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Abstract

Sharp lower and upper bounds for quasiconvex moments of generalized order
statistics are proven by the use of the rearranged Moriguti’'s inequality. Even in
the second moment case, the method yields improvements of known quantile
and moment bounds for the expectation of order and record statistics based on
independent identically distributed random variables. The bounds are attain-
able providing new characterizations of three-point and two-point distributions.
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Let X, X, X,, ... beii.d. random variables with a common distribution func-
tion . Define the quantile functiod~'(¢) = inf{s € R; F(s) > t}, t €
(0,1). Let X, ,, denote ther-th order statistic (OS, for short) from the sample
Xq,...,X,, and letY,"” stand for thek-th record statistics (RS’s, for short)
from the sequencé;, X,, ..., according to the definition of Dziubdziela and
Kopocihski [4], i.e.

}/;'(k) :XLk(T’)7Lk(7’)+k—17 r= 1727"'7 k= 1727"'7

where L;(1) = 1, Ly(r + 1)
r=12....
The generalized order statistics are defined by Kariipad follows:

min{j; Xp, ) o.0m)1k-1 < Xjjtr—1} for

Definition 1.1. Letr,n € N, k, m € R be parameters such that=k + (n —
r)(m + 1) > 1forall r € {1,...,n}. If the random variable$/(r,n, m, k),
r=1,...,n, possess a joint density function of the form

n—1 n—1
fU(l,n,m,k),...,U(n,n,m,k) (ul, o 7un) —k (H 77]) <H (1 . u@)m) (1 _un)kfl
j=1 i=1

on the cone) < u; < ... < u, < 1 of R”, then they are called uniform

generalized order statistics. The random variables
X(r,n,m, k) = F Y U(r,n,m,k)), r=1,...,n,

are called generalized order statistics (g OS’s, for short) based on the distribu-
tion function F.
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In the case ofn = 0 andk = 1 the g OSX(r,n, m, k) reduces to the
0SX,, from the sampleX;, ..., X,, while for a continuoug”, m = —1 and
k € N we obtain the RY,'*) based on the sequendg, X, .. ..

Let H : R — R be a given measurable function. The generalizechoment
(H-moment, for short) o (r, n, m, k) is defined in Kamps] as follows

EH (X(r,n,m,k)) = /0 H (F7' (1)) ra(t)dt,

Sharp bounds on quasiconvex
moments of generalized order

where the density functiop,.,, of U(r, n, m, k) is given by statistics
Ar_1 L. Gajek and A. Okolewski
(1.1) Pron(t) = (L=t g (1), te(o,1),
’ (r—1)!
: Title P
with itle Page
: Contents
Ap_1 = Hm, r=1,...,n,
i=1 44 44
gm(t) = hy(t) — him(0), t€0,1), < >
1 1—¢ m+1 -1 Go Back
B () = m+1( )T m# "te0,1). 0 Bac
—log(1 — 1), m = —1, Close
The aim of this paper is to present some new moment and quantile lower and Quit
upper bounds for th&/-moment of the generalized order statisticg:, n, m, k) Page 4 of 24

in the caseH is quasiconvex. Recall that : R — R is quasiconvex if
for everyt € R the set{z € R; f(z) < t} is convex. The bounds of
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(Lemmaz2.1) i.e. applying a similar method as in Gajek and Okolewskif¢r

H =id. In Gajek and Okolewskij] some bounds for OS’s and RS’s were ob-
tained forH (t) = t*, a = 2s, s € N, via the Steffensen inequality. Somewhat
surprisingly, the present approach, which is equivalent to applying the Moriguti

inequality first and the Steffensen inequality afterwards, provides better bounds

(see Remark8.7and3.8). The bounds are attainable, which gives a new char-
acterization of some three-point and two-point distributions (see RerBatks
3.5and3.6). Similar bounds on expectations of order statistics from possibly
dependent identically distributed random variables were obtained by Rychlik
[11] and independently by Caraux and Gascugl [

From Propositior8.1we can get sharfi-moment bounds for E (X (r, n, m, k))
(see Propositior3.5), which generalize the result of Papadatos, [Theorem
2.1].

