ON THE RATE OF STRONG SUMMABILITY BY MATRIX MEANS IN THE GENERALIZED HÖLDER METRIC

BOGDAN SZAL

Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra
65-516 Zielona Góra, ul. Szafrana 4a, Poland
EMail: B.Szal@wmie.uz.zgora.pl

Received:	10 January, 2007
Accepted:	23 February, 2008
Communicated by:	R.N. Mohapatra
2000 AMS Sub. Class.:	40F04, 41A25, 42A10.

Key words:
Abstract:

Strong approximation, Matrix means, Special sequences.
In the paper we generalize (and improve) the results of T. Singh [5], with mediate function, to the strong summability. We also apply the generalization of L . Leindler type [3].

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9 , iss. 1 , art. 28,2008

Title Page
Contents

44

4
Page 1 of 27
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Main Results 8
3 Corollaries 10
4 Lemmas 12
5 Proofs of the Theorems 21
5.1 Proof of Theorem 2.1 21
5.2 Proof of Theorem 2.2 25
5.3 Proof of Theorem 2.3 25

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 27	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let f be a continuous and 2π-periodic function and let

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1.1}
\end{equation*}
$$

be its Fourier series. Denote by $S_{n}(x)=S_{n}(f, x)$ the n-th partial sum of (1.1) and by $\omega(f, \delta)$ the modulus of continuity of $f \in C_{2 \pi}$.

The usual supremum norm will be denoted by $\|\cdot\|_{C}$.
Let $\omega(t)$ be a nondecreasing continuous function on the interval $[0,2 \pi]$ having the properties

$$
\omega(0)=0, \quad \omega\left(\delta_{1}+\delta_{2}\right) \leq \omega\left(\delta_{1}\right)+\omega\left(\delta_{2}\right) .
$$

Such a function will be called a modulus of continuity.
Denote by H^{ω} the class of functions

$$
H^{\omega}:=\left\{f \in C_{2 \pi} ;|f(x+h)-f(x)| \leq C \omega(|h|)\right\},
$$

where C is a positive constant. For $f \in H^{\omega}$, we define the norm $\|\cdot\|_{\omega}=\|\cdot\|_{H^{\omega}}$ by the formula

$$
\|f\|_{\omega}:=\|f\|_{C}+\|f\|_{C, \omega},
$$

where

$$
\|f\|_{C, \omega}=\sup _{h \neq 0} \frac{\|f(\cdot+h)-f(\cdot)\|_{C}}{\omega(|h|)},
$$

and $\|f\|_{C, 0}=0$. If $\omega(t)=C_{1}|t|^{\alpha}(0<\alpha \leq 1)$, where C_{1} is a positive constant, then

$$
H^{\alpha}=\left\{f \in C_{2 \pi} ;|f(x+h)-f(x)| \leq C_{1}|h|^{\alpha}, 0<\alpha \leq 1\right\}
$$

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9 , iss. 1 , art. 28,2008

Title Page
Contents

Page 3 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
is a Banach space and the metric induced by the norm $\|\cdot\|_{\alpha}$ on H^{α} is said to be a Hölder metric.

Let $A:=\left(a_{n k}\right)(k, n=0,1, \ldots)$ be a lower triangular infinite matrix of real numbers satisfying the following condition:

$$
\begin{equation*}
a_{n k} \geq 0(k, n=0,1, \ldots), \quad a_{n k}=0, \quad k>n \quad \text { and } \quad \sum_{k=0}^{n} a_{n k}=1 \tag{1.2}
\end{equation*}
$$

Let the A-transformation of $\left(S_{n}(f ; x)\right)$ be given by

$$
\begin{equation*}
t_{n}(f):=t_{n}(f ; x):=\sum_{k=0}^{n} a_{n k} S_{k}(f ; x) \quad(n=0,1, \ldots) \tag{1.3}
\end{equation*}
$$

and the strong $A_{r}-$ transformation of $\left(S_{n}(f ; x)\right)$ for $r>0$ by

$$
T_{n}(f, r):=T_{n}(f, r ; x):=\left\{\sum_{k=0}^{n} a_{n k}\left|S_{k}(f ; x)-f(x)\right|^{r}\right\}^{\frac{1}{r}} \quad(n=0,1, \ldots)
$$

Now we define two classes of sequences ([3]).
A sequence $c:=\left(c_{n}\right)$ of nonnegative numbers tending to zero is called the Rest Bounded Variation Sequence, or briefly $c \in R B V S$, if it has the property

$$
\begin{equation*}
\sum_{k=m}^{\infty}\left|c_{n}-c_{n+1}\right| \leq K(c) c_{m} \tag{1.4}
\end{equation*}
$$

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all natural numbers m, or only for all $m \leq N$ if the sequence c has only finite nonzero terms and the last nonzero term is c_{N}.

