we are in a position to state the following central definition.

Definition 2.1. With the above notations, the geometric operator mean ofA1, A2, . . . , Am is
recursively defined by the relationship

(2.7) gm(A1, A2, . . . , Am) = Φ1/m (A1,gm−1(A2, . . . , Am)) .

From this definition, it is easy to verify that, ifA1, A2, . . . , Am are commuting, then

gm(A1, A2, . . . , Am) = (A1A2 · · ·Am)1/m .

In particular, for all positive operatorsA ∈ L(H) one has

gm(A, A, . . . , A) = A and gm(I, I, . . . , A, I, . . . , I) = A1/m.

It is well known that(A, B) 7−→ g2(A, B) is symmetric. However,gm is not symmetric for
m ≥ 3 as shown by Example 2.3 below.

Now, we will study the properties of the operator meangm(A1, A2, . . . , Am).

Proposition 2.3. The operator meangm(A1, A2, . . . , Am) satisfies the following properties:

(i) Self-duality relation, i.e

(gm(A1, A2, . . . , Am))−1 = gm(A−1
1 , A−1

2 , . . . , A−1
m ).

(ii) The arithmetic-geometric-harmonic mean inequality, i.e

hm(A1, A2, . . . , Am) ≤ gm(A1, A2, . . . , Am) ≤ am(A1, A2, . . . , Am).

(iii) The algebraic equation: find a positive operatorX such thatX(BX)m−1 = A, has one
and only one solution given byX = gm(A, B−1, . . . , B−1).

Proof. (i) Follows by a simple induction onm ≥ 2 with the duality relation:(
Φ1/m(A, B)

)−1
= Φ1/m(A−1, B−1).

(ii) By induction onm ≥ 2: the double inequality is well known form = 2. Assume that it
holds true form− 1 and show that it holds form. According to (2.2) withn = 0, we obtain

Φ1/m(A, B) ≤ 1

m
A +

m− 1

m
B,

from which we deduce, using the definition ofgm(A1, A2, . . . , Am),

gm(A1, A2, . . . , Am) ≤ 1

m
A1 +

m− 1

m
gm−1(A2, A3, . . . , Am),
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6 MUSTAPHA RAÏSSOULI, FATIMA LEAZIZI , AND MOHAMED CHERGUI

which, with the induction hypothesis, gives the arithmetic-geometric mean inequality, i.e

gm(A1, A2, . . . , Am) ≤ am(A1, A2, . . . , Am).

This last inequality is valid for all positive operatorsA1, A2, . . . , Am, hence

gm(A−1
1 , A−1

2 , . . . , A−1
m ) ≤ am(A−1

1 , A−1
2 , . . . , A−1

m ),

and by (i) and the fact that the mapX 7−→ X−1 is operator decreasing, we obtain the geometric-
harmonic mean inequality.

(iii) Follows by essentially the same arguments used to prove the previous properties. Details
are left to the reader. �

Proposition 2.4. LetA1, A2, . . . , Am ∈ L(H) be positive operators. Then the following asser-
tions are met:

(i) For all positive real numbersα1, α2, . . . , αm one has

gm(α1A1, α2A2, . . . , αmAm) = gm(α1, α2, . . . , αm)gm(A1, A2, . . . , Am),

where

gm(α1, α2, . . . , αm) = m
√

α1α2 · · ·αm,

is the standard geometric mean ofα1, α2, . . . , αm.
(ii) The mapX → gm(X, A2, . . . , Am) is operator increasing and concave, i.e.

X ≤ Y =⇒ gm(X, A2, . . . , Am) ≤ gm(Y,A2, . . . , Am)

and,

gm(λX + (1− λ)Y, A2, . . . , Am) ≥ λgm(X, A2, . . . , Am) + (1− λ)gm(Y,A2, . . . , Am),

for all positive operatorsX, Y ∈ L(H) and allλ ∈ [0, 1].
(iii) For every invertible operatorL ∈ L(H) there holds

(2.8) gm(L∗A1L, L∗A2L, . . . , L∗AmL) = L∗ (gm(A1, A2, . . . , Am)) L.