In Proposition3.6 quantile bounds for B (X (r,n, m, k)) are given under
additional restrictions on the underlying distribution function. Some other quan-
tile inequalities for moments of generalized order statistics from a particular re-
stricted family of distributions were obtained by Gajek and Okolewskiyia
the Steffensen inequality.

A summary of known bounds for g OS’s is presented in Kanijs The
results for OS’s and RS’s are presented e.g. in Daviéihd Arnold and Bal-
akrishnan fJ.
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We reformulate Moriguti’s result £ Theorem 1] - to the form which we shall
use.

Lemma2.1.Let®, ® and® : [a,b] — R be continuous, nondecreasing func-
tions such that(a) = ®(a) = ®(a), ®(b) = (b) = ®(b) andd(t) < &(t) <
®(t) for everyt € [a, b]. Then the following inequalities hold

() [)a(t)d(t) < [0 a(t)d®(t),
(i) [) 2(t)dd(t) > [} x(t)dD(t)

for any nondecreasing function : (a,b) — R for which the corresponding
integrals exist. The equality in (i) holds iff either both sides are equaldo
(—o0) or both are finite andr is constant on each connected interval from the
set{t € (a,b); ®(t) < ®(t)}. The equality in (ii) holds iff either both sides
are equal to+oo (—o0) or both are finite and: is constant on each connected

interval from the seft € (a,b); ®(t) > ®(¢)}.

Corollary 2.2. If = is nonincreasing then the signs of inequalities (i) and (ii)
are opposite.

Remark2.1 Part (i) of Lemma2.1 follows from the proof of Moriguti’s result.
Replacingd by ® and® by ® in Lemma2.1 (i) gives Lemma2.1 (ii). Applying
Lemma2.1to the function—z instead of tar gives Corollary?.2.
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Let us introduce the notation:w = (r,n,m, k),
W={w e NxNxRxR;1<r<nVicen =k+n—r)(m+1)>1},

Wy={weW;r=1Amn =1},
Wy={weW;r=1An > 1},
Wy={weW:r>2An>1Am>-1V(m<-1An >1)]}
Wy={weW;r>2A[(m>—-1Anp=1)V(m<—=1An =1An > 1)},
Ws={weW;r>2Am<-1An =1}

-----

Let .
B, (1) = / oom(@)dr, te0,1],
0

where the functionp,.,, is defined by {.1). In this notation parameters andk
are suppressed for brevity.

Moreover, letus pul, = 0 forw € W, UW,, b = 1forw € W, UW; and
(3.1)

o 1 —exp[—(r—1)/(n. — 1)], for w € Ws such thatn = —1,

" 1=[(n — 1)/ (m — DY) forw € Wy such thatn # —1.
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Additionally, let us define

1 forw € W7, U W-
(3.2) Bow = 0 Orme U
Orn(ch—), forwe Wy U Wy,

B 1, forw e W, UW,U W,
Trn orn(d), forme Wyl W,

wherec, = 0forw € Wy UWs, ¢, = 1forw € WyU W5, d, = 0forw € W,
di = 1forw e W, UW,UW;, andc, andd], for w € Wjs, are the unique
zeros in[0, b}, and|[b],, 1] of the functions

(3.3) (1= )prn(t) + P0(t) =1 and tp,,(t) — @,,(1),

respectively. In the notatiobj, c;, d;, 3., and~,, the constants: andk are
suppressed for brevity. Note that,, is not defined for anyo € Ws.
Now letus putA = {s € R; Vo H(s —€) > H(s)},

(3.4) Y sup A, for A # (),
' —00, for A = (),
and
0, fora = —o0,
(3.5) 2 = F(a), foraeR,
1, for a = +o0.
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Observe that it, = 0 or z, = 1, then the functiord |;,., wherelp = Jp U
(inf Jr, sup Jr) with Jr denoting the image a0, 1) underF~!, is monotone

and corresponding bounds follow from Proposition 1 of Gajek and Okolewski

[6]. Therefore, we shall present the inequalities fdf EX (r,n,m, k)) when
H is quasiconvex and, € (0, 1).
Let us define

