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1. Introduction

Let f be a continuous and2π-periodic function and let

(1.1) f (x) ∼ a0

2
+

∞∑
n=1

(an cos nx + bn sin nx)

be its Fourier series. Denote bySn (x) = Sn (f, x) then-th partial sum of (1.1) and
by ω (f, δ) the modulus of continuity off ∈ C2π.

The usual supremum norm will be denoted by‖·‖C .
Let ω (t) be a nondecreasing continuous function on the interval[0, 2π] having

the properties
ω (0) = 0, ω (δ1 + δ2) ≤ ω (δ1) + ω (δ2) .

Such a function will be called a modulus of continuity.
Denote byHω the class of functions

Hω := {f ∈ C2π; |f (x + h)− f (x)| ≤ Cω (|h|)} ,

whereC is a positive constant. Forf ∈ Hω, we define the norm‖·‖ω = ‖·‖Hω by
the formula

‖f‖ω := ‖f‖C + ‖f‖C,ω ,

where

‖f‖C,ω = sup
h 6=0

‖f (·+ h)− f (·)‖C

ω (|h|)
,

and‖f‖C,0 = 0. If ω (t) = C1 |t|α (0 < α ≤ 1), whereC1 is a positive constant,
then

Hα = {f ∈ C2π; |f (x + h)− f (x)| ≤ C1 |h|α , 0 < α ≤ 1}
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is a Banach space and the metric induced by the norm‖·‖α on Hα is said to be a
Hölder metric.

Let A := (ank) (k, n = 0, 1, . . . ) be a lower triangular infinite matrix of real
numbers satisfying the following condition:

(1.2) ank ≥ 0 (k, n = 0, 1, . . . ) , ank = 0, k > n and
n∑

k=0

ank = 1.

Let theA−transformation of(Sn (f ; x)) be given by

(1.3) tn (f) := tn (f ; x) :=
n∑

k=0

ankSk (f ; x) (n = 0, 1, . . . )

and the strongAr−transformation of(Sn (f ; x)) for r > 0 by

Tn (f, r) := Tn (f, r; x) :=

{
n∑

k=0

ank |Sk (f ; x)− f (x)|r
} 1

r

(n = 0, 1, . . . ) .

Now we define two classes of sequences ([3]).
A sequencec := (cn) of nonnegative numbers tending to zero is called the Rest

Bounded Variation Sequence, or brieflyc ∈ RBV S, if it has the property

(1.4)
∞∑

k=m

|cn − cn+1| ≤ K (c) cm

for all natural numbersm, whereK (c) is a constant depending only onc.
A sequencec := (cn) of nonnegative numbers will be called a Head Bounded

Variation Sequence, or brieflyc ∈ HBV S, if it has the property

(1.5)
m−1∑
k=0

|cn − cn+1| ≤ K (c) cm
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for all natural numbersm, or only for all m ≤ N if the sequencec has only finite
nonzero terms and the last nonzero term iscN .

Therefore we assume that the sequence(K (αn))∞n=0 is bounded, that is, that there
exists a constantK such that

0 ≤ K (αn) ≤ K

holds for alln, whereK (αn) denote the sequence of constants appearing in the
inequalities (1.4) or (1.5) for the sequenceαn := (ank)

∞
k=0. Now we can give the

conditions to be used later on. We assume that for alln and0 ≤ m ≤ n,

(1.6)
∞∑

k=m

|ank − ank+1| ≤ Kanm

and

(1.7)
m−1∑
k=0

|ank − ank+1| ≤ Kanm

hold if αn := (ank)
∞
k=0 belongs toRBV S or HBV S, respectively.

Let ω (t) andω∗ (t) be two given moduli of continuity satisfying the following
condition (for0 ≤ p < q ≤ 1):

(1.8)
(ω (t))

p
q

ω∗ (t)
= O (1) (t → 0+) .