Therefore we assume that the sequence $\left(K\left(\alpha_{n}\right)\right)_{n=0}^{\infty}$ is bounded, that is, that there exists a constant K such that

$$
0 \leq K\left(\alpha_{n}\right) \leq K
$$

holds for all n, where $K\left(\alpha_{n}\right)$ denote the sequence of constants appearing in the inequalities (1.4) or (1.5) for the sequence $\alpha_{n}:=\left(a_{n k}\right)_{k=0}^{\infty}$. Now we can give the conditions to be used later on. We assume that for all n and $0 \leq m \leq n$,

$$
\begin{equation*}
\sum_{k=m}^{\infty}\left|a_{n k}-a_{n k+1}\right| \leq K a_{n m} \tag{1.6}
\end{equation*}
$$

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 5 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
with a mediate function H such that:

$$
\begin{equation*}
\int_{u}^{\pi} \frac{\omega(f ; t)}{t^{2}} d t=O(H(u)) \quad\left(u \rightarrow 0_{+}\right), \quad H(t) \geq 0 \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t} H(u) d u=O(t H(t)) \quad\left(t \rightarrow O_{+}\right) \tag{1.10}
\end{equation*}
$$

Theorem 1.1. Let $A=\left(a_{n k}\right)$ satisfy the condition (1.2) and $a_{n k} \leq a_{n k+1}$ for $k=$ $0,1, \ldots, n-1$, and $n=0,1, \ldots$. Then for $f \in H^{\omega}, 0 \leq p<q \leq 1$,
(1.11) $\left\|t_{n}(f)-f\right\|_{\omega^{*}}=O\left[\{\omega(|x-y|)\}^{\frac{p}{q}}\left\{\omega^{*}(|x-y|)\right\}^{-1}\right.$

$$
\left.\times\left\{\left(H\left(\frac{\pi}{n}\right)\right)^{1-\frac{p}{q}} a_{n n}\left(n^{\frac{p}{q}}+a_{n n}^{-\frac{p}{q}}\right)\right\}\right]+O\left(a_{n n} H\left(\frac{\pi}{n}\right)\right),
$$

if $\omega(f ; t)$ satisfies (1.9) and (1.10), and
(1.12) $\left\|t_{n}(f)-f\right\|_{\omega^{*}}=O\left[\{\omega(|x-y|)\}^{\frac{p}{q}}\left\{\omega^{*}(|x-y|)\right\}^{-1}\right]$

$$
\times\left\{\left(\omega\left(\frac{\pi}{n}\right)\right)^{1-\frac{p}{q}}+a_{n n} n^{\frac{p}{q}}\left(H\left(\frac{\pi}{n}\right)\right)^{1-\frac{p}{q}}\right\}+O\left\{\omega\left(\frac{\pi}{n}\right)+a_{n n} H\left(\frac{\pi}{n}\right)\right\},
$$

if $\omega(f ; t)$ satisfies (1.9), where $\omega^{*}(t)$ is the given modulus of continuity.
Theorem 1.2. Let $A=\left(a_{n k}\right)$ satisfy the condition (1.2) and $a_{n k} \leq a_{n k+1}$ for $k=$ $0,1, \ldots, n-1$, and $n=0,1, \ldots$ Also, let $\omega(f ; t)$ satisfy (1.9) and (1.10). Then for $f \in H^{\omega}, 0 \leq p<q \leq 1$,

$$
\begin{align*}
\left\|t_{n}(f)-f\right\|_{\omega^{*}} & =O\left[\{\omega(|x-y|)\}^{\frac{p}{q}}\left\{\omega^{*}(|x-y|)\right\}^{-1}\right. \tag{1.13}\\
& \left.\times\left\{\left(H\left(a_{n 0}\right)\right)^{1-\frac{p}{q}} a_{n 0}\left(n^{\frac{p}{q}}+a_{n 0}^{-\frac{p}{q}}\right)\right\}\right]+O\left(a_{n 0} H\left(a_{n 0}\right)\right),
\end{align*}
$$