(3.6) = {Zglcbm(za), for? e Wy U Ws,
©rn(ch), forw € Ws U W, U Ws,
and
B v {@T,n(&;), forw € Wy U W, U Wi,
P (= z) ML = By (), form e Wy UWs,

wherez, € (0,1), &, = z, forw € W, U Ws, di, = z, forw € Wy U W>, and

¢ andd; , forw € Ws, are the unique zeros of the function

(38) q)r,n(za> - q)r,n(t) - @r,n(t) (Za - t)

in the intervals0, b7 ] and|b!, 1], respectively. In the notatiop,.,, andv,.,, the

constantsn andk are suppressed for brevity. Itis easily seen thjat 2, and

d = z, forthesew € W for which z, € (0,b] andz, € [b], 1), respectively.
Further, let us define

(3.9) A = zal0,ar1(20) + (V) " Prn(2a)L(ar 1) (2a),

(3.10) k= (5r,n)_1(1 = ®rn(2a))L0,c5)(2a) + (1 = 2a) (e 1) (2a),

(3.11) X = (,ur,n>71q)r,n(za>7

(312) ¥ = () (1 — Pral2a)),
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with ¢/ andd], such as in&.2), 5., Yrn, trn andv,,, defined by 8.2), (3.6)
and @.7). In the notation\, x, y and the constants, n, m, k and z, are
suppressed for brevity.

Throughout the paper we shall assume that the integrals appearing in the
propositions exist and are finite.

Proposition 3.1. Let z,, A, k, x and be defined byd.5), (3.9), (3.10), (3.1])
and (3.12, respectively. LeHH : R — R be an arbitrary quasiconvex function

such thatz, € (0,1). Sharp bounds on quasiconvex
(I) If @ cW \ W5, then moments ofstga(iir:izllzed order
EH (X(?” n.m k)) L. Gajek and A. Okolewski
(bnn(za) A 1 1— (I)r,n(za) ! -1
< =R /0 H (F~(t)) dt + - /1 H (F7(t)) dt. prey—
(ii) If w € W, then Contents
44 44
EH (X(r,n,m,k)) ) R
(I)v",n(za) e —1 1 - (I)nn(za) Fot —1
> y / H(F~'(t))dt + Y / H (F~H(t)) dt. Go Back
Za—X Za
Proof. It is easy to check thatt € W, = ¢,,, = 10on]|0, 1); Close
weWy= ¢, <00n(0,1), .,(0) < +00, ¢ n(1—) = 0; Quit
we W; = Sor,n/ >0on (07 b;;)? 907",“/ <0on (bgv 1)? 907",”(0) =0, Page 10 of 24
Qor,n<1_) =0;
(0) = 07 §0T7n(1—) < ‘I—OO, J. Ineq. Pure and Appl. Math. 2(1) Art. 6, 2001

w e W4 = Qpr,n/ > 0on (07 1)a spr,n
w e WS = Qpr,n, > (0on (Oa 1)a Qpr,n(o) = 07 (107“,71(1_) = +00. hitp:/fjipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:gal@ck-sg.p.lodz.pl
http://jipam.vu.edu.au/

Forw € W, (i)-(ii) are obvious identities. So let us consider the other cases.

From Kamps §] we have
(3.13) EH (X(r,n,m,k))
= [T @) w0+ [ H(E 0) deo,

wherez, is given by @.5). We shall apply CoroIIarQ 2and Lemma2.1 with

the functionst = Ho F-1, & = ®,,,,d = &, and® = Q. @ o, . anddy
are defined off0, z,| and[za, 1], respectively, as follows
—u 1P, . (2.t if z, € (0,d],
5 () = {2 el f 2 € (0.d;],
’ f)/r,nﬂ[[o,)\} (t) + (I)r,n(za)ﬂ()\,za](t)y if Zq € (d27 1)7
and
(Ben(t = 1) + DIa_py(t), if 2, € (0,¢],