In [4] R. Mohapatra and P. Chandra obtained some results on the degree of ap-
proximation for the means (1.3) in the Hölder metric. Recently, T. Singh in [5]
established the following two theorems generalizing some results of P. Chandra [1]
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with a mediate functionH such that:

(1.9)
∫ π

u

ω (f ; t)

t2
dt = O (H (u)) (u → 0+) , H (t) ≥ 0

and

(1.10)
∫ t

0

H (u) du = O (tH (t)) (t → O+) .

Theorem 1.1. Let A = (ank) satisfy the condition (1.2) andank ≤ ank+1 for k =
0, 1, . . . , n− 1, andn = 0, 1, . . . . Then forf ∈ Hω, 0 ≤ p < q ≤ 1,

(1.11) ‖tn (f)− f‖ω∗ = O
[
{ω (|x− y|)}

p
q {ω∗ (|x− y|)}−1

×
{(

H
(π

n

))1− p
q
ann

(
n

p
q + a

− p
q

nn

)}]
+ O

(
annH

(π

n

))
,

if ω (f ; t) satisfies (1.9) and (1.10), and

(1.12) ‖tn (f)− f‖ω∗ = O
[
{ω (|x− y|)}

p
q {ω∗ (|x− y|)}−1

]
×

{(
ω

(π

n

))1− p
q

+ annn
p
q

(
H

(π

n

))1− p
q

}
+ O

{
ω

(π

n

)
+ annH

(π

n

)}
,

if ω (f ; t) satisfies (1.9), whereω∗ (t) is the given modulus of continuity.

Theorem 1.2. Let A = (ank) satisfy the condition (1.2) andank ≤ ank+1 for k =
0, 1, . . . , n− 1, andn = 0, 1, . . . . Also, letω (f ; t) satisfy (1.9) and (1.10). Then for
f ∈ Hω, 0 ≤ p < q ≤ 1,

(1.13) ‖tn (f)− f‖ω∗ = O
[
{ω (|x− y|)}

p
q {ω∗ (|x− y|)}−1

×
{

(H (an0))
1− p

q an0

(
n

p
q + a

− p
q

n0

)}]
+ O (an0H (an0)) ,
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whereω∗ (t) is the given modulus of continuity.

The next generalization of another result of P. Chandra [2] was obtained by L.
Leindler in [3]. Namely, he proved the following two theorems

Theorem 1.3. Let (1.2) and (1.9) hold. Then forf ∈ C2π

(1.14) ‖tn (f)− f‖C = O
(
ω

(π

n

))
+ O

(
annH

(π

n

))
.

If, in additionω (f ; t) satisfies the condition (1.10), then

(1.15) ‖tn (f)− f‖C = O (annH (ann)) .

Theorem 1.4.Let (1.2), (1.9) and (1.10) hold. Then forf ∈ C2π

(1.16) ‖tn (f)− f‖C = O (an0H (an0)) .

In the present paper we will generalize (and improve) the mentioned results of T.
Singh [5] to strong summability with a mediate functionH defined by the following
conditions:

(1.17)
∫ π

u

ωr (f ; t)

t2
dt = O (H (r; u)) (u → 0+) , H (t) ≥ 0 andr > 0,

and

(1.18)
∫ t

0

H (u) du = O (tH (r; t)) (t → O+) .

We also apply a generalization of Leindler’s type [3].
Throughout the paper we shall use the following notation:

φx (t) = f (x + t) + f (x− t)− 2f (x) .

By K1, K2, . . . we shall designate either an absolute constant or a constant depending
on the indicated parameters, not necessarily the same at each occurrence.
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2. Main Results

Our main results are the following.

Theorem 2.1. Let (1.2), (1.7) and (1.8) hold. Supposeω (f ; t) satisfies (1.17) for
r ≥ 1. Then forf ∈ Hω,

(2.1) ‖Tn (f, r)‖ω∗ = O
(
{1 + ln (2 (n + 1) ann)}

p
q

×
{

((n + 1) ann)r−1 annH
(
r;

π

n

)} 1
r (1− p

q )
)

.