(iv) If H is a finite dimensional Hilbert space then

detgm(A1, A2, . . . , Am) = gm(det A1, det A2, . . . , det Am).

Proof. (i) Follows immediately from the definition ofgm.

(ii) Follows from Corollary 2.2, (i).

(iii) This follows from the definition and Corollary 2.2, (ii).

(iv) By the properties of the determinant, it is easy to see that, for all positive operatorsA and
B,

det Φ1/m(A, B) = Φ1/m(det A, det B).

This, with the definition ofgm(A1, A2, . . . , Am) and a simple induction onm ≥ 2, implies the
desired result. �

We note that, as for all monotone operator means [5], if the operatorL is not invertible then
the transformer equality (2.8) is an inequality. Otherwise, we have the following.

Corollary 2.5. The mapX 7−→ gm(A1, A2, . . . , X, . . . , Am) is operator increasing and con-
cave.
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Proof. The desired result is well known form = 2. For the mapX 7−→ gm(X, A2, . . . , Am), it
is the statement of Proposition 2.4, (ii). Now, by Remark 1 it is easy to see that ifX 7−→ Ψ(X)
is an operator increasing concave map, then so isX 7−→ Φ1/m(A1, Ψ(X)). SettingΨ(X) =
gm−1(A2, A3, . . . , X, . . . , Am) and again by Proposition 2.4, (ii), the desired result follows by
a simple induction onm ≥ 2. This completes the proof. �

Now, we state the following remark that will be needed in the sequel.

Remark 2. Let us takem = 3. Then the equation: findX ∈ L(H) such thatX = g3(A, X,C),
has one and only one positive solution given byX = g2(A, C). In fact, it is easy to see that
g3(A, I, C) = I if and only if A = C−1. Further, by Proposition 2.4, (iii), we can write

X = g3(A, X,C) ⇐⇒ X = X1/2g3

(
X−1/2AX−1/2, I, X−1/2CX−1/2

)
X1/2,

which implies that

g3

(
X−1/2AX−1/2, I, X−1/2CX−1/2

)
= I,

or again

X−1/2AX−1/2 = X1/2C−1X1/2.

The desired result follows by a simple manipulation.

We end this section by noting an interesting relationship given by the following proposition.

Proposition 2.6. Let {An} be a sequence of positive operators converging inL(H) to A. As-
sume thatA is positive definite, then

(2.9) lim
n↑+∞

gn(A1, A2, . . . , An) = A.

Proof. Under the hypothesis of the proposition, it is not hard to show that

(2.10) lim
n↑+∞

an(A1, A2, . . . , An) = A,

and

(2.11) lim
n↑+∞

hn(A1, A2, . . . , An) = A.

Indeed, (2.10) is well-known for the scalar case (Cesaro’s theorem) and the same method works
for the operator one. We deduce (2.11) by recalling that the mapA → A−1 is continuous on
the open cone of positive definite operators. Relation (2.9) follows then from the arithmetic-
geometric-harmonic mean inequality (Proposition 2.3, (ii)), with (2.10) and (2.11). The proof
is complete. �

Now, we wish to illustrate the above theoretical results with three numerical matrix examples.
For a square matrixA, we denote by‖ · ‖ the Schur’s norm ofA defined by

‖A‖ =
√

Trace(A∗A).

Example 2.1.Let us consider the following matrices:

A =

 3 0 1
0 4 1
1 1 2

 , B =

 5 −1 2
−1 3 1
2 1 5

 , C =

 9 3 1
3 8 2
1 2 6

 .
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In order to compute some iterations of the sequence{Tn}, we computeg2(B, C) by algo-
rithm (1.2). Using MATLAB, we obtain numerical iterationsT2, T3, . . . , T6 satisfying the fol-
lowing estimations:

‖ T3 − T2 ‖= 8.894903423045612× 10−4,

‖ T4 − T3 ‖= 2.762580836245787× 10−7,

‖ T5 − T4 ‖= 2.660171405523615× 10−14,

‖ T6 − T5 ‖= 4.974909261937442× 10−16,

and good approximations are obtained from the first iterations.

