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ABSTRACT. The goal of the present paper is to generalize two theorems of R.P. Boas Jr. per-
taining to L? (p > 1) integrability of Fourier series with nonnegative coefficients and weight
27. In our improvement the weight” is replaced by a more general one, and the gasel

is also yielded. We also generalize an equivalence statement of Boas utilizing power-monotone
sequences instead & }.
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1. INTRODUCTION

There are many classical and newer theorems pertaining to the integrability of formal sine
and cosine series

and

As a nice example, we recall Chen’sl([4]) theordifnd,, | 0, thenz=7p(z) € LP (p means
eitherforg),p>1, 1/p—1 <~ < 1/p,ifand only if Y nP P2\ < .

For notions and notations, please, consult the third section.

We do not recall more theorems because a nice short survey of recent results with references
can be found in a recent paper of S. Tikhonadv [7], and classical results can be found in the
outstanding monograph of R.P. Boas, Jr. [2].

The generalizations of the classical theorems have been obtained in two main directions:
to weaken the classical monotonicity condition on the coefficiaptgo replace the classical
power weightz” by a more general one in the integrals. Lately, some authors have used both
generalizations simultaneously.
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J. Németh[][B] studied the class BBV S sequences and weight functions more general than
the power one in thé (0, ) space.

S. Tikhonov [8] also proved two general theorems of this type, but i thgpace fop = 1;
he also used general weights.

Recently D.S. Yu, P. Zhou and S.P. Zhou [9] answered an old problem of Boas ([2], Question
6.12.) in connection with.? integrability considering weight”, but only under the condition
that the sequencg\,, } belongs to the clask/V BV S; their result is the best one among the an-
swers given earlier for special classes of sequences. The original problem concerns nonnegative
coefficients.

In the present paper we refer back to an old paper of Bdas [3], which was one of the first to
study theL?-integrability withnonnegative coefficients and weigfit

We also intend to prove theorems witbnnegative coefficientisut withmore general weights
thanx”.

It can be said that our theorems are the generalizations of Theorems 8 and 9 presented in
Boas’ paper mentioned above. Boas names these theorems as slight improvements of results of
Askey and Wainger [1]. Our theorems jointly generalize these by using more general weights
thanz?, and broaden those to the case 1, as well.

Comparing our results with those of Tikhonov, as our generalization concerns the coefficients,
we omit the conditio{\,,} € RBV S and prove the equivalence ¢f (2.2) ahd|2.3).

In proving our theorems we need to generalize an equivalence statement of Boas [3]. At this
step we utilize the quagi-power-monotone sequences.

2. NEw RESULTS
We shall prove the following theorems.

Theorem 2.1.Let1 < p < oo and X := {\,,} be a nonnegative null-sequence.
If the sequence := {~, } is quasij-power-monotone increasing with a certain< p — 1,
and

(2.1) v(x)g(x) € LP(0, ),
then

00 (o) p
(2.2) Z Yt (Z kl)\k> < 00.
n=1 k=n

If ~ is also quasi3-power-monotone decreasing with a certain> —1, then condition) is
equivalent to

(2.3) i%nQ (Zn: )\k> < 00.
n=1 k=1

If the sequence is quasij-power-monotone decreasing with a certgin- —1 — p, and

0o 00 p
(2.4) St (Z \Am) < o0,
n=1

k=n

then [2.1) holds.

Theorem 2.2. Letp and A be defined as in Theorgm P.1.
If the sequence is quasis-power-monotone increasing with a certain< p — 1, and

(2.5) V(@) f(x) € LP(0, m),
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then [2.2) holds.
If the sequence is quasig-power-monotone decreasing with a certain> —1, then [2.4)

implies [2.5).

3. NOTIONS AND NOTATIONS

We shall say that a sequenge= {~,, } of positive terms igjuasi/3-power-monotone increas-
ing (decreasinyif there exist a natural numbéf := N(3,~) and a constant’ := K(3,v) = 1
such that

(3.1) Kny 2 m (09, £ KmPy,,)

holds for anyn =2 m = N.
If ( holds with = 0, then we omit the attributes*power" and use the symbals(|).
We shall also use the notatiolhis< R at inequalities if there exists a positive constant
such thatl < KR.
A null-sequence := {¢,} (¢, — 0) of positive numbers satisfying the inequalities

Z |Ac,| £ K(c)em, (Ac, :=c¢,—cpy1), meN,

n=m

with a constantk'(c) > 0 is said to be asequence of rest bounded variatidn symbols,
ce€ RBVS.

A nonnegative sequenesds said to be anean value bounded variation sequernneymbols,
c € MV BV S, if there exist a constant’(c) > 0 and a\ = 2 such that

[An]

2n
Al S K(en™ Y o, neN,
k=n

k=[A"1n]

where[a] denotes the integral part of
In this paper a sequenee:= {v,} and a real number = 1 are associated to a function
v(x) (= v,(x)), being defined in the following way:

™

7(5) = ne s and Ki(3)y £ () £ Ka()

holds for allz € (25, Z].