If, in additionω (f ; t) satisfies the condition (1.18), then

(2.2) ‖Tn (f, r)‖ω∗ = O
(
{1 + ln (2 (n + 1) ann)}

p
q

×
{
(ln (2 (n + 1) ann))r−1 annH (r; ann)

} 1
r (1− p

q )
)

.

Theorem 2.2.Under the assumptions of above theorem, if there exists a real number
s > 1 such that the inequality

(2.3)


2k−1∑

i=2k−1

(ani)
s


1
s

≤ K1

(
2k−1

) 1
s
−1

2k−1∑
i=2k−1

ani

for any k = 1, 2, . . . ,m, where2m ≤ n + 1 < 2m+1 holds, then the following
estimates

(2.4) ‖Tn (f, r)‖ω∗ = O

({
annH

(
r;

π

n

)} 1
r (1− p

q )
)
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and

(2.5) ‖Tn (f, r)‖ω∗ = O
(
{annH (r; ann)}

1
r (1− p

q )
)

are true.

Theorem 2.3.Let (1.2), (1.6), (1.8) and (1.17) for r ≥ 1 hold. Then forf ∈ Hω

(2.6) ‖Tn (f, r)‖ω∗ = O

({
an0H

(
r;

π

n

)} 1
r (1− p

q )
)

.

If, in addition,ω (f ; t) satisfies (1.18), then

(2.7) ‖Tn (f, r)‖ω∗ = O
(
{an0H (r; an0)}

1
r (1− p

q )
)

.

Remark1. We can observe, that for the caser = 1 under the condition (1.8) the
first part of Theorem1.1 (1.11) and Theorem1.2are the corollaries of the first part
of Theorem2.1 (2.1) and the second part of Theorem2.3 (2.7), respectively. We
can also note that the mentioned estimates are better in order than the analogical
estimates from the results of T. Singh, sinceln (2 (n + 1) ann) in Theorem2.1 is
better than(n + 1) ann in Theorem1.1. Consequently, ifnann is not bounded our
estimate (2.7) in Theorem2.3 is better than (1.13) from Theorem1.2.

Remark2. If in the assumptions of Theorem2.1 or 2.3 we takeω (|t|) = O (|t|q),
ω∗ (|t|) = O (|t|p) with p = 0, then from (2.1), (2.2) and (2.7) we have the same
estimates such as (1.14), (1.15) and (1.16), respectively, but for the strong approxi-
mation (withr = 1).
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3. Corollaries

In this section we present some special cases of our results. From Theorems2.1, 2.2

and2.3, puttingω∗ (|t|) = O
(
|t|β

)
, ω (|t|) = O (|t|α),

H (r; t) =


trα−1 if αr < 1,

ln π
t

if αr = 1,

K1 if αr > 1

wherer > 0 and0 < α ≤ 1, and replacingp by β and q by α, we can derive
Corollaries3.1, 3.2and3.3, respectively.

Corollary 3.1. Under the conditions (1.2) and (1.7) we have forf ∈ Hα, 0 ≤ β <
α ≤ 1 andr ≥ 1,

‖Tn (f, r)‖β =


O

(
{ln (2 (n + 1) ann)}1+ 1

r (1− β
α) {ann}α−β

)
if αr < 1,

O

(
{ln (2 (n + 1) ann)}1+α−β

{
ln

(
π

ann

)
ann

}α−β
)

if αr = 1,

O
(
{ln (2 (n + 1) ann)}1+ 1

r (1− β
α) {ann}

α−β
αr

)
if αr > 1.

Corollary 3.2. Under the assumptions of Corollary3.1and (2.3) we have

‖Tn (f, r)‖β =


O

(
{ann}α−β

)
if αr < 1,

O

({
ln

(
π

ann

)
ann

}α−β
)

if αr = 1,

O
(
{ann}

α−β
αr

)
if αr > 1.
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Corollary 3.3. Under the conditions (1.2) and (1.6) we have, forf ∈ Hα, 0 ≤ β <
α ≤ 1 andr ≥ 1,

‖Tn (f, r)‖β =


O

(
{an0}α−β

)
if αr < 1,

O

({
ln

(
π

an0

)
an0

}α−β
)

if αr = 1,

O
(
{an0}

α−β
αr

)
if αr > 1.
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4. Lemmas

To prove our theorems we need the following lemmas.