@ (1) = {‘I’m<za>mzml_ﬁ]<t> N
’ (1—z,)

N =®,,(2)]E—1)+1, if z, € (¢, 1),

whereg, ,, and~,,, are given by §.2). Moreover, let us observe that

t

t
314) B0 = [ Fr(o)ds and B0 = 08,0+ [ ¢ ()i
0 |

Za

where

Za '@ n(Za),
/YT,TL]I[O,A] (8)7

if z, € (0,d}),

(3.15) Brn(s) ={ if 2, € (d7,1)
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and

if z, € (0,c],

3.16
(3.16) if z, € (], 1).

P (s) =

T,n

{ﬁr,nﬂ(l—n,l](s)a
[1— (I)r,n(za)] (1- Za)_17

By Corollary2.2, Lemma2.1, (3.14), (3.195 and 3.16) we get
EH (X (r,n,m,k)) < / H (F7'(t))d®,,(t) + /1 H (F(t)) ddy, (t)
0 Za

A 1
— W’n(o)/ H(F7'(t))dt +gn(1)/ H(F~'(1))dt,
0 ’ 1-k
which leads to (i).
In order to prove (ii) we shall use Corollag/2 and Lemma2.1 with the
functionst = Ho F~', ¢ = ,,, ® = ¢/ and® = Elm; o, and@fm are
defined on0, z,] and|[z,, 1], respectively, as follows

- (‘Pr,n(éz)(t — Z,) + q)r,n(za))]l(za—x,za](t)a

forw € W,
forw e Wi U W, UW5,
and

3 (1)

:{u—%rmf@muma—n+L
(@r,n(d;)(t - Za) + (I)r,n(za))]l[za,zfrw} (t) + ]I(za+w,ﬂ (t)7

forw e W, U Ws,
forw e Wy U W,
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wherec” andd’, are such as in3(6) and @.7).
Let us note that

t t
(3.17) @ ,(1) = / ¢l (s)ds and @, () =, (z) + / B (s)ds,

where

2710, 0 (24)
(3.18) o (s)=<¢"" - ’
- Prn (%)H(za—x,za} (s),

forw € W,
forw € WgUW4UW5,

and

_ )11 =

819) Bl =gl ) Ol
@T,N(dn)ﬂ[za,zaﬁ-w](s)a

By Corollary2.2, Lemma2.1, (3.17), (3.18 and @.19 we have

EH (X(r,n,m,k))

> [T rw)ast, 0+ [ 1 (E0) 0

forwe W, U W,
forw € Wy U Wi,

Za Zat+Y
) [ HE W) dr ) [ (P 0)

a—X
which gives (ii). This completes the proof of Propositi®n. O

Remark3.1 Observe that the bounds of Propositida work under quite weak
assumptions. In the case of the lower bounds we even do not nééd Fto
be finite — see Exampl@ 1 below.
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Example3.1 Let

(2+t*)~t fort <0,
F(t)y=¢(2-t3)"!, fortel0,1),
1 else.

Y

Itis easy to check thatE} ; = 3.5, EX? = 400 and the lower bound for E3 ,
in Proposition3.1 (i) is meaningful (and equals&s).

Sharp bounds on quasiconvex

Remark3.2 If EX? (T’, n,m, k‘) < 400 and H(t) = (t - EX(?“, n,m, k,’))z, moments of generalized order
t € R, then Propositior3.1 provides lower and upper bounds for variation of g statisties
OS’SX(?”, n,m, k) L. Gajek and A. Okolewski
Remark3.3. Note that right-hand sides of the inequalities (i) and (ii) of Propo-

sition 3.1depend on the parent distribution not only through a simple functional Title Page

of the quantile function as the bounds of Proposition 1 of Gajek and Okolewski
[6], but also through a value of distribution function at a single point deter-
mined byH. The reason of this drawback lays on difficulties which occur while <« >
guasiconvex functiort/ is not monotone.