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 6 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where $\omega^{*}(t)$ is the given modulus of continuity.
The next generalization of another result of P. Chandra [2] was obtained by L. Leindler in [3]. Namely, he proved the following two theorems
Theorem 1.3. Let (1.2) and (1.9) hold. Then for $f \in C_{2 \pi}$

$$
\begin{equation*}
\left\|t_{n}(f)-f\right\|_{C}=O\left(\omega\left(\frac{\pi}{n}\right)\right)+O\left(a_{n n} H\left(\frac{\pi}{n}\right)\right) \tag{1.14}
\end{equation*}
$$

If, in addition $\omega(f ; t)$ satisfies the condition (1.10), then

$$
\begin{equation*}
\left\|t_{n}(f)-f\right\|_{C}=O\left(a_{n n} H\left(a_{n n}\right)\right) . \tag{1.15}
\end{equation*}
$$

Theorem 1.4. Let (1.2), (1.9) and (1.10) hold. Then for $f \in C_{2 \pi}$

$$
\begin{equation*}
\left\|t_{n}(f)-f\right\|_{C}=O\left(a_{n 0} H\left(a_{n 0}\right)\right) . \tag{1.16}
\end{equation*}
$$

In the present paper we will generalize (and improve) the mentioned results of T. Singh [5] to strong summability with a mediate function H defined by the following conditions:

$$
\begin{equation*}
\int_{u}^{\pi} \frac{\omega^{r}(f ; t)}{t^{2}} d t=O(H(r ; u)) \quad\left(u \rightarrow 0_{+}\right), \quad H(t) \geq 0 \text { and } r>0 \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t} H(u) d u=O(t H(r ; t)) \quad\left(t \rightarrow O_{+}\right) . \tag{1.18}
\end{equation*}
$$

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

By K_{1}, K_{2}, \ldots we shall designate either an absolute constant or a constant depending on the indicated parameters, not necessarily the same at each occurrence.

2. Main Results

Our main results are the following.
Theorem 2.1. Let (1.2), (1.7) and (1.8) hold. Suppose $\omega(f ; t)$ satisfies (1.17) for $r \geq 1$. Then for $f \in H^{\omega}$,
(2.1) $\left\|T_{n}(f, r)\right\|_{\omega^{*}}=O\left(\left\{1+\ln \left(2(n+1) a_{n n}\right)\right\}^{\frac{p}{q}}\right.$

$$
\left.\times\left\{\left((n+1) a_{n n}\right)^{r-1} a_{n n} H\left(r ; \frac{\pi}{n}\right)\right\}^{\frac{1}{r}\left(1-\frac{p}{q}\right)}\right)
$$

Rate of Strong Summability by Matrix Means

> Bogdan Szal
vol. 9, iss. 1, art. 28, 2008
If, in addition $\omega(f ; t)$ satisfies the condition (1.18), then
(2.2) $\left\|T_{n}(f, r)\right\|_{\omega^{*}}=O\left(\left\{1+\ln \left(2(n+1) a_{n n}\right)\right\}^{\frac{p}{q}}\right.$

$$
\left.\times\left\{\left(\ln \left(2(n+1) a_{n n}\right)\right)^{r-1} a_{n n} H\left(r ; a_{n n}\right)\right\}^{\frac{1}{r}\left(1-\frac{p}{q}\right)}\right) .
$$

Theorem 2.2. Under the assumptions of above theorem, if there exists a real number $s>1$ such that the inequality

$$
\begin{equation*}
\left\{\sum_{i=2^{k-1}}^{2^{k}-1}\left(a_{n i}\right)^{s}\right\}^{\frac{1}{s}} \leq K_{1}\left(2^{k-1}\right)^{\frac{1}{s}-1} \sum_{i=2^{k-1}}^{2^{k}-1} a_{n i} \tag{2.3}
\end{equation*}
$$

for any $k=1,2, \ldots, m$, where $2^{m} \leq n+1<2^{m+1}$ holds, then the following estimates

$$
\begin{equation*}
\left\|T_{n}(f, r)\right\|_{\omega^{*}}=O\left(\left\{a_{n n} H\left(r ; \frac{\pi}{n}\right)\right\}^{\frac{1}{r}\left(1-\frac{p}{q}\right)}\right) \tag{2.4}
\end{equation*}
$$