Lemma 4.1. If (1.17) and (1.18) hold withr > 0 then

(4.1)
∫ s

0

ωr (f ; t)

t
dt = O (sH (r; s)) (s → 0+) .

Proof. Integrating by parts, by (1.17) and (1.18) we get∫ s

0

ωr (f ; t)

t
dt =

[
−t

∫ π

t

ωr (f ; u)

u2
du

]s

0

+

∫ s

0

dt

∫ π

t

ωr (f ; u)

u2
du

= O (sH (r; s)) + O (1)

∫ s

0

H (r; t) dt

= O (sH (r; s)) .

This completes the proof.

Lemma 4.2 ([7]). If (1.2), (1.7) hold, then forf ∈ C2π andr > 0,

(4.2) ‖Tn (f, r)‖C

≤ O




[n+1
4 ]∑

k=0

an,4kE
r
k (f) +

(
E[n+1

4 ] (f) ln (2 (n + 1) ann)
)r


1
r

 .
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If, in addition, (2.3) holds, then

(4.3) ‖Tn (f, r)‖C ≤ O




[n+1
2 ]∑

k=0

an,2kE
r
k (f)


1
r

 .

Lemma 4.3 ([7]). If (1.2), (1.6) hold, then forf ∈ C2π andr > 0,

(4.4) ‖Tn (f, r)‖C ≤ O

{
n∑

k=0

ankE
r
k (f)

} 1
r

 .

Lemma 4.4. If (1.2), (1.7) hold andω (f ; t) satisfies (1.17) with r > 0 then

(4.5)

[n+1
4 ]∑

k=0

an,4kω
r

(
f ;

π

k + 1

)
= O

(
annH

(
r;

π

n

))
.

If, in addition,ω (f ; t) satisfies (1.18) then

(4.6)

[n+1
4 ]∑

k=0

an,4kω
r

(
f ;

π

k + 1

)
= O (annH (r; ann)) .

Proof. First we prove (4.5). If (1.7) holds then

anµ − anm ≤ |anµ − anm| ≤
m−1∑
k=µ

|ank − ank+1| ≤ Kanm

for anym ≥ µ ≥ 0, whence we have

(4.7) anµ ≤ (K + 1) anm.
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From this and using (1.17) we get

[n+1
4 ]∑

k=0

an,4kω
r

(
f ;

π

k + 1

)
≤ (K + 1) ann

n∑
k=0

ωr

(
f ;

π

k + 1

)
≤ K1ann

∫ n+1

1

ωr
(
f ;

π

t

)
dt

= πK1ann

∫ π

π
n+1

ωr (f ; u)

u2
du

= O
(
annH

(
r;

π

n

))
.

Now we prove (4.6). Since

(K + 1) (n + 1) ann ≥
n∑

k=0

ank = 1,

we can see that

[n+1
4 ]∑

k=0

an,4kω
r

(
f ;

π

k + 1

)
≤

[ 1
4(K+1)ann

]−1∑
k=0

an,4kω
r

(
f ;

π

k + 1

)
(4.8)

+
n∑

k=[ 1
4(K+1)ann

]−1

an,4kω
r

(
f ;

π

k + 1

)
= Σ1 + Σ2.