Contents

< >
Remark3.4. Equality in Proposition3.1 (i) holds if w € W, or one of the
following conditions is satisfied: Go Back
(&) F has exactly one atom; Close
uit
(b) for z, € (0,c)), F' has at most three atoms with the probability masses 2
(24, ¢ — 20, 1 — 7)) OF (24, 1 — 24) OF (¢}, 1 — ), respectively; Page 14 of 24

(c) for z, € ¢, d;], I has exactly two atoms with the probability masses | Tom—m—s,
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(d) for z, € (d!,1), F has at most three atoms with the probability masses
(dl 2z —dl, 1 — 2,) O (24,1 — 2,) OF (dl, 1 — dI"), respectively.

Remark3.5. Equality in Propositior3.1 (ii) holds if w € W; or one of the
following conditions is satisfied:

(&) F has exactly one atom;

(b") for z, € (0,b;,), F' has at most three atoms with the probability masses
(2a,d, — 20,1 —d,) OF (24,1 — 2,) OF (d,, 1 — d.,), respectively;

n

(c)) for z, = b, F' has exactly two atoms with the probability masges1 —
z,), respectively;

(d) for z, € (bI,1), F has at most three atoms with the probability masses
(€ za —Chy 1 —24) OF (24,1 — 2z,) OF (¢, 1 — ), respectively.

n?

Remark3.6. Under the additional assumptions ti#ay;,. is left-hand continuous

and is not constant on any nonempty open interval, the conditions given in Re-

marks3.4and3.5are also sufficient. Indeed, denotifig= {t € (0, z,); ®,.,,(t) >

®,,(1)}, S = {t € (24, 1); Dp,(t) < Py, ()} Observe thalS = (0, z,) and
S = (24,1) forw € W, U W, and thesar € W3 for which z, € [c],, d}];
S = (0,2,) and S = (zq,¢;,) U (e, 1) forw € W; such thatz, € (0,¢},);

S = (0,dr)U (dl, z,) andS = (z,, 1) forw € W3 such thatz, € (d/,1).
Combining this with the fact thatl o F~! is left-hand continuous and that,
by Lemma2.1 and Corollary2.2, the equality in the inequality (i) of Propo-
sition 3.1 is attained iff H o FF~! (or equivalently ') is constant on each
connected interval from the s&tU S, proves Remark.4. A similar reasoning
applies to Remark.5.
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Remark3.7. The proof of Propositior8.1 (i) relies on applying Lemma.1
and Corollary2.2to the integralsf;a H (F~'(t)) d®,,(t) and [;* H (F~(t))
d®, ,(t). The question arises whether one can use in LethgCorollary2.2)
a minorant (a majorant) different tharf, @ZW respectively) in order to alter
the parameter correspondingad\) and further improve the resulting bound.
In the class of absolutely continuous nondecreasing minorants (majorants) of
®,., which have the same values &s,, at the both ends of the intervgl,, 1]
([0, 2,]) and which Radon-Nikodym derivatives are essentially finite, the answer _
. . . “ - . . Sharp bounds on quasiconvex
to the question is negative. Indeed, the form of the bound (i) implies that it iS  moments of generalized order

most precise when the minorant and the majorant provide the Radon-Nikodym SiEiEs

derivatives with the least possible essential supremums. Sjjm:as well as L. Gajek and A. Okolewski

?,.,, satisfy this condition, Propositio8.1 (i) provides in some sense optimal

bounds. A similar remark refers to the case of the bound (ii) of Propositibn Title Page

Remark3.8. Obviously,®. , is its own minorant (majorant, respectively) on any

subinterval of(0, 1) ande,. | z..1) (¢rnl(0.2.)) has a greater essential supremum CaiEE

thangfn (%,.,) Wheneverd | @f’n) is notidentical with®, .| .. 1) (Pr.n](0,20))- <« 33