4. LEMMAS

To prove our theorems we recall one known result and generalize one of Boas’ lemmas ([2,
Lemma 6.18])).

Lemma4.1([5]). Letp = 1, a,, = 0ands, > 0. Then

(4.1) > Ba (Z ak> <Py B (Z ﬁk) al,
n=1 k=1 n=1 k=n
and

(4.2) > b (Z ozk) <Py B (Z ﬁk) ab.
n=1 k=n n=1 k=1
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Lemma4.2.1fb, 20, p=1, s > 0, then

(4.3) Zl => B <Z bk> < 0
n=1 k=n

implies

(4.4) Yo, =D Ban? (Z kak) < 00
n=1 k=1

if n°3, | with a certaind > 1 — sp; and ifn°3, 1 with a certaind < 1, then ) implie3).
Thus, if both monotonicity conditions fp,,} hold, then the condition$ (4.3) and (4.4) are
equivalent.

Proof of Lemma 4]2First, suppose (4,.3) holds. Write

k=n
then

Zz = Z @mﬂp (Z k's(Tk — Tk+1)> .

By partial summation we obtain

o) n p
ZQ < s Zﬂ,ﬂf‘”’ (Z ks_lTk) =: 23.
n=1 k=1

Sincen®s, | with § > 1 — sp, Lemmd 4.1 with[(4]1) shows that
p
Z < Z s— lT 671 —sp (Z ﬁk sp)

< ZﬁnTr}Z = Zl’
n=1

this proves tha{ (4]3} (4.4).
Now suppose thaf (4.4) holds. First we show that

(4.5) Z b, < 0.
n=1
Denote
H, = kb
k=1
Then
N-1
(4.6) Zbk Z k5(Hy— Hy1) < s> k™ 'H,+ HyN"*.
k=n
If p > 1 then by Holders mequallty, we obtain
N-1 11 N—-1 % N—-1 ijl
47) Y KT TS (Z H,’zﬂkk—sp> ( (k™3 P ”) -
k=n k=n k=n
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Since,n’3, T with § < 1, thus

> (kB SO/ (1) k T < 0.

k=1 k=1

This, (4.4) and[(4]7) imply that

‘oﬁ

(4.8) > kT TH, < o0,

thus Hy N ~* tends to zero, herewith, by (4.6), (#.5) is verified, furthermore,

(4.9) f: b, < f: k™ Hy
k=n k=n

If p = 1, then without Holder’s inequality, the assumptiohs, T with a certaind < 1 and
(4.4) clearly imply [ﬂ'
Thus we can apply (4.9) and Lemr@4 1 W.4 2) for any 1, whence, by.?3, 1 with

4 < 1, we obtain that
00 %) p %) 1) p
> (o] « X0 (e
n=1 k=n n=1 k=n
00 n p
<3 (P (z m)
n=1 k=1

o0
< Z BnnPHP:
n=1

herewith [(4.4)= (4.3) is also proved.
The proof of Lemma 4]2 is complete. O

5. PROOF OF THE THEOREMS

Proof of Theorerfi 2]1First we prove that| (2]1) implieg(z) € L(0,7) and [2.2). Ifp > 1,
then, by Holder’s inequality, we get witt := p/(p — 1)

L

[ ([Noterera) ([ra)

Denoter,, := Z, n € N. Sincey,n’ 1 (8 <p—1)

/ pdx<<zvl/1”)/ dzx
0

Tn+1

:Zn f}/n 1/1p) ﬁ/(p1)<<1
n=1

that is,g(z) € L.
If p = 1, theny,n? 1 with some3 < 0, thus~,, T, whence

/Ig Idx<<z / )|y(x dx<<—/ l9(z)|y(z)dz < 1.
Tp41
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Integratingg(x), we obtain

[ B . B an
G(x) .—/0 g(t)dt—z " (1 — cosnx) —22 sin

n=1

Hence

Denote

Gn = / lg(z)|dx, neN.

Tn+1
Then

oo 2vtlp

ik‘l/\k =3 > kN
k=n

v=0 k=2n

< G2 n)
v=0

<) D> w
v=0 k=2v+1p
Qutly,

<<221/+1 Z Z Yk

1=2Yn k=2v+lp

co 2¥tln o)

(5.1) < Z%ng
Now we have
0o 0o p 00 [e’) [e%¢] p
Zl =Y Py, (Z ’f_lAk) <) 'y, (Z K1Y gi)
n=1 k=n n=1 k=n i=k

Applying Lemmg 4.1 with[(4]2) we obtain that

k=1
Sincey,n” T with 3 < p — 1, we have

(5.2) > kP <Y TR <y

k=1 k=1

(nP~2y,)t (Z kP 2%) < ™2,

and thus

whence we get

o] 00 p
¥, <3t (1130 )
n=1 i=n
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Using again Lemma 4.1 with (4.2) we have

[e%e] n p
Yo <Y o0y, (Z kQH%)
n=1 k=1

A similar calculation and consideration as[in (5.2) give that

n
Z kP2 <

k=1

and

n D

(n2=2,)17 (z kv) < 72,

k=1

thus
2p—2 p

(5.3) Zl<<§_;%n g
Since

(o] o0 T P
DR e A S ( / |g<x>rd:c)
n=1 n=1 Tn+1

o0 Tn Tn p—1
<3 / sopas ([ as)
Tn+1 Tn+41

< Z / @) [Pda

Tn+1

/ [v(x)g(x)[Pdx.