Using again (4.7), (1.2) and the monotonicity of the modulus of continuity, we can
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estimate the quantitiesΣ1 andΣ2 as follows

Σ1 ≤ (K + 1) ann

[ 1
4(K+1)ann

]−1∑
k=0

ωr

(
f ;

π

k + 1

)
(4.9)

≤ K2ann

∫ 1
4(K+1)ann

1

ωr
(
f ;

π

t

)
dt

= πK2ann

∫ π

4π(K+1)ann

ωr (f ; u)

u2
du

≤ πK2ann

∫ π

ann

ωr (f ; u)

u2
du

and

Σ2 ≤ K3ω
r (f ; 4π (K + 1) ann)

n∑
k=[ 1

4(K+1)ann
]−1

an,4k(4.10)

≤ K3 (8π (K + 1))r ωr (f ; ann)

≤ K3 (32π (K + 1))r ωr
(
f ;

ann

2

)
≤ 2K3 (32π (K + 1))r

∫ ann

ann
2

ωr (f ; t)

t
dt

≤ K4

∫ ann

0

ωr (f ; t)

t
dt.

If (1.17) and (1.18) hold then from (4.8) – (4.10) we obtain (4.6). This completes
the proof.

http://jipam.vu.edu.au
mailto:B.Szal@wmie.uz.zgora.pl
http://jipam.vu.edu.au


Rate of Strong Summability
by Matrix Means

Bogdan Szal

vol. 9, iss. 1, art. 28, 2008

Title Page

Contents

JJ II

J I

Page 16 of 27

Go Back

Full Screen

Close

Lemma 4.5. If (1.2), (1.7) hold andω (f ; t) satisfies (1.17) with r ≥ 1 then

(4.11) ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

= O

(
{(n + 1) ann}1− 1

r

{
annH

(
r;

π

n

)} 1
r

)
.

If, in addition,ω (f ; t) satisfies (1.18) then

(4.12) ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

= O
(
{ln (2 (n + 1) ann)}1− 1

r {annH (r; ann)}
1
r

)
.

Proof. Let r = 1. Using the monotonicity of the modulus of continuity

ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann) ≤ 2annω

(
f,

π

n + 1

)
(n + 1)

≤ 4annω

(
f,

π

n + 1

) ∫ n+1

1

dt

≤ 4ann

∫ n+1

1

ω
(
f,

π

t

)
dt

= 4πann

∫ π

π
n+1

ω (f, u)

u2
du

and by (1.17) we obtain that (4.11) holds. Now we prove (4.12). From (1.2) and
(1.7) we get

ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann) ≤ K1ω

(
f,

π

n + 1

) ∫ π(K+1)ann

π
n+1

1

t
dt,
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K1

∫ π(K+1)ann

π
n+1

ω (f, t)

t
dt ≤ 2K1 (K + 1) π

∫ ann

1
(K+1)(n+1)

ω (f, u)

u
du

≤ K2

∫ ann

0

ω (f, u)

u
du

and by Lemma4.1we obtain (4.12).
Assumingr > 1 we can use the Hölder inequality to estimate the following

integrals ∫ π

π
n+1

ω (f, u)

u2
du ≤

{∫ π

π
n+1

ωr (f, u)

u2
du

} 1
r
{∫ π

π
n+1

1

u2
du

}1− 1
r

≤
(

n + 1

π

)1− 1
r

{∫ π

π
n+1

ωr (f, u)

u2
du

} 1
r

and∫ ann

1
(K+1)(n+1)

ω (f, u)

u
du ≤

{∫ ann

1
(K+1)(n+1)

ωr (f, u)

u
du

} 1
r
{∫ ann

1
(K+1)(n+1)

1

u
du

}1− 1
r

≤ {ln (2 (n + 1) ann)}1− 1
r

{∫ ann

0

ωr (f, u)

u
du

} 1
r

.

From this, if (1.17) holds then

ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann) ≤ 4πann

(
n + 1

π

)1− 1
r

{∫ π

π
n+1

ωr (f, u)

u2
du

} 1
r
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= O

(
{(n + 1) ann}1− 1

r

{
annH

(
r;

π

n

)} 1
r

)
and if (1.17) and (1.18) hold then

ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

≤ 2K1 (K + 1) π {ln (2 (n + 1) ann)}1− 1
r

{∫ ann

0

ωr (f, u)

u
du

} 1
r

= O

(
{ln (2 (n + 1) ann)}1− 1

r

{
annH

(
r;

π

n

)} 1
r

)
.