Example 2.2. In this example, we will solve numerically the algebraic equation: for given
positive matricesA andB, find a positive matrixX such thatXBXBX = A. Consider,

A =


7 3 0 1
3 4 −2 1
0 −2 4 −1
1 1 −1 3

 , B =


3 1 2 1
1 6 −1 2
2 −1 5 1
1 2 1 4

 .

By Proposition 2.3, (iii), the unique solution of the above equation isX = g3(A, B−1, B−1).
Numerically, we obtain the iterationsT5, T6, . . . , T9 with the following estimations:

‖ T6 − T5 ‖= 0.01369442620176,

‖ T7 − T6 ‖= 2.933841711132645× 10−4,

‖ T8 − T7 ‖= 1.329143009263914× 10−7,

‖ T9 − T8 ‖= 3.063703619940987× 10−13.

Example 2.3.As already demonstrated, this example shows the non-symmetry ofgm for m ≥
3. Take

A =

 1.8597 1.0365 1.9048
1.0365 0.7265 0.9889
1.9048 09889 2.0084

 , B =

 1.0740 0.2386 1.1999
0.2386 0.0548 0.2826
1.1999 0.2826 1.4894

 ,

C =

 0.4407 0.6183 0.1982
0.6183 0.9995 0.4150
0.1982 0.4150 0.2718

 , D =

 1.0076 0.4516 0.5909
0.4516 0.4177 0.7656
0.5909 0.7656 1.8679

 .

Executing a program in MATLAB, we obtain the following.

g4(A, D, B, C) =

 0.3259 0.1187 0.2833
0.1187 0.0736 0.1282
0.2833 0.1282 0.4220

 ,

g4(A, B, C,D) =

 0.3174 0.0982 0.2832
0.0.982 0.0584 0.1058
0.2832 0.1058 0.4371

 ,

g4(A, C,D, B) =

 0.2847 0.0948 0.2381
0.0948 0.0643 0.0967
0.2381 0.0967 0.3733

 .

Therefore
g4(A, D, B, C) 6= g4(A, B, C,D) 6= g4(A, C,D,B),

and sogm is not symmetric form ≥ 3.
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3. ARITHMETIC -GEOMETRIC -HARMONIC OPERATOR M EAN

As already mentioned, in this section we introduce the arithmetic-geometric-harmonic oper-
ator mean which possesses many of the properties of the standard one. More precisely, given
three positive real numbersa, b, c, consider the sequences

a0 = a,
3

an+1

=
1

an

+
1

bn

+
1

cn

;

b0 = b, bn+1 = 3
√

anbncn (n ≥ 0);

c0 = c, cn+1 =
an + bn + cn

3
.

It is well known that the sequences{an}, {bn} and{cn} converge to the same positive limit,
called the arithmetic-geometric-harmonic mean ofa, b andc. In what follows, we extend the
above algorithm from positive real numbers to positive operators. We start with some additional
notions that are needed below. An operator sequence{An} is called quadratic convergent if
there is a self-adjoint operatorA ∈ L(H) such that lim

n→+∞
〈Anx, x〉 = 〈Ax, x〉, for all x ∈

H. It is known that if{An} is a sequence of positive operators, the quadratic convergence is
equivalent to the strong convergence, i.elim

n→+∞
Anx = Ax if and only if lim

n→+∞
〈Anx, x〉 =

〈Ax, x〉, for all x ∈ H.
The sequence{An} is said to be operator-increasing (resp. decreasing) if for allx ∈ H the

real sequence{〈Anx, x〉} is scalar-increasing (resp. decreasing). The sequence{An} is upper
bounded (resp. lower bounded) if there is a self-adjoint operatorM ∈ L(H) such thatAn ≤ M
(resp.M ≤ An), for all n ≥ 0. With this, it is not hard to verify the following lemma that will
be needed in the sequel.