This and[(5.B) prove the implicatioh (2.3 (2.2).
Next we verify that[(2.4) implieg (211). Let€ (2,41, z,,]. Then, using the Abel transforma-

tion and the well-known estimation

< x_l,
we obtain
(5.4) |<kaAk+ Z A sin kx <kaAk+nZ|A)\k
k=n-+1
Denote

=38
k=n
It is easy to see that
nA, < nt Z kAL
k=1

and, by\, — 0,
A S A,
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Thus, by [(5.4), we have
lg(z)] < n! Z kA,
k=1

Hence
n p
JECICETED o) RNICVEITD Wt (ka) |
Tnt1 =
Applying Lemmd 4.]L with[(4]1), we obtain -
0o p
/ |v(z)g(x)|Pdx < Z (nA)P (yan 27P) 7P <Z 'ykk:_z_p) :
k=n
Sincey,,n® | with 3 > —1 — p, we have
i %kﬁk—%p—ﬁ < %znﬁ i k—2—p—ﬁ < %Ln—l—lv7

k=n k=n

o0 p
ey (Z ’ykk“> < Yo
k=n

Collecting these estimations we obtain

00 p
/ [v(z)g(z)|Pdr < Z’y nPTIAD = Z%np ? (Z \AAkI) ;

n=1 k=n

and thus

herewith the implicatior (2|4 (2.1) is also proved.
In order to prove the equivalence of the conditidns|(2.2) (2.3), we apply Lemjma 4.2 with

s=1, B,="n""? and b, =k 'b.

Then the assumptions’ 3, T with § < 1 andn’s, | with d > 1 — p, determine the following
conditions pertaining te,,;

(5.5) ny, 1 with S<p—1 and nﬁ% | with 3> —1.
The equivalence of (2.2) anfl (2.3) clearly holds if both monotonicity conditions required in

(5.9) hold.
This completes the proof of Theor¢m[2.1. O

Proof of Theorem 2|2As in the proof of Theorern 2.1, first we prove that {2.5) implies|(2.2)
andf(x) € L. The proof off(z) € L runs as that of(x) € L in Theorenj 2.]L..
Integratingf (x), we obtain

:/ ft)dt = Zﬁsinna:,
0 n=1 n

and integrating”'(x) we get

Fi(z) = / dt—QZ—suP@.

Thus we obtain

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 69, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

INTEGRABILITY OF FUNCTIONS 9

Denote N
" s
£ /xn+l\f(x)|dx, neN, (xnzﬁ).
Then
Fl(x%)_/ " F(t)dt
<3 [ ([ o)
k=2n Y Tk+1
<>t z/ =Y Zfz,
k= 2n Lot k= 2n
thus

T <n Z 2 Zfé

k=n k=2n
Using the estimation obtained above we have

oo 2¥tlp

ik—uk => > E '\
k=n v=0 k=2n
<Y 2n Z k- Zfz
v=0 k=2v+1lnp
oo 2it2Zp
<<22”nz >k Z fe
i=v k=2it1lp (=2it1n
< Z2Vnz<2:;>—1 Z fe
=0 i=v (=2i+1n
<>ent Y g (ZQ” )
i=0 (=2i+1p
<> > fe
i=0 (=2i+1p

Hereafter, as irf (5]1), we get that

Zk 1Ak<<2 Zfz,

and following the method used in the proof of Theo@ 2.1 viiitm place ofg,, the implica-

tion (2.5)= (2.2) can be proved.
The proof of the statemerijt (2.4} (2.5) is easier. Namely

|<Z)\k+ Z A cos kx <<Z>\k+ Z|A)‘k‘

k=n-+1
Using the notations of Theor.l and assurmr@(an, T,], we obtaln

[ @i < g (Z Ak> + ™ (”ZIAM)
k=1 k=n

Tn+1
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and thus, by, — 0,

(5.6) /0 ' () f(x)|Pde <> yun (Z > \mmy> +) qan” (Z mk) .
n=1 n=1 k=n

k=1 m=k

To estimate the first sum, we again use Lemima 4.1 Wit (4.1), thus,®y | with some
ﬁ > _17

0o n p 0o 0 p
S (z Ak) <3 Ay (zw)
n=1 k=1 n=1 k=n
00 00 00 p
< nynnp’zAﬁ = Z’ynnp’Q (Z ]A)\k]> .
n=1 n=1

k=n
This and[(5.p) imply the second assertion of Thedrem 2.2, that i$,42 @.5).
We have completed our proof. O
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