This ends our proof.

Lemma 4.6. If (1.2), (1.6) hold andω (f ; t) satisfies (1.17) with r > 0 then

(4.13)
n∑

k=0

ankω
r

(
f ;

π

k + 1

)
= O

(
an0H

(
r;

π

n

))
.

If, in addition,ω (f ; t) satisfies (1.18), then

(4.14)
n∑

k=0

ankω
r

(
f ;

π

k + 1

)
= O (an0H (r; an0)) .

Proof. First we prove (4.13). If (1.6) holds then

ann − anm ≤ |anm − ann|

≤
n−1∑
k=m

|ank − ank+1| ≤
∞∑

k=m

|ank − ank+1| ≤ Kanm
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for anyn ≥ m ≥ 0, whence we have

(4.15) ann ≤ (K + 1) anm.

From this and using (1.17) we get

n∑
k=0

ankω
r

(
f ;

π

k + 1

)
≤ (K + 1) an0

n∑
k=0

ωr

(
f ;

π

k + 1

)
≤ K1an0

∫ n+1

1

ωr
(
f ;

π

t

)
dt

= πK1an0

∫ π

π
n+1

ωr (f ; u)

u2
du

= O
(
an0H

(
r;

π

n

))
.

Now, we prove (4.14). Since

(K + 1) (n + 1) an0 ≥
n∑

k=0

ank = 1,

we can see that

n∑
k=0

ankω
r

(
f ;

π

k + 1

)
≤

[
1

(K+1)an0

]
−1∑

k=0

ankω
r

(
f ;

π

k + 1

)
+

n∑
k=

[
1

(K+1)an0

]
−1

ankω
r

(
f ;

π

k + 1

)
.
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Using again (1.2), (1.6) and the monotonicity of the modulus of continuity, we get

n∑
k=0

ankω
r

(
f ;

π

k + 1

)
(4.16)

≤ (K + 1) an0

[
1

(K+1)an0

]
−1∑

k=0

ωr

(
f ;

π

k + 1

)
+ K1ω

r (f ; π (K + 1) ano)
n∑

k=
[

1
(K+1)an0

]
−1

ank

≤ K2an0

∫ 1
(K+1)an0

1

ωr
(
f ;

π

t

)
dt + K1ω

r (f ; π (K + 1) ano)

≤ K3

(
an0

∫ π

an0

ωr (f ; u)

u2
du + ωr (f ; an0)

)
.

According to

ωr (f ; an0) ≤ 4rωr
(
f ;

an0

2

)
≤ 2 · 4r

∫ an0

an0
2

ωr (f ; t)

t
dt ≤ 2 · 4r

∫ an0

0

ωr (f ; t)

t
dt,

(1.17), (1.18) and (4.16) lead us to (4.14).
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5. Proofs of the Theorems

In this section we shall prove Theorems2.1, 2.2and2.3.

5.1. Proof of Theorem2.1

Setting
Rn (x + h, x) = Tn (f, r; x + h)− Tn (f, r; x)

and
gh (x) = f (x + h)− f (x)

and using the Minkowski inequality forr ≥ 1, we get

|Rn (x + h, x)|

=

∣∣∣∣∣∣
{

n∑
k=0

ank |Sk (f ; x + h)− f (x + h)|r
} 1

r

−

{
n∑

k=0

ank |Sk (f ; x)− f (x)|r
} 1

r

∣∣∣∣∣∣
≤

{
n∑

k=0

ank |Sk (gh; x)− gh (x)|r
} 1

r

.

By (4.2) we have

|Rn (x + h, x)|

≤ K1


[n+1

4 ]∑
k=0

an,4kE
r
k (gh) +

(
E[n+1

4 ] (gh) ln (2 (n + 1) ann)
)r


1
r
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≤ K2


[n+1

4 ]∑
k=0

an,4kω
r

(
gh,

π

k + 1

)
+

(
ω

(
gh,

π

n + 1

)
ln (2 (n + 1) ann)

)r


1
r

.

