

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 3, Article 32, 2002

AN INEQUALITY WHICH ARISES IN THE ABSENCE OF THE MOUNTAIN PASS GEOMETRY

RADU PRECUP r.precup@math.ubbcluj.ro

BABEŞ-BOLYAI UNIVERSITY
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
3400 CLUJ, ROMANIA.

Received 8 February, 2001; accepted 18 February, 2002 Communicated by L. Gajek

ABSTRACT. An integral inequality is deduced from the negation of the geometrical condition in the bounded mountain pass theorem of Schechter, in a situation where this theorem does not apply. Also two localization results of non-zero solutions to a superlinear boundary value problem are established.

Key words and phrases: Integral inequality, Mountain pass theorem, Laplacean, Boundary value problem, Sobolev space.

2000 Mathematics Subject Classification. 26D10, 58E05, 35J65.

1. Introduction and Preliminaries

Let $p \in [2, \infty)$, Ω be a bounded domain of \mathbb{R}^n , and let

$$C_0^1\left(\overline{\Omega}\right) = \left\{ u \in C^1\left(\overline{\Omega}\right) : u = 0 \text{ on } \partial\Omega \right\}.$$

We consider the quantity

(1.1)
$$\lambda_{p-1} = \inf \left\{ \frac{\int_{\Omega} |u|^{p-2} |\nabla u|^2 dx}{\left(\int_{\Omega} |u|^{\frac{p^2}{2}} dx\right)^{\frac{2}{p}}} : u \in C_0^1\left(\overline{\Omega}\right) \setminus \{0\} \right\}.$$

For p=2, λ_1 is the first eigenvalue of the Laplacean $-\Delta$ under the Dirichlet boundary condition, and $\frac{1}{\lambda_1}$ represents the best constant in the Wirtinger-Poincaré inequality (see [7] for the elementary Wirtinger's inequality, [8] for its extension to functions with values in an arbitrary Banach space, and [11] for Poincaré's inequality). For p>2 and n=1 this quantity arises in the study of compactness properties for integral operators on spaces of vector-valued functions

ISSN (electronic): 1443-5756

^{© 2002} Victoria University. All rights reserved.

The author is indebted to Professor L. Gajek for bringing reference [3] to his attention, for giving the exact value of λ_{p-1} for n=1 as shows Remark 1.1, and for stimulating an improved and much more general version of this paper.

(see [13]). Let us also note that quantities alike (1.1) arising from physics were studied by Pólya [9] and Pólya and Szegö [10] (see also [6] and its references for more recent advances).

Remark 1.1. For n=1 and $\Omega=(0,T)$, where $0< T<\infty$, the exact value of λ_{p-1} can be obtained from a result of Gajek, Kałuszka and Lenic [3] in the following way. First by change of the integration variable one has

$$\lambda_{p-1} = \inf \left\{ \frac{\int_0^T |u|^{p-2} u'^2 dx}{\left(\int_0^T |u|^{\frac{p^2}{2}} dx\right)^{\frac{2}{p}}} : u \in C_0^1 [0, T] \setminus \{0\} \right\}$$

$$= T^{-\left(1+\frac{2}{p}\right)} \inf \left\{ \frac{\int_0^1 |u|^{p-2} u'^2 ds}{\left(\int_0^1 |u|^{\frac{p^2}{2}} ds\right)^{\frac{2}{p}}} : u \in C_0^1 [0, 1] \setminus \{0\} \right\}$$

$$= \left(T^{1+\frac{2}{p}} \sup \left\{ \left(\int_0^1 |u|^{\frac{p^2}{2}} ds\right)^{\frac{2}{p}} : u \in C_0^1 [0, 1], \int_0^1 |u|^{p-2} u'^2 ds = 1 \right\} \right)^{-1}.$$

After substituting $v = \left(\frac{2}{p}\right) |u|^{\frac{p}{2}}$, we obtain

$$\lambda_{p-1} = \left(T^{1+\frac{2}{p}} \left(\frac{p}{2} \right)^2 \sup \left\{ \left(\int_0^1 |v|^p \, ds \right)^{\frac{2}{p}} : v \in C_0^1 \left[0, 1 \right], \int_0^1 v'^2 ds = 1 \right\} \right)^{-1}.$$