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 8 of 27	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
Δ
and

$$
\begin{equation*}
\left\|T_{n}(f, r)\right\|_{\omega^{*}}=O\left(\left\{a_{n n} H\left(r ; a_{n n}\right)\right\}^{\frac{1}{r}\left(1-\frac{p}{q}\right)}\right) \tag{2.5}
\end{equation*}
$$

are true.
Theorem 2.3. Let (1.2), (1.6), (1.8) and (1.17) for $r \geq 1$ hold. Then for $f \in H^{\omega}$

$$
\begin{equation*}
\left\|T_{n}(f, r)\right\|_{\omega^{*}}=O\left(\left\{a_{n 0} H\left(r ; \frac{\pi}{n}\right)\right\}^{\frac{1}{r}\left(1-\frac{p}{q}\right)}\right) \tag{2.6}
\end{equation*}
$$

If, in addition, $\omega(f ; t)$ satisfies (1.18), then

$$
\begin{equation*}
\left\|T_{n}(f, r)\right\|_{\omega^{*}}=O\left(\left\{a_{n 0} H\left(r ; a_{n 0}\right)\right\}^{\frac{1}{r}\left(1-\frac{p}{q}\right)}\right) \tag{2.7}
\end{equation*}
$$

Remark 1. We can observe, that for the case $r=1$ under the condition (1.8) the first part of Theorem 1.1 (1.11) and Theorem 1.2 are the corollaries of the first part of Theorem 2.1 (2.1) and the second part of Theorem 2.3 (2.7), respectively. We can also note that the mentioned estimates are better in order than the analogical estimates from the results of T. Singh, since $\ln \left(2(n+1) a_{n n}\right)$ in Theorem 2.1 is better than $(n+1) a_{n n}$ in Theorem 1.1. Consequently, if $n a_{n n}$ is not bounded our estimate (2.7) in Theorem 2.3 is better than (1.13) from Theorem 1.2.
Remark 2. If in the assumptions of Theorem 2.1 or 2.3 we take $\omega(|t|)=O\left(|t|^{q}\right)$, $\omega^{*}(|t|)=O\left(|t|^{p}\right)$ with $p=0$, then from (2.1), (2.2) and (2.7) we have the same estimates such as (1.14), (1.15) and (1.16), respectively, but for the strong approximation (with $r=1$).

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 9 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Corollaries

In this section we present some special cases of our results. From Theorems 2.1, 2.2 and 2.3, putting $\omega^{*}(|t|)=O\left(|t|^{\beta}\right), \omega(|t|)=O\left(|t|^{\alpha}\right)$,

$$
H(r ; t)= \begin{cases}t^{r \alpha-1} & \text { if } \alpha r<1 \\ \ln \frac{\pi}{t} & \text { if } \alpha r=1 \\ K_{1} & \text { if } \alpha r>1\end{cases}
$$

where $r>0$ and $0<\alpha \leq 1$, and replacing p by β and q by α, we can derive Corollaries 3.1, 3.2 and 3.3, respectively.
Corollary 3.1. Under the conditions (1.2) and (1.7) we have for $f \in H^{\alpha}, 0 \leq \beta<$ $\alpha \leq 1$ and $r \geq 1$,

$$
\left\|T_{n}(f, r)\right\|_{\beta}= \begin{cases}O\left(\left\{\ln \left(2(n+1) a_{n n}\right)\right\}^{1+\frac{1}{r}\left(1-\frac{\beta}{\alpha}\right)}\left\{a_{n n}\right\}^{\alpha-\beta}\right) & \text { if } \alpha r<1 \\ O\left(\left\{\ln \left(2(n+1) a_{n n}\right)\right\}^{1+\alpha-\beta}\left\{\ln \left(\frac{\pi}{a_{n n}}\right) a_{n n}\right\}^{\alpha-\beta}\right) & \text { if } \alpha r=1 \\ O\left(\left\{\ln \left(2(n+1) a_{n n}\right)\right\}^{1+\frac{1}{r}\left(1-\frac{\beta}{\alpha}\right)}\left\{a_{n n}\right\}^{\frac{\alpha-\beta}{\alpha r}}\right) & \text { if } \alpha r>1\end{cases}
$$