Since

|gh (x + l)− gh (x)| ≤ |f (x + l + h)− f (x + h)|+ |f (x + l)− f (x)|

and

|gh (x + l)− gh (x)| ≤ |f (x + l + h)− f (x + l)|+|f (x + h)− f (x)| ≤ 2ω (|h|) ,

therefore, for0 ≤ k ≤ n,

(5.1) ω

(
gh,

π

k + 1

)
≤ 2ω

(
f,

π

k + 1

)
andf ∈ Hω

(5.2) ω

(
gh,

π

k + 1

)
≤ 2ω (|h|) .

From (5.2) and (1.2)

|Rn (x + h, x)| ≤ 2K2ω (|h|)


[n+1

4 ]∑
k=0

an,4k + (ln (2 (n + 1) ann))r


1
r

(5.3)

≤ 2K2ω (|h|) (1 + ln (2 (n + 1) ann)) .
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On the other hand, by (5.1),

(5.4) |Rn (x + h, x)|

≤ 2K2


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)
+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r


1
r

.

Using (5.3) and (5.4) we get

sup
h 6=0

‖Tn (f, r; ·+ h)− Tn (f, r; ·)‖C

ω (|h|)
(5.5)

= sup
h 6=0

(‖Rn (·+ h, ·)‖C)
p
q

ω (|h|)
(‖Rn (·+ h, ·)‖C)1− p

q

≤ K3 (1 + ln (2 (n + 1) ann))
p
q

×


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)

+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r
} 1

r (1− p
q )

.

Similarly, by (4.2) we have

‖Tn (f, r)‖C ≤ K4


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)
(5.6)
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+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r
} 1

r

≤ K4


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)

+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r
} 1

r
p
q

×


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)

+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r
} 1

r (1− p
q )

≤ K5 (1 + ln (2 (n + 1) ann))
p
q

×


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)

+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r
} 1

r (1− p
q )

.

Collecting our partial results (5.5), (5.6) and using Lemma4.4 and Lemma4.5 we
obtain that (2.1) and (2.2) hold. This completes our proof. �
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5.2. Proof of Theorem2.2

Using (4.3) and the same method as in the proof of Lemma4.4we can show that

(5.7)

[n+1
2 ]∑

k=0

an,2kω
r

(
f,

π

k + 1

)
= O

(
annH

(
r;

π

n

))
holds, ifω (t) satisfies (1.17) and (1.18), and

(5.8)

[n+1
2 ]∑

k=0

an,2kω
r

(
f,

π

k + 1

)
= O (annH (r; ann))

if ω (t) satisfies (1.17).
The proof of Theorem2.2 is analogously to the proof of Theorem2.1. The only

difference being that instead of (4.2), (4.5) and (4.6) we use (4.3), (5.7) and (5.8)
respectively. This completes the proof. �

5.3. Proof of Theorem2.3

Using the same notations as in the proof of Theorem2.1, from (4.4) and (5.2) we get

|Rn (x + h, x)| ≤ K1

{
n∑

k=0

ankE
r
k (gh)

} 1
r

(5.9)

≤ K2

{
n∑

k=0

ankω
r

(
gh,

π

k + 1

)} 1
r

≤ 2K2ω (|h|) .
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On the other hand, by (4.4) and (5.1), we have

|Rn (x + h, x)| ≤ K2

{
n∑

k=0

ankω
r

(
gh,

π

k + 1

)} 1
r

(5.10)

≤ 2K2

{
n∑

k=0

ankω
r

(
f,

π

k + 1

)} 1
r

.

Similarly, we can show that

(5.11) ‖Tn (f, r)‖C ≤ K3

{
n∑

k=0

ankω
r

(
f,

π

k + 1

)} 1
r

.

Finally, using the same method as in the proof of Theorem2.1and Lemma4.6, (2.6)
and (2.7) follow from (5.9) – (5.11). �
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