Notice that

$$\begin{split} \sup \left\{ \int_{0}^{1} |v|^{p} \, ds : v \in C_{0}^{1} \left[0,1\right], \, \int_{0}^{1} v'^{2} ds &= 1 \right\} \\ &= \sup \left\{ \int_{0}^{1} |v|^{p} \, ds : v \in C_{0}^{1} \left[0,1\right], \, \int_{0}^{1} v'^{2} ds \leq 1 \right\}. \end{split}$$

Now the sup in the right hand side is the quantity denoted by b in [3] and is given by

$$b = \left(\frac{p(p+2)}{\pi}\right)^{\frac{p}{2}} \frac{2^{1-p}}{p+2} \left(\frac{\Gamma\left(\frac{1}{p} + \frac{1}{2}\right)}{\Gamma\left(\frac{1}{p}\right)}\right)^{p}.$$

As a result

$$\lambda_{p-1} = \left\{ T^{1+\frac{2}{p}} p^2 \left(\frac{p(p+2)}{\pi} \right)^{\frac{p}{2}} \frac{2^{-1-p}}{p+2} \left(\frac{\Gamma\left(\frac{1}{p} + \frac{1}{2}\right)}{\Gamma\left(\frac{1}{p}\right)} \right)^p \right\}^{-1}.$$

In this paper we are interested in finding upper and lower estimations for λ_{p-1} . An upper bound is obtained from the negation of the geometrical condition in Schechter's mountain pass theorem, in a situation where this theorem does not apply. To our knowledge, this is the first time that a bounded mountain pass theorem is used in order to obtain inequalities. Two localization results of non-zero solutions to a superlinear elliptic boundary value problem are also established in terms of λ_{p-1} .

- 1.1. Basic Results from the Theory of Linear Elliptic Equations. Here we recall some wellknown results from the theory of linear elliptic boundary value problems.
 - (P1) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with C^2 -boundary. The Laplacean $-\Delta$ is a selfadjoint operator on $L^{2}(\Omega)$ with domain $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ (see [11, Theorem 3.33], or [4]). It can be regarded as a continuous operator from $W^{2,q}\left(\Omega\right)\cap W^{1,q}_{0}\left(\Omega\right)$ to $L^{q}\left(\Omega\right)$ for each $q \in (1, \infty)$. Moreover, $-\Delta$ is invertible and $K := (-\Delta)^{-1}$ is a continuous operator from $L^{q}(\Omega)$ into $W^{2,q}(\Omega)$ (see [2, Theorem 9.32]). Also, K considered in $L^{2}\left(\Omega\right)$ is a positive self-adjoint operator.
 - (P2) (Sobolev embedding theorem) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with Lipschitz boundary, $k \in \mathbb{N}$, $1 \le q < \infty$. Then the following holds: (10) If kq < n, we have

$$(1.2) W^{k,q}(\Omega) \subset L^r(\Omega)$$

and the embedding is continuous for $r \in \left[1, \frac{nq}{n-kq}\right]$; the embedding is compact if $r\in\left[1,\frac{nq}{n-kq}\right).$ (2°) If kq=n, then (1.2) holds with compact embedding for $r\in[1,\infty)$.

- (3°) If $0 \le m < k \frac{n}{q} < m + 1$, we have

$$(1.3) W^{k,q}(\Omega) \subset C^{m,\alpha}(\overline{\Omega})$$

and the embedding is continuous for $0 \le \alpha \le k - m - \frac{n}{a}$; the embedding is compact if $\alpha < k - m - \frac{n}{q}$.

The above results are valid for $W_0^{k,q}(\Omega)$ -spaces on arbitrary bounded domains Ω (see [1], [15, p 213] or [2, pp. 168-169]).