Corollary 3.2. Under the assumptions of Corollary 3.1 and (2.3) we have

$$
\left\|T_{n}(f, r)\right\|_{\beta}= \begin{cases}O\left(\left\{a_{n n}\right\}^{\alpha-\beta}\right) & \text { if } \alpha r<1 \\ O\left(\left\{\ln \left(\frac{\pi}{a_{n n}}\right) a_{n n}\right\}^{\alpha-\beta}\right) & \text { if } \alpha r=1 \\ O\left(\left\{a_{n n}\right\}^{\frac{\alpha-\beta}{\alpha r}}\right) & \text { if } \alpha r>1\end{cases}
$$

Rate of Strong Summability by Matrix Means

> Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 10 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Corollary 3.3. Under the conditions (1.2) and (1.6) we have, for $f \in H^{\alpha}, 0 \leq \beta<$ $\alpha \leq 1$ and $r \geq 1$,

$$
\left\|T_{n}(f, r)\right\|_{\beta}= \begin{cases}O\left(\left\{a_{n 0}\right\}^{\alpha-\beta}\right) & \text { if } \alpha r<1 \\ O\left(\left\{\ln \left(\frac{\pi}{a_{n 0}}\right) a_{n 0}\right\}^{\alpha-\beta}\right) & \text { if } \alpha r=1 \\ O\left(\left\{a_{n 0}\right\}^{\frac{\alpha-\beta}{\alpha r}}\right) & \text { if } \alpha r>1\end{cases}
$$

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. $\mathbf{1}$, art. $\mathbf{2 8}, 2008$

Title Page
Contents

Page 11 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Lemmas

To prove our theorems we need the following lemmas.
Lemma 4.1. If (1.17) and (1.18) hold with $r>0$ then

$$
\begin{equation*}
\int_{0}^{s} \frac{\omega^{r}(f ; t)}{t} d t=O(s H(r ; s)) \quad\left(s \rightarrow 0_{+}\right) . \tag{4.1}
\end{equation*}
$$

Proof. Integrating by parts, by (1.17) and (1.18) we get

$$
\begin{aligned}
\int_{0}^{s} \frac{\omega^{r}(f ; t)}{t} d t & =\left[-t \int_{t}^{\pi} \frac{\omega^{r}(f ; u)}{u^{2}} d u\right]_{0}^{s}+\int_{0}^{s} d t \int_{t}^{\pi} \frac{\omega^{r}(f ; u)}{u^{2}} d u \\
& =O(s H(r ; s))+O(1) \int_{0}^{s} H(r ; t) d t \\
& =O(s H(r ; s))
\end{aligned}
$$

This completes the proof.
Lemma 4.2 ([7]). If (1.2), (1.7) hold, then for $f \in C_{2 \pi}$ and $r>0$,
(4.2) $\quad\left\|T_{n}(f, r)\right\|_{C}$

$$
\leq O\left(\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} E_{k}^{r}(f)+\left(E_{\left[\frac{n+1}{4}\right]}(f) \ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r}}\right) .
$$

Rate of Strong Summability by Matrix Means

> Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 12 of 27	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

If, in addition, (2.3) holds, then

$$
\begin{equation*}
\left\|T_{n}(f, r)\right\|_{C} \leq O\left(\left\{\sum_{k=0}^{\left[\frac{n+1}{2}\right]} a_{n, 2 k} E_{k}^{r}(f)\right\}^{\frac{1}{r}}\right) \tag{4.3}
\end{equation*}
$$

Rate of Strong Summability by Matrix Means

> Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Lemma 4.4. If (1.2), (1.7) hold and $\omega(f ; t)$ satisfies (1.17) with $r>0$ then

$$
\begin{equation*}
\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right)=O\left(a_{n n} H\left(r ; \frac{\pi}{n}\right)\right) . \tag{4.5}
\end{equation*}
$$

If, in addition, $\omega(f ; t)$ satisfies (1.18) then

$$
\begin{equation*}
\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right)=O\left(a_{n n} H\left(r ; a_{n n}\right)\right) . \tag{4.6}
\end{equation*}
$$

