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ABSTRACT. In this paper we establish new inequalities similar to theČebyšev integral inequal-
ity involving functions and their derivatives via certain Trapezoidal like rules.
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1. I NTRODUCTION

In 1882, P.L.Čebyšev [2] proved the following classical integral inequality (see also [10, p.
207]):

(1.1) |T (f, g)| ≤ 1

12
(b− a)2 ‖f ′‖∞ ‖g

′‖∞ ,

wheref, g : [a, b] → R are absolutely continuous functions, whose first derivativesf ′, g′ are
bounded and

(1.2) T (f, g) =
1

b− a

∫ b

a

f (x) g (x) dx−
(

1

b− a

∫ b

a

f (x) dx

) (
1

b− a

∫ b

a

g (x) dx

)
,

provided the integrals in (1.2) exist.
The inequality (1.1) has received considerable attention and a number of papers have ap-

peared in the literature which deal with various generalizations, extensions and variants, see
[5] – [10]. The aim of this paper is to establish new inequalities similar to (1.1) involving first
and second order derivatives of the functionsf, g. The analysis used in the proofs is based on
certain trapezoidal like rules proved in [1, 3, 4].
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2 B.G. PACHPATTE

2. STATEMENT OF RESULTS

In what followsR and ′ denote respectively the set of real numbers and the derivative of
a function. Let[a, b] ⊂ R; a < b. We use the following notations to simplify the detail of
presentation. For suitable functionsf, g, m : [a, b] → R, and the constantsα, β ∈ R, we set:

L (f ; a, b) =
1

2 (b− a)2

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s)) (t− s) dtds,

M (f ; a, b) =
1

2 (b− a)2

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s)) (m (t)−m (s)) dtds,

N (f ′, f ′′; a, b) =
1

2 (b− a)

∫ b

a

(t− a) (b− t) {[f ′; a, b]− f ′′ (t)} dt,

P (α, β, f, g) = αβ − 1

b− a

{
α

∫ b

a

g (t) dt + β

∫ b

a

f (t) dt

}
+

(
1

b− a

∫ b

a

f (t) dt

) (
1

b− a

∫ b

a

g (t) dt

)
,

[f ; a, b] =
f (b)− f (a)

b− a
,

F =
f (a) + f (b)

2
, G =

g (a) + g (b)

2
, A = f

(
a + b

2

)
, B = g

(
a + b

2

)
,

F̄ =
f (a) + f (b)

2
− (b− a)2

12
[f ′; a, b] , Ḡ =

g (a) + g (b)

2
− (b− a)2

12
[g′; a, b] ,

and define

‖f‖∞ = sup
t∈[a,b]

|f (t)| < ∞, ‖f‖p =

(∫ b

a

|f ′ (t)|p dt

) 1
p

< ∞,

for 1 ≤ p < ∞.

Theorem 2.1. Let f, g : [a, b] → R be absolutely continuous functions on[a, b] with f ′, g′ ∈
L2 [a, b] , then,

(2.1) |P (F, G, f, g)| ≤ (b− a)2

12

[
1

b− a
‖f ′‖2

2 − ([f ; a, b])2

] 1
2

×
[

1

b− a
‖g′‖2

2 − ([g; a, b])2

] 1
2

,

(2.2) |P (A, B, f, g)| ≤ (b− a)2

12

[
1

b− a
‖f ′‖2

2 − ([f ; a, b])2

] 1
2

×
[

1

b− a
‖g′‖2

2 − ([g; a, b])2

] 1
2

.

Theorem 2.2. Let f, g : [a, b] → R be differentiable functions so thatf ′, g′ are absolutely
continuous on[a, b] , then,

(2.3)
∣∣P (

F̄ , Ḡ, f, g
)∣∣ ≤ (b− a)4

144
‖f ′′ − [f ′; a, b]‖∞ ‖g

′′ − [g′; a, b]‖∞ .
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ČEBYŠEV TYPE INEQUALITIES 3

3. PROOFS OF THEOREMS 2.1 AND 2.2

From the hypotheses of Theorem 2.1, we have the following identities (see [3, p. 654]):

(3.1) F − 1

b− a

∫ b

a

f (t) dt = L (f ; a, b) ,

(3.2) G− 1

b− a

∫ b

a

g (t) dt = L (g; a, b) .