- (P3) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with C^2 -boundary. Let $p_0 = \frac{2n}{n-2}$ if $n \geq 3$ and p_0 be any number of $(2, \infty)$ if n = 1 or n = 2. Let q_0 be the conjugate number of p_0 . Clearly, $p_0 \in (2, \infty)$ and $q_0 \in (1, 2)$. From (P1), (P2) we have that K has the following properties:
 - (a) $K:L^{q}\left(\Omega\right)\to L^{p}\left(\Omega\right)$ for every $q\in\left[q_{0},2\right],\frac{1}{p}+\frac{1}{q}=1;$
 - (b) K is continuous from $L^{q}(\Omega)$ to $L^{p}(\Omega)$ for every $q \in [q_{0}, 2], \frac{1}{p} + \frac{1}{q} = 1;$
 - (c) the operator K considered in $L^{2}(\Omega)$ is a positive self-adjoint operator.

Indeed, K is continuous from $L^{q}\left(\Omega\right)$ into $W^{2,q}\left(\Omega\right)$. On the other hand $W^{2,q}\left(\Omega\right)\subset L^{p}\left(\Omega\right)$ with continuous embedding. This is clear if $q \ge \frac{n}{2}$. For $q < \frac{n}{2}$ and $\frac{1}{p} + \frac{1}{q} = 1$, observe that

$$p \le \frac{2n}{n-2} \Longleftrightarrow p \le \frac{nq}{n-2q}.$$

According to [5, pp. 51-56], the properties (a)-(c) are sufficient for that the operator Kconsidered from $L^{q}\left(\Omega\right)$ to $L^{p}\left(\Omega\right)$, where $p\in\left(2,p_{0}\right)$ and $\frac{1}{p}+\frac{1}{q}=1$, admits a representation in the form

$$K = AA^*$$

where

$$A: L^{2}(\Omega) \to L^{p}(\Omega), Av = K^{\frac{1}{2}}v$$

and

$$A^*:L^q\left(\Omega\right)\to L^2\left(\Omega\right)$$

is the adjoint of A. Here $K^{\frac{1}{2}}$ is the square root of K considered as an operator acting from $L^{2}\left(\Omega\right)$ into $L^{2}\left(\Omega\right)$.

Throughout, by $|\cdot|_p$ we shall mean the usual norm on $L^p(\Omega)$ and by |A| we shall mean

$$|A| = \sup \{ |Av|_p : v \in L^2(\Omega), |v|_2 = 1 \}.$$

1.2. **Schechter's Mountain Pass Theorem.** Now we present the main tool in this paper, Schechter's mountain pass theorem [14]. Let X be a real Hilbert space with inner product (\cdot, \cdot) and norm $|\cdot|$, $B_R = \{v \in X : |v| \le R\}$ the closed ball of X of radius $R, E : X \to \mathbb{R}$ a C^1 -functional on $X, v_0, v_1 \in X$ and r > 0 with

$$|v_0| < r < |v_1| \le R$$
.

Let

$$\Phi = \left\{ \varphi \in C\left(\left[0, 1 \right]; B_R \right) : \varphi \left(0 \right) = v_0, \ \varphi \left(1 \right) = v_1 \right\},$$

$$c_R = \inf_{\varphi \in \Phi} \max_{t \in \left[0, 1 \right]} E\left(\varphi \left(t \right) \right)$$

and let

$$\mathcal{K}_{c_R} = \{ v \in B_R : E(v) = c_R, E'(v) = 0 \}$$

be the set of critical points of E in B_R at level c_R .

We say that E satisfies the Schechter-Palais-Smale condition on B_R ((S-P-S) $_R$ -condition) if

$$(v_k) \subset B_R, \ E(v_k)$$
 - bounded, $(E'(v_k), v_k) \to \nu \leq 0$,
$$E'(v_k) - \frac{(E'(v_k), v_k)}{|v_k|^2} v_k \to 0$$

 $\implies (v_k)$ has a convergent subsequence.

Theorem 1.2 (Schechter). Suppose

(i): E satisfies $(S-P-S)_R$ -condition;

(ii): there exists a constant C with -(E'(v), v) < C for |v| = R;

(iii): $v \neq \lambda (v - E'(v))$ for |v| = R and $\lambda \in (0, 1)$;

(iv): $\max\{E(v_0), E(v_1)\} \le \inf\{E(v) : |v| = r\}$.

Then $\mathcal{K}_{c_R} \setminus \{v_0, v_1\} \neq \emptyset$.

We note that by the mountain pass geometry of a functional E we mean the geometrical condition (iv) in Theorem 1.2.