According to Remarld.7, the bounds of Propositiod. 1 for order and record < >

statistics from a continuous parent distribution are more precise than (are the

same as) their analogues from Proposition 1 of Gajek and Okole@jskx§ept Go Back

for (in the case of) the lower bounds:if # b) (if z, = b}). lese
Now, assuming that some additional conditions are satisfied we shall com- Quit

pare in Corollary3.4 the upper bounds following from Propositi@nl (Corol-
lary 3.3) with their counterparts following from easy to obtain modification of Page 16 of 24
Proposition 1 of Gajek and Okolewski][(Corollary 3.2).
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be defined by3.2), (3.4), (3.5, respectively. Suppose th& X > a) = 1,
z, € (0,1), H(a) = 0 and H is not constant on any nonempty open interval.
Then
1
EH (X(r,n,m,k)) < ﬁm/ H(F~(t)) dt.

max{za,lfﬁ}

Proof. On account of Propositiod.1 (i) of Gajek and Okolewskid] it suffices
to show that, under the assumptions of Corollau3; H o F'~! is nondecreasing
andH o F~1(t) = 0 fort € (0, z,). To this end observe thd o F'~1(t) =
H(a) = 0fort € (0,2,), Ho FX(2,) = H(F~*(F(a))) > H(a) = 0 and
that, by definition, the functio/ o F'~! is nondecreasing ofx,, 1). O

Corollary 3.3. Let the assumptions of CorollaB;2 be satisfied. Then
1
EH (X(r,n,m, k) <k (1 — Cbm(za))/ H(F~'(1))dt,
1-k

wherex is defined by3.10).

Proof. Combination of PropositioB.1and the factthat o F'~1)(t) = H(a) =
0 for eacht € (0, z,) gives the result. ]

Corollary 3.4. Let ¢, be such as in3.2). Suppose that the assumptions of
Corollary 3.2 are satisfied.

(i) If z, € (0,1)\ {c},}, then the bounds of Corollary.3 are better than the
bounds of Corollarys.2,

Sharp bounds on quasiconvex
moments of generalized order
statistics
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(i) If z, = ¢, then Corollary3.2 and Corollary 3.3 provide the identical
bounds.

Proof. Let us denote by, and B, the right-hand sides of the inequalities in

Corollary3.3and Corollary3.2, respectively.
If z, € (0,1 —1/0,,], then

Au = ﬁr,n/ll L H(Fil(t)) dt

= Bu7

asH (F~'(t)) > H(a) = 0fort > z,.

If 2, € (1 —1/B,n,c,], then

1 1
_ -1

Ay =B / H(FT0) 2 /1 i H
Indeed, since the functiofi : (0,1) — R defined by(1 — @, ,,(t))/(1 — t)
obtains its maximum equal 16, ,, at the unique point = ¢],, z, < 1 — (1 —
D, ., (24))/Brn fOr z, € (0,1) and the equality is attained only fof = ¢J,.

If z, € (¢}, 1), then

(F~(t)) dt = B,.

Lm(za)/lH(Fl(t)) dt = B,

and the proof is complete. O

Ay = Brn /1 H(F~'(t)) dt >

1—2,

Sharp bounds on quasiconvex
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Now, we present som&-moment bounds on B (X (r,n, m, k)) provided
that H is quasiconvex and nonnegative. The special cases 0 andz, = 1
follow from Proposition 3 of Gajek and Okolewski][ so, we shall formulate
the result ford quasiconvex such that, € (0, 1).

Proposition 3.5. Suppose that € W \ W;. Then for an arbitrary quasiconvex
functionH : R — R, U {0} such thatz, € (0, 1), it holds that

EH (X(r,n,m,k)) < M, ,(2,)EH(X) < max{f,n, VnEH(X),

Sharp bounds on quasiconvex

i moments of generalized order
whereM, ., (z,) = max{\"'®, ,(z,), k[l — D, (2,)]} and z,, \,x are given statistics

by (3.9), (3.9), (3.10, respectively.