Multiplying the left sides and right sides of (3.1) and (3.2) we get

(3.3) P (F, G, f, g) = L (f ; a, b) L (g; a, b) .

From (3.3) we have

(3.4) |P (F, G, f, g)| = |L (f ; a, b)| |L (g; a, b)| .

Using the Cauchy-Schwarz inequality for double integrals,

|L (f ; a, b)| ≤ 1

2 (b− a)2

∫ b

a

∫ b

a

|(f ′ (t)− f ′ (s)) (t− s)| dtds(3.5)

≤
[

1

2 (b− a)2

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s))
2

] 1
2

×
[

1

2 (b− a)2

∫ b

a

∫ b

a

(t− s)2

] 1
2

.

By simple computation,

(3.6)
1

2 (b− a)2

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s))
2
dtds

=
1

b− a

∫ b

a

(f ′ (t))
2
dt−

(
1

b− a

∫ b

a

f ′ (t) dt

)2

,

and

(3.7)
1

2 (b− a)2

∫ b

a

∫ b

a

(t− s)2 dtds =
(b− a)2

12
.

Using (3.6), (3.7) in (3.5),

(3.8) |L (f ; a, b)| ≤ b− a

2
√

3

[
1

b− a
‖f ′‖2

2 − ([f ; a, b])2

] 1
2

.

Similarly,

(3.9) |L (g; a, b)| ≤ b− a

2
√

3

[
1

b− a
‖g′‖2

2 − ([g; a, b])2

] 1
2

.

Using (3.8) and (3.9) in (3.4), we obtain (2.1).
From the hypotheses of Theorem 2.1, we have (see [4, p. 238]):

(3.10) A− 1

b− a

∫ b

a

f (t) dt = M (f ; a, b) ,
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(3.11) B − 1

b− a

∫ b

a

g (t) dt = M (g; a, b) ,

wherem(t) involved in the notationM (·; a, b) is given by

m (t) =

{
t− a if t ∈

[
a, a+b

2

]
t− b if t ∈

(
a+b
2

, b
]
.

Multiplying the left sides and right sides of (3.10) and (3.11), we get

(3.12) P (A, B, f, g) = M (f ; a, b) M (g; a, b) .

From (3.12),

(3.13) |P (A, B, f, g)| = |M (f ; a, b)| |M (g; a, b)| .

Again using the Cauchy-Schwarz inequality for double integrals, we have,

|M (f ; a, b)| ≤ 1

2 (b− a)2

∫ b

a

∫ b

a

|(f ′ (t)− f ′ (s)) (m (t)−m (s))| dtds

≤
[

1

2 (b− a)2

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s))
2
dtds

] 1
2

×
[

1

2 (b− a)2

∫ b

a

∫ b

a

(m (t)−m (s))2 dtds

] 1
2

.(3.14)

By simple computation,

(3.15)
1

2 (b− a)2

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s))
2
dtds

=
1

b− a

∫ b

a

(f ′ (t))
2 −

(
1

b− a

∫ b

a

f ′ (t) dt

)2

,

and

(3.16)
1

2 (b− a)2

∫ b

a

∫ b

a

(m (t)−m (s))2 dtds

=
1

b− a

∫ b

a

(m (t))2 −
(

1

b− a

∫ b

a

m (t) dt

)2

.

It is easy to observe that ∫ b

a

m (t) dt = 0,

and
1

b− a

∫ b

a

m2 (t) dt =
(b− a)2

12
.