2. MAIN RESULTS

We first obtain a lower bound for all non-zero solutions of the superlinear problem

(2.1)
$$\begin{cases} -\Delta u = |u|^{p-2} u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

Theorem 2.1. Let Ω be a bounded domain of \mathbb{R}^n with C^2 -boundary, let $p \in \left(2, \frac{2n}{n-2}\right)$ if $n \geq 3$ and $p \in (2, \infty)$ if n = 1 or n = 2, and let $\frac{1}{p} + \frac{1}{q} = 1$. If $u \in W^{2,q}(\Omega) \cap W_0^{1,q}(\Omega)$ is a non-zero solution of the problem (2.1), then the function $v = A^*\left(|u|^{p-2}u\right) = A^{-1}u$ satisfies the inequality

$$|v|_2 \ge |A|^{-1} \left[(p-1) \lambda_{p-1} \right]^{\frac{1}{p-2}}.$$

Proof. Let us first prove that any solution of (2.1) belongs to $C^1\left(\overline{\Omega}\right)$. For n=1 this follows from (1.3) (choose $\alpha=0,\,m=1$ and k=2). Suppose $n\geq 2$ and fix any number $q_0>n\left(p-1\right)$. If $q\geq \frac{n}{2}$, then (P2) guarantees $u\in L^{q_0}\left(\Omega\right)$. Assume $q<\frac{n}{2}$ and denote $q_1=q$. Since $u\in W^{2,q_1}\left(\Omega\right)$ and $q_1<\frac{n}{2}$, from (1.2) we have $u\in L^{q_1^*}\left(\Omega\right)$, where $q_1^*=\frac{nq_1}{n-2q_1}$. Then $|u|^{p-2}\,u\in L^{\frac{q_1^*}{p-1}}\left(\Omega\right)$. Let $q_2=\frac{q_1^*}{p-1}$. Since $u=K\left(|u|^{p-2}\,u\right)$ and $|u|^{p-2}\,u\in L^{q_2}\left(\Omega\right)$, from (P1), we have that $u\in W^{2,q_2}\left(\Omega\right)$. If $q_2\geq \frac{n}{2}$, as above $u\in L^{q_0}\left(\Omega\right)$; otherwise we continue this way. At the step j we find that

(2.3)
$$u \in W^{2,q_j}(\Omega), \ q_j = \frac{q_{j-1}^*}{p-1}, \ q_{j-1}^* = \frac{nq_{j-1}}{n-2q_{j-1}},$$

where $q_1,q_2,...,q_{j-1}<\frac{n}{2}$ $(j\geq 2)$. We claim that there exists a j with $q_j\geq \frac{n}{2}$. To prove this, suppose the contrary, that is $q_j<\frac{n}{2}$ for every $j\geq 1$. Using $p<\frac{2n}{n-2}$ we can show by induction that the sequence (q_j) is increasing. Consequently, $q_j\to \bar q\in \left[q,\frac{n}{2}\right]$ as $j\to\infty$. Next, from (2.3) we obtain

$$q_j(n-2q_{j-1})(p-1) = nq_{j-1}.$$

Letting $j \to \infty$ this yields $\bar{q} (n - 2\bar{q}) (p - 1) = n\bar{q}$ and so

$$\bar{q} = \frac{n(p-2)}{2(p-1)} \ge q = \frac{p}{p-1}.$$

This implies $p\geq \frac{2n}{n-2}$, a contradiction. Thus our claim is proved. Therefore, $u\in L^{q_0}\left(\Omega\right)$. Furthermore $|u|^{p-2}\,u\in L^{q_0/(p-1)}\left(\Omega\right)$ and since $u=K\left(|u|^{p-2}\,u\right)$, we have $u\in W^{2,q_0/(p-1)}\left(\Omega\right)$. Since $\frac{q_0}{p-1}>n$, by (1.3) one has $W^{2,\frac{q_0}{p-1}}\left(\Omega\right)\subset C^1\left(\overline{\Omega}\right)$ (choose $\alpha=0,\,k=2,\,m=1$). Hence $u\in C^1\left(\overline{\Omega}\right)$.