L. Gajek and A. Okolewski

Proof. Forw € W, we have the obvious identity. So, let us consider the other
cases. Estimating the right-hand side of Proposifidr(i) we get

Title Page
EH (X (r,n,m,k)) <max{\"'®,,(z,), s 1 - ®,,(2.)]} Contents
A 1
X {/ H(F'(t)) dt +/ H(F(t)) dt} : « ad
0 1-k | 4
Puttingz, instead of\ and1 — « gives the first inequality. The second inequality e
follows from the first one as a consequence of the following facts: o
ose
(i) if z, € (0,¢}), then Quit
Mrl,n(za) E)‘_l(br,n(za) = Zglq)r,N(Za) < rnlza) < 0rnlcy) = B, Page 19 of 24

Mfm(zfl> E’i_l[l - (I)T',n(za)] = ﬁr,m
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(ii) if z, € (d7, 1), then

My«l,n(za) =Yrmn,
Mv?,n(za) =(1- Za)il[l - q)r‘,n(za)] < (Pr,n(za) < ‘Pr,n(d;) = Yrms

So’Mr,n(Za> = VYrn
(iii) if 2o € [, d"], then

n’'n

1 1 Sharp bounds on quasiconvex
Mnn(za) = Z, (I)r,n(za) < Yrm, moments of generalized order

statistics
Mzn(za) = (1 - Za)_l[l - CDr,n(Za)] S 6T,na
L. Gajek and A. Okolewski

SO, M, (2a) < max{B ., Vrn}-

The proof is complete. O Title Page
Remark3.9. Equality in the first inequality of Propositich 5 holds ifw € W, Contents
or ' has only one atom & ~'(0) (provided that there exists a pointfrom the <« Y
image of(0, 1) underF~! such that{ (to) = 0) or z, = ®,.,,(z,) and one of the P >
following conditions is satisfied:

Go Back
(a) F has exactly one atom;
Close
(b) F has exactly two atoms with the probability masses1 — z,), respec- out
ul

tively.
Page 20 of 24

Under the additional assumptions ti#ais left-hand continuous and it is not
constant on any nonempty open interval, the above conditions are also sufficient. , Te—r———mm=reemmm.
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(dr,;1), orw € Wy U Wy, then\ < 1 — x and the equality is attained iff
HoF'(t)y=0fort € (0,1). If w € W3 andz, € [c},d"], then\ = z,,
k = 1— z,, SO, the equality is attained if ' ®, ,,(z,) = k1[1 — ®,,.(z,)] (i.e.
iff z, = ®,,(z,)) and one of the conditions (a) or (c) of Rem&rk s satisfied.
Remark3.10 Equality in the second inequality of Propositi®rb holds iff w €
W, or F has only one atom & —!(0) (provided that there exists a poiftfrom
the image of0, 1) underF~* such thatf (¢,) = 0).

Under some additional restrictions on the functién /'~! we can formulate
another consequence of Propositibf.

Proposition 3.6. Leta, z,, A, k, x andy be defined by3 4), (3.9, (3.9), (3.10,
(3.1)) and (3.12), respectively. Suppose thdt: R — R is a given quasiconvex
function such that, € (0, 1).

(i) If w € W and the functiorf{ o F~! is convex on the intervat, — x, z,+1],
then

EH (X(r,n,m, k) > ®(20)(H o F 1) (24 — x/2)
+ (1= ®,(20))(H o F7Y) (24 + 1/2).

(i) If w € W\ W5 and the functiorf/ o F~! is concave on the intervalg, A]
and[1 — x, 1], then

EH (X(r,n,m, k) < @, (24)(H o F71)(\/2)
+ (1= @,,,(20))(Ho F7H)(1 — K/2).
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Proof. Applying Jensen’s inequality to the bound (ii) of Propositthwe have

EH (X (r,n,m, k) > By n(2) / _ H(F7\(t)) dt
o Za+
Fe ) [ H () d
> @, (2) (Ho F7) (;(1 /_ tdt)

+ (1= @ 0(z0)) (Ho FH) (w—l /:W tdt)

= &, (20)(H 0 F ) (24 — x/2)
(1= @pn(za))(H 0 1) (20 +1/2).

The proof of (i) is complete. The case (ii) can be proven in a similar waj.
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