Using (3.15), (3.16) and the above observations in (3.14) we get

(3.17) |M (f ; a, b)| ≤ b− a

2
√

3

[
1

b− a
‖f ′‖2

2 − ([f ; a, b])2

] 1
2

.
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Similarly ,

(3.18) |M (g; a, b)| ≤ b− a

2
√

3

[
1

b− a
‖g′‖2

2 − ([g; a, b])2

] 1
2

.

Using (3.17) and (3.18) in (3.13) we get (2.2).
From the hypotheses of Theorem 2.2, we have the following identities (see [1, p. 197]):

(3.19)
1

b− a

∫ b

a

f (t) dt− F̄ = N (f ′, f ′′; a, b) ,

(3.20)
1

b− a

∫ b

a

g (t) dt− Ḡ = N (g′, g′′; a, b) .

Multiplying the left sides and right sides of (3.19) and (3.20), we get

(3.21) P
(
F̄ , Ḡ, f, g

)
= N (f ′, f ′′; a, b) N (g′, g′′; a, b) .

From (3.21),

(3.22)
∣∣P (

F̄ , Ḡ, f, g
)∣∣ = |N (f ′, f ′′; a, b)| |N (g′, g′′; a, b)| .

By simple computation, we have,

|N (f ′, f ′′; a, b)| ≤ 1

2 (b− a)

∫ b

a

(t− a) (b− t) |[f ′; a, b]− f ′′ (t)|dt

≤ 1

2 (b− a)
‖f ′′ (t)− [f ′; a, b]‖∞

∫ b

a

(t− a) (b− t)dt

=
(b− a)2

12
‖f ′′ (t)− [f ′; a, b]‖∞ .(3.23)

Similarly,

(3.24) |N (g′, g′′; a, b)| ≤ (b− a)2

12
‖g′′ (t)− [g′; a, b]‖∞ .

Using (3.23) and (3.24) in (3.22), we get the required inequality in (2.3).

4. APPLICATIONS

In this section we present applications of the inequalities established in Theorem 2.1, to
obtain results which are of independent interest.

Let X be a continuous random variable having the probability density function (p.d.f.)h :

[a, b] ⊂ R → R+ andE (x) =
∫ b

a
th (t) dt its expectation and the cumulative density function

H : [a, b] → [0, 1], i.e. H (x) =
∫ x

a
h (t) dt, x ∈ [a, b] . Then H(a) = 0, H(b) = 1 and

H(a)+H(b)
2

= 1
2
,
∫ b

a
H (x) dx = b− E (X).

Let f = g = h and choose in (2.1)H instead off andg and 1
2

instead ofF andG . By
simple computation, we have,

P

(
1

2
,
1

2
, H,H

)
=

1

4
− 1

b− a
(b− E (X))

[
1− b− E (X)

b− a

]
,

and the right hand side in (2.1) is equal to

1

12

[
(b− a) ‖h‖2

2 − 1
]
,
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and hence the following inequality holds:∣∣∣∣14 − 1

b− a
(b− E (X))

[
1− b− E (X)

b− a

]∣∣∣∣ ≤ 1

12

[
(b− a) ‖h‖2

2 − 1
]
.

Let a, b > 0 and consider the functionf : (0,∞) → R defined byf (x) = 1
x
, thenf

(
a+b
2

)
=

g
(

a+b
2

)
= 2

a+b
.

Let g = f and choose in (2.2)1
x

instead off andg and 2
a+b

instead ofA andB. By simple
computation, we have,

P

(
2

a + b
,

2

a + b
,
1

x
,
1

x

)
=

(
2

a + b
− log b− log a

b− a

)2

,

1

b− a

∥∥∥∥(
1

x

)′∥∥∥∥2

2

−
([

1

x
; a, b

])2

=
(b− a)2

3a3b3
.

Using the above facts in (2.2), the following inequality holds:(
2

a + b
− log b− log a

b− a

)2

≤ (b− a)4

36a3b3
.
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