Let $\overline{u} = K\left(|u|^{p-1}\right)$. Clearly, like $u, \overline{u} \in C^1\left(\overline{\Omega}\right)$ and $\overline{u} = 0$ on $\partial\Omega$. By the weak maximum principle, we have

$$(2.4) |u| \le \overline{u} on \overline{\Omega}.$$

Hence

$$-\Delta \overline{u} = |u|^{p-1} \le |u|^{p-2} \, \overline{u}.$$

If we "multiply" by \overline{u}^{p-1} and "integrate" on Ω , we obtain

$$(2.5) (p-1) \int_{\Omega} \overline{u}^{p-2} |\nabla \overline{u}|^2 dx \le \int_{\Omega} |u|^{p-2} \overline{u}^p dx.$$

Now Hölder's inequality yields

$$(2.6) \qquad \int_{\Omega} |u|^{p-2} \overline{u}^p dx \leq \left(\int_{\Omega} \overline{u}^{\frac{p^2}{2}} dx \right)^{\frac{2}{p}} \left(\int_{\Omega} |u|^p dx \right)^{\frac{p-2}{p}}$$
$$= |A(v)|_p^{p-2} \left(\int_{\Omega} \overline{u}^{\frac{p^2}{2}} dx \right)^{\frac{2}{p}}.$$

Since $|Av|_p \leq |A| |v|_2$ and by (2.4) one has $\overline{u} \neq 0$, from (2.5) and (2.6) we deduce that

$$(p-1)\lambda_{p-1} \le |A|^{p-2}|v|_2^{p-2}$$

that is
$$(2.2)$$
.

Our next result is the following inequality.

Theorem 2.2. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with C^2 -boundary. Then for every p > 2 one has the inequality

(2.7)
$$\lambda_{p-1} \le \frac{1}{(p-1)|A|^2}.$$

Proof. We consider the functional $E: L^2(\Omega) \to \mathbb{R}$, given by

(2.8)
$$E(v) = \int_{\Omega} \left(\frac{1}{2} |v(x)|^2 - \frac{1}{p} |(Av)(x)|^p \right) dx.$$

Clearly, we have

$$E(v) = \frac{|v|_2^2}{2} - \frac{|Av|_p^p}{p}.$$

For every $v, w \in L^2(\Omega)$, it is easy to compute

$$(E'(v), w) = \lim_{\lambda \to 0} \lambda^{-1} (E(v + \lambda w) - E(v))$$

and find

$$(E'(v), w) = (v - A^*FAv, w),$$

where

$$F: L^{p}(\Omega) \to L^{q}(\Omega), \ F(u) = |u|^{p-2} u.$$

Hence

$$E'(v) = v - A^*FAv.$$

Notice if u is a solution of (2.1) then $v = A^* (|u|^{p-2} u) = A^{-1}u$ is a critical point of the functional (2.8). Conversely, if v is a critical point of the functional (2.8), then u = Av is a solution of (2.1).

Our plan is as follows: we show that for every $R < R_0$, where

(2.9)
$$R_0 = |A|^{-1} [(p-1) \lambda_{p-1}]^{\frac{1}{p-2}}$$

(of course here we assume $\lambda_{p-1} > 0$, (2.7) being trivial if $\lambda_{p-1} = 0$), $v_0 = 0$ is the unique critical point of E in $B_R = \{v \in L^2(\Omega) : |v|_2 \le R\}$ and that the hypotheses (i)-(iii) in Theorem 1.2 hold. Consequently, there exist no v_1 and r with $0 < r < |v_1|_2 \le R$ such that the geometrical condition (iv) is satisfied. As a result we obtain (2.7).

(a) The (S-P-S)_R-condition is satisfied for every R > 0. Indeed, let (v_k) be any sequence of functions in B_R with

(2.10)
$$(E'(v_k), v_k) \to \nu \le 0, \quad E'(v_k) - \beta(v_k) v_k \to 0,$$

where $\beta\left(v_{k}\right)=\frac{\left(E'\left(v_{k}\right),v_{k}\right)}{\left|v_{k}\right|_{2}^{2}}$. Passing if necessarily to a subsequence, we may suppose that $\left|v_{k}\right|_{2} \to d$ for some $d \in [0,R]$. If d=0 we are done. So assume d>0. Denote $w_{k}=E'\left(v_{k}\right)-\beta\left(v_{k}\right)v_{k}$. We have $w_{k}=\left(1-\beta\left(v_{k}\right)\right)v_{k}-A^{*}FAv_{k}$. Hence

