Journal of Inequalities in Pure and
Applied Mathematics

ON A REVERSE OF A HARDY-HILBERT TYPE INEQUALITY

BICHENG YANG

Department Of Mathematics
Guangdong Education College, Guangzhou
Guangdong 510303, People’s Republic of China

EMail: bcyang@pub.guangzhou.gd.cn

(©2000Victoria University
ISSN (electronic): 1443-5756
016-06)

volume 7, issue 3, article 115,
2006.

Received 18 January, 2006;
accepted 25 May, 2006.

Communicated by: L.-E. Persson

Abstract
Contents
44
| 2
Home Page
Go Back

Close

Quit


Please quote this number (016-06) in correspondence regarding this paper with the Editorial Office.

mailto:larserik@sm.luth.se
http://jipam.vu.edu.au/
mailto:bcyang@pub.guangzhou.gd.cn
http://www.vu.edu.au/

Abstract

This paper deals with a reverse of the Hardy-Hilbert’s type inequality with a best
constant factor. The other reverse of the form is considered.
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fp > 1,0+ =1,a,b, > 0,suchthatd < >3 ab < oo and0 <
> b1 < oo, then we have the well known Hardy-Hilbert inequality (Hardy

n=0"n
et al. [1]):
(1.2) sz—i—n—l—l Sm(z) {;aﬁ} {gbz} 7

where the constant factar/ sin(/p) is the best possible. The equivalent form "2 Reyee o8 Hety-ribert

is (see Yang et al.q]):
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where the constant fact@r / sin(7/p)|? is still the best possible. Contents

Inequalities {.1) and (L.2) are important in analysis and its applications (see <« 33
Mitrinovic, et al. [}]). In recent years, inequalityl(1) had been strengthened

< >
by Yang [] as
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whereln 2 — v = 0.11593" (v is Euler’s constant). Another strengthened ver-
sion of (1.1) was given in {]. By introducing a parametey, two extensions of
(1.1 were proved in{, 7] as:

(e.o] o a b
1.4 _Tmtn
(1.4) i (m+n+1)>
oo 1 1-X P ) 1 1-X %
_ p _ q
< k’)\(p) {Z (TL + 2) a"} {Z (n + 2) bn} ’ On a Reverse of a Hardy-Hilbert
n=0 n=0 Type Inequality
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n=0 m=0 (m +n+t 1) P q Title Page
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00 (p—1)(1=X) p [ o (g=1)(1-X) q Contents
) (2)
X n+ - ab n+ - X
{; < 2 } {; 2 } « 33
+A—2 g+A-2 . 4 >
where, the constant factoks(p) = B (pT, T) (2 —min{p,q} < A <
Go Back
2), and B (%, 2) (0 < A < min{p, q}) are the best possibleé3(u,v) is the
[ function). For\ = 1, both (L.4) and (.5 reduce to {.1). We call (L.4) Close
and (L.5 Hardy-Hilbert type inequalities. Yang et al?][summarized the use Quit
of weight coefficients in research for Hardy-Hilbert type inequalities. But the Page 4 of 16

problem on how to build the reverse of this type inequalities is unsolved.
The main objective of this paper is to deal with a reverse of inequdlit) ( Ty o
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We need the formula of the function B(p, ¢) as follows (see4)):

tp—1

and the following mequahty (see[2]): If f* € C[0,00),0 < [ f(t)dt < o0
and(—1)"f™(z) > 0, f™ ()—OW_QLQSthn

@2) [ s+ 3100 < Y5 < [ #0530 - 10
k=0 0

Lemma 2.1. Define the weight functioa(n) as

1\ & 1
then we have
1 1
Proof. For fixedn, settingf(t) = m (t € [0,00)), we obtain
1 oy
0= o PO =~ and [
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By (2.2), we find

(2.5) w(n) >

[ v 2<n1+1>2} (”* %>

- [(n—ll—l) - 2(n-1m)2} {(”H) _ﬂ

Since forn € Ny,

1 1
{12(71 +1)2 * 12(n+1

2(n+1)—1 2(n+1)—1
2(n+1) 2(n+1)2
1 1
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then we find
1 1 1
+ > ,
12(n+1)2  12(n+1)3 ~— 6(n+1)(2n+1)

and in view of ¢.6), it follows that

1
2.7 1-— .
2.7) “n) < 1= e T DEn £ 1)
In virtue of (2.5 and @.7), we have 2.4). The lemma is proved. ] On a Reverse of a Hardy-Hilbert

Type Inequality
Lemma 2.2. For 0 < ¢ < p, we have
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Hence by 2.2) and @.1), we find

f:g;(”*%)_z im@”%y;]

| m=0
- 1) a 1 /00 wr
< n—+ - = du
2 (2) [ oo
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+ 1)2 + 3 + 2} On a Reverse of a Hardy-Hilbert
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Theorem31|f0<p<1 s+2=1,a,,b,>0,suchthad < 37

n=0 2n+1 <
oo and0 < Y07 52 < oo, then
1
oo 0 mbn 0 1 p )
(3:1) a—12>2{ [1_4 12]2%1}
n:Om:O(m+n+ ) — (n+1)2] 2n +
00 1 be % On a Reverse of a Hardy-Hilbert
% Z 1 n Type Inequality
6(n+1)2n+1)| 2n+1[ ,
n=0 Bicheng Yang
where the constant factor 2 is the best possible. In particular, one has
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Sincel < p < 1 andq < 0, by (2.4), it follows that 3.1) is valid.

For0 < e < p, settingi, = (n+ 1) b, = (n+1)" n € Ny, we
find
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— 07).
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If the constant factor 2 |n3(.1) is not the best possible, then there exists a real
numberk with £ > 2, such that 8.1) is still valid if one replaces 2 by. In
particular, one has

60 Y3 Gy
L - . 1 ar
~ Z[ _4(n—|—1)2] 2n + 1
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1
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n=0
Hence by 2.8) and @3.3), it follows that
(1+o0(1)Y  ——1 {1—0 )} Z e
n=0 (n 2)

and then2 > k(¢ — 0T). This contradicts the fact thakt > 2. Hence the
constant factor 2 in3.1) is the best possible. The theorem is proved. O

Theorem3.2.1f 0 < p < 1, 1+——1 an, > 0,suchthat < > >° 02n+1 < 00,
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where the constant factaris the best possible.

Proof. By the reverse of Holder’s inequality? @) and €.4), one hasv(n) < 1
and

o) p
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By (2.4), we have 8.5).
Settingd,, > 0 and0 < > >, erﬁ-l
equality, one has

< 00, by the reverse of Hdlder’s in-

(3.8)

e
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If the constant factor 2 in3(5) is not the best possible, then B/€), we can get
a contradiction that the constant factor 2 #11j is not the best possible. The
theorem is proved. O

—
8

Remark 1. If a,,, b, satisfy the conditions ofi(4) for A =2, r > 1, %+% =1,
and 3.2 for0 < p < 1, % + é = 1, then one can get the following two-sided

On a Reverse of a Hardy-Hilbert
Type Inequality

Bicheng Yang

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 13 of 16

J. Ineq. Pure and Appl. Math. 7(3) Art. 115, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:bcyang@pub.guangzhou.gd.cn
http://jipam.vu.edu.au/

inequality:

(3.9)
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