Lemma 3.1. Let{An} ∈ L(H) be a sequence of positive operators such that{An} is operator-
increasing (resp. decreasing) and upper bounded (resp. lower bounded). Then{An} converges,
in the strong operator topology, to a positive operator.

Now, we will discuss our aim in more detail. LetA, B, C ∈ L(H) be three positive operators
and define the following sequences:

A0 = A, An+1 = h3(An, Bn, Cn);

B0 = B, Bn+1 = g3(An, Bn, Cn) (n ≥ 0);

C0 = C, Cn+1 = a3(An, Bn, Cn).

By induction onn ∈ N, it is easy to see that the sequences{An}, {Bn} and{Cn} have positive
operator arguments.

Theorem 3.2. The sequences{An}, {Bn} and {Cn} converge strongly to the same positive
operatoragh(A, B, C) satisfying the following inequality

(3.1) h3(A, B, C) ≤ agh(A, B, C) ≤ a3(A, B, C).

Proof. By the arithmetic-geometric-harmonic mean inequality, we obtain

∀n ≥ 0 An+1 ≤ Bn+1 ≤ Cn+1,

which, with the monotonicity ofa3 andh3, yields

An+1 ≥ h3(An, An, An) = An and Cn+1 ≤ a3(Cn, Cn, Cn) = Cn.
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In summary, we have established that, for alln ≥ 1,

(3.2) h3(A, B, C) := A1 ≤ · · · ≤ An ≤ Bn ≤ Cn ≤ · · · ≤ C1 := a3(A, B, C).

We conclude that{An} (resp.{Cn}) is operator-increasing and upper bounded bya3(A, B, C)
(resp. operator-decreasing and lower bounded byh3(A, B, C)). By Lemma 3.1, we deduce
that the two sequences{An} and{Cn} both converge strongly and so there exist two positive
operatorsP, Q ∈ L(H) such that

lim
n↑+∞

〈Anx, x〉 = 〈Px, x〉 and lim
n↑+∞

〈Cnx, x〉 = 〈Qx, x〉 ,

for all x ∈ H. If we write the relation

Cn+1 = a3(An, Bn, Cn)

in the equivalent form

Bn = 3Cn+1 − An − Cn,

we can deduce that{Bn} converges strongly to2Q − P := R. Lettingn → +∞ in relation-
ship (3.2), we obtainP ≤ R ≤ Q. Moreover, the recursive relation

Bn+1 = g3(An, Bn, Cn),

with an argument of continuity, gives whenn → +∞,

R = g3(P, R, Q),

which, by Remark 2, yields

R = g2(P, Q).

Due to relations

R = 2Q− P, R = g2(P, Q)

and the arithmetic-geometric mean inequality, we get

R = 2Q− P = g2(P, Q) ≤ 1

2
P +

1

2
Q,

which, after reduction, implies thatQ ≤ P . SinceP , Q andR are self-adjoint we conclude, by
summarizing, thatP = Q = R. Inequalities (3.1) follow from (3.2) by lettingn → +∞, and
the proof is complete. �

Definition 3.1. The operatoragh(A, B, C), defined by Theorem 3.2, will be called the arithmetic-
geometric-harmonic mean ofA, B andC.

Remark 3. Theorem 3.2 can be written in the following equivalent form: LetA, B, C ∈ L(H)
be three positive operators and define the map

Θ(A, B, C) = (h3(A, B, C), g3(A, B, C), a3(A, B, C)) .

If Θn := Θ ◦ Θ ◦ · · · ◦ Θ denotes thenth iterate ofΘ, then there exists a positive operator
M := agh(A, B, C) satisfying

lim
n↑+∞

Θn(A, B, C) = (M, M, M).
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