(2.11)
$$v_k = (1 - \beta(v_k))^{-1} (w_k - A^* F A v_k)$$

and so

(2.12)
$$Av_{k} = (1 - \beta(v_{k}))^{-1} (Aw_{k} - KFAv_{k}).$$

Notice $K\left(L^q\left(\Omega\right)\right)\subset W^{2,q}\left(\Omega\right)$ and the embedding of $W^{2,q}\left(\Omega\right)$ into $L^p\left(\Omega\right)$ is compact. Indeed, from $p\in\left(2,\frac{2n}{n-2}\right)$ and $\frac{1}{p}+\frac{1}{q}=1$, we easily see that $p\in\left(2,\frac{nq}{n-2q}\right)$ when $q<\frac{n}{2}$.

Hence the compact embedding is guaranteed by (P2). As a result, we may suppose that (at least for a subsequence) $(KFAv_k)$ is convergent. In addition, by (2.10), we have

$$Aw_k \to 0, \quad (1 - \beta(v_k))^{-1} \to \left(1 - \frac{\nu}{d^2}\right)^{-1} \in (0, 1].$$

Then, from (2.12), we find that (at least for a subsequence) (Av_k) is convergent. Finally (2.11) guarantees that the corresponding subsequence of (v_k) is convergent.

(b) For each R > 0, there exists a constant C_R such that

$$-\left(E'\left(v\right),v\right)\leq C_{R} \text{ for all } v\in L^{2}\left(\Omega\right) \text{ with } \left|v\right|_{2}=R.$$

Indeed, if $|v|_2 = R$, then

$$-(E'(v), v) = -|v|_{2}^{2} + (A^{*}FAv, v)$$

$$= -|v|_{2}^{2} + (FAv, Av)$$

$$= -|v|_{2}^{2} + |Av|_{p}^{p}$$

$$\leq -|v|_{2}^{2} + |A|^{p} |v|_{2}^{p}$$

$$= -R^{2} + |A|^{p} R^{p}$$

$$= : C_{R}.$$

- (c) Zero is the unique critical point of E with $|v|_2 < R_0$ (here R_0 is given by (2.9)). Indeed, if $v \in L^2(\Omega)$ is a non-zero critical point of E, then $v = A^*FAv$ and so Av = KFAv. Hence u = Av is a non-zero solution of problem (2.1). Therefore, according to Theorem 2.1, $|v|_2 \ge R_0$.
- (d) The Leray-Schauder boundary condition (iii) holds for every $R < R_0$. To prove this suppose the contrary. Then there exists a $v \in L^2(\Omega)$ with $|v|_2 = R$ and a $\lambda \in (0,1)$ with $v = \lambda \left(v E'(v)\right)$, i.e. $v = \lambda A^* F A v$. It is easily seen that the function $\overline{v} = \lambda^{1/(p-2)} v$ satisfies $\overline{v} = A^* F A \overline{v}$, i.e. \overline{v} is a critical point of E with $|\overline{v}|_2 < R_0$. According to the conclusion of step (c), $\overline{v} = 0$ and so v = 0, a contradiction.
- (e) Proof of (2.7). Let

$$r = |A|^{-\frac{p}{p-2}}.$$

Obviously, (2.7) can be written as $r \geq R_0$. To prove it, we shall assume the contrary, i.e. $r < R_0$. Choose any $R \in (r, R_0)$, $\lambda \in (r, R]$ and $\varepsilon > 0$ sufficiently small so that

(2.13)
$$\phi\left(\lambda\right) + p^{-1}\lambda^{p}\varepsilon \le \phi\left(r\right),$$

where

$$\phi\left(\sigma\right) = \frac{\sigma^{2}}{2} - p^{-1}\sigma^{p} \left|A\right|^{p} \quad (\sigma \ge 0).$$

Notice r is the maximum point of ϕ , ϕ is increasing on [0, r] and decreasing on $[r, \infty)$. Now we choose a function $v_2 \in L^2(\Omega)$ with

$$|v_2|_2 = 1$$
 and $|Av_2|_p^p \ge |A|^p - \varepsilon$.

We claim that condition (iv) in Theorem 1.2 holds for $v_0 = 0$ and $v_1 = \lambda v_2$. Indeed

(2.14)
$$E(v_1) = E(\lambda v_2)$$

$$= \frac{\lambda^2}{2} - p^{-1} \lambda^p |Av_2|_p^p$$

$$\leq \frac{\lambda^2}{2} - p^{-1} \lambda^p |A|^p + p^{-1} \lambda^p \varepsilon$$

$$= \phi(\lambda) + p^{-1} \lambda^p \varepsilon.$$

Also, for every $v\in L^{2}\left(\Omega\right)$ with $\left|v\right|_{2}=r,$ we have

(2.15)
$$E(v) = \frac{r^2}{2} - p^{-1}r^p \left| A(r^{-1}v) \right|_p^p \ge \frac{r^2}{2} - p^{-1}r^p \left| A \right|^p = \phi(r).$$

Now (2.13), (2.14) and (2.15) guarantee (iv). From Theorem 1.2 it follows that E has a non-zero critical point in the closed ball B_R of $L^2\left(\Omega\right)$. This contradiction to the conclusion at step (c) proves (2.7).

We note that Theorems 2.1-2.2 were previously announced in [12].

The next inequality of Poincaré type shows that $\lambda_{p-1}>0$ for $p\in\left[2,\frac{2n}{n-2}\right]$ if $n\geq3$ and for $p\in\left[2,\infty\right)$ if n=2. Moreover, its proof connects λ_{p-1} to the embedding constant of $W_0^{1,2}\left(\Omega\right)$ into $L^p\left(\Omega\right)$.

Theorem 2.3. Let $\Omega \subset \mathbb{R}^n$ be bounded open and let $p \in \left[2, \frac{2n}{n-2}\right]$ if $n \geq 3$, $p \in [2, \infty)$ for n = 2. Then there exists a constant c > 0 depending only on p and Ω , such that

(2.16)
$$\left(\int_{\Omega} |u|^{\frac{p^2}{2}} dx \right)^{\frac{2}{p}} \le c \int_{\Omega} |u|^{p-2} |\nabla u|^2 dx$$

for all $u \in C_0^1(\overline{\Omega})$.

Proof. According to (P2), we have $W_0^{1,2}\left(\Omega\right)\subset L^p\left(\Omega\right)$ with continuous embedding. Hence there exists a constant $c_0>0$ with

$$|v|_p \le c_0 |v|_{W_0^{1,2}(\Omega)}$$
 for all $v \in W_0^{1,2}(\Omega)$.

Here

$$|v|_{W_0^{1,2}(\Omega)} = \left(\int_{\Omega} |\nabla v|^2 dx\right)^{\frac{1}{2}}.$$

Since $C_{0}^{\infty}\left(\Omega\right)$ is dense in $W_{0}^{1,2}\left(\Omega\right)$, we may suppose that

$$c_0 = \sup \left\{ |v|_p : v \in C_0^{\infty}(\Omega), |v|_{W_0^{1,2}(\Omega)} = 1 \right\}.$$

The space $C_0^{\infty}(\Omega)$ is also dense in $C_0^1(\overline{\Omega})$, and so

$$\lambda_{p-1} = \left(\sup \left\{ \left(\int_{\Omega} |u|^{p^2/2} \, dx \right)^{\frac{2}{p}} : u \in C_0^{\infty}(\Omega), \int_{\Omega} |u|^{p-2} |\nabla u|^2 \, dx = 1 \right\} \right)^{-1}.$$

After substituting $v=\left(\frac{2}{p}\right)|u|^{\frac{p}{2}}$, we obtain

$$\lambda_{p-1} = \left(\frac{2}{p}\right)^2 \left(\sup\left\{|v|_p^2 : v \in C_0^{\infty}(\Omega), |v|_{W_0^{1,2}(\Omega)} = 1\right\}\right)^{-1}$$
$$= \left(\frac{2}{p c_0}\right)^2.$$

Thus (2.16) holds with the smallest constant

$$c = \lambda_{p-1}^{-1} = \left(p \, \frac{c_0}{2}\right)^2.$$

Finally we establish a localization result for a non-zero solution to the problem (2.1).

J. Inequal. Pure and Appl. Math., 3(3) Art. 32, 2002

Theorem 2.4. Let Ω be a bounded domain of \mathbb{R}^n with C^2 -boundary and let $p \in \left(2, \frac{2n}{n-2}\right)$ if $n \geq 3$ and $p \in (2, \infty)$ if n = 1 or n = 2. Then the problem (2.1) has a solution u with

$$(2.17) |A|^{-1} [(p-1)\lambda_{p-1}]^{\frac{1}{p-2}} \le |A^{-1}u|_2 \le |A|^{-\frac{p}{p-2}}.$$

Proof. First notice the left inequality in (2.17) is true for all non-zero solutions of (2.1) according to Theorem 2.1.

Next we prove that for each $R > r = |A|^{-\frac{p}{p-2}}$, (2.1) has a solution u such that (2.18) $|A^{-1}u|_2 \le R.$

Indeed, two cases are possible:

- (1) The Leray-Schauder boundary condition (iii) in Theorem 1.2 does not hold. Then, there are $v \in L^2(\Omega)$ and $\lambda \in (0,1)$ such that $|v|_2 = R$ and $v = \lambda A^*FAv$. It is easy to see that the function $\overline{v} = \lambda^{1/(p-2)}v$ satisfies $\overline{v} = A^*FA\overline{v}$, i.e. \overline{v} is a critical point of E, and $0 < |\overline{v}|_2 < |v|_2 = R$. Hence $u := A\overline{v}$ is a solution of (2.1) and satisfies (2.18).
- (2) Condition (iii) in Theorem 1.2 holds. Then, as follows from the proof of Theorem 2.2, all the assumptions of Theorem 1.2 are satisfied. Now the existence of a solution u of (2.1) satisfying (2.18) is guaranteed by Theorem 1.2.

Finally, for each positive integer k we put $R = r + \frac{1}{k}$ to obtain a solution u_k with $|A^{-1}u_k|_2 \le r + \frac{1}{k}$, and the result will follow via a limit argument.

REFERENCES

- [1] R.A. ADAMS, Sobolev Spaces, Academic Press, London, 1978.
- [2] H. BREZIS, Analyse fonctionnelle, Masson, Paris, 1983.
- [3] L. GAJEK, M. KAŁUSZKA AND A. LENIC, The law of iterated logarithm for L_p -norms of empirical processes, *Stat. Prob. Letters*, **28** (1996), 107–110.
- [4] D. GILBARG AND N.S. TRUDINGER, *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- [5] M.A. KRASNOSELSKII, *Topological Methods in the Theory of Nonlinear Integral Equations*, Pergamon Press, Oxford-London-New York-Paris, 1964.
- [6] A.-M. MATEI, First eigenvalue for the p-Laplace operator, Nonlinear Anal., 39 (2000), 1051–1068.
- [7] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [8] D. O'REGAN AND R. PRECUP, *Theorems of Leray-Schauder Type and Applications*, Gordon and Breach Science Publishers, Amsterdam, 2001.
- [9] G. PÓLYA, Two more inequalities between physical and geometrical quantities, *J. Indian Math. Soc.*, **24** (1960), 413–419.
- [10] G. PÓLYA AND G. SZEGÖ, *Isoperimetric Inequalities in Mathematical Physics*, Princeton University Press, Princeton, 1951.
- [11] R. PRECUP, Partial Differential Equations (Romanian), Transilvania Press, Cluj, 1997.
- [12] R. PRECUP, An isoperimetric type inequality, In: *Proc. of the "Tiberiu Popoviciu" Itinerant Seminar of Functional Equations, Approximation and Convexity* (E. Popoviciu, ed.), Srima, Cluj, 2001, 199-204.
- [13] R. PRECUP, Inequalities and compactness, to appear in *Proc. 6th International Conference on Nonlinear Functional Analysis and Applications*, Korea, 2000, Nova Science Publishers, New York.

[14] M. SCHECHTER, *Linking Methods in Critical Point Theory*, Birkhäuser, Boston-Basel-Berlin, 1999.

[15] M. STRUWE, *Variational Methods*, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona, 1990.