Proof. First we prove (4.5). If (1.7) holds then

$$
a_{n \mu}-a_{n m} \leq\left|a_{n \mu}-a_{n m}\right| \leq \sum_{k=\mu}^{m-1}\left|a_{n k}-a_{n k+1}\right| \leq K a_{n m}
$$

for any $m \geq \mu \geq 0$, whence we have

$$
\begin{equation*}
a_{n \mu} \leq(K+1) a_{n m} . \tag{4.7}
\end{equation*}
$$

Title Page
Contents
\square
Page 13 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

From this and using (1.17) we get

$$
\begin{aligned}
\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) & \leq(K+1) a_{n n} \sum_{k=0}^{n} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \\
& \leq K_{1} a_{n n} \int_{1}^{n+1} \omega^{r}\left(f ; \frac{\pi}{t}\right) d t \\
& =\pi K_{1} a_{n n} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\omega^{r}(f ; u)}{u^{2}} d u \\
& =O\left(a_{n n} H\left(r ; \frac{\pi}{n}\right)\right) .
\end{aligned}
$$

Now we prove (4.6). Since

$$
(K+1)(n+1) a_{n n} \geq \sum_{k=0}^{n} a_{n k}=1,
$$

we can see that

$$
\text { (4.8) } \begin{aligned}
\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \leq & \sum_{k=0}^{\left[\frac{1}{4(K+1) a_{n n}}\right]-1} a_{n, 4 k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \\
& +\sum_{k=\left[\frac{1}{4(K+1) a_{n n}}\right]-1}^{n} a_{n, 4 k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \\
& =\Sigma_{1}+\Sigma_{2} .
\end{aligned}
$$

Using again (4.7), (1.2) and the monotonicity of the modulus of continuity, we can

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 14 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
estimate the quantities Σ_{1} and Σ_{2} as follows

$$
\begin{align*}
\Sigma_{1} & \leq(K+1) a_{n n} \sum_{k=0}^{\left[\frac{1}{4(K+1) a_{n n}}\right]-1} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \tag{4.9}\\
& \leq K_{2} a_{n n} \int_{1}^{\frac{1}{4(K+1) a_{n n}}} \omega^{r}\left(f ; \frac{\pi}{t}\right) d t \\
& =\pi K_{2} a_{n n} \int_{4 \pi(K+1) a_{n n}}^{\pi} \frac{\omega^{r}(f ; u)}{u^{2}} d u \\
& \leq \pi K_{2} a_{n n} \int_{a_{n n}}^{\pi} \frac{\omega^{r}(f ; u)}{u^{2}} d u
\end{align*}
$$

and

$$
\begin{align*}
\Sigma_{2} & \leq K_{3} \omega^{r}\left(f ; 4 \pi(K+1) a_{n n}\right) \sum_{k=\left[\frac{1}{4(K+1) a_{n n}}\right]-1}^{n} a_{n, 4 k} \tag{4.10}\\
& \leq K_{3}(8 \pi(K+1))^{r} \omega^{r}\left(f ; a_{n n}\right) \\
& \leq K_{3}(32 \pi(K+1))^{r} \omega^{r}\left(f ; \frac{a_{n n}}{2}\right) \\
& \leq 2 K_{3}(32 \pi(K+1))^{r} \int_{\frac{n_{n n}}{2}}^{a_{n n}} \frac{\omega^{r}(f ; t)}{t} d t \\
& \leq K_{4} \int_{0}^{a_{n n}} \frac{\omega^{r}(f ; t)}{t} d t .
\end{align*}
$$

If (1.17) and (1.18) hold then from (4.8) - (4.10) we obtain (4.6). This completes the proof.

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 15 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 4.5. If (1.2), (1.7) hold and $\omega(f ; t)$ satisfies (1.17) with $r \geq 1$ then

$$
\begin{align*}
& \omega\left(f, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right) \tag{4.11}\\
& \quad=O\left(\left\{(n+1) a_{n n}\right\}^{1-\frac{1}{r}}\left\{a_{n n} H\left(r ; \frac{\pi}{n}\right)\right\}^{\frac{1}{r}}\right) .
\end{align*}
$$

If, in addition, $\omega(f ; t)$ satisfies (1.18) then

$$
\begin{align*}
\omega\left(f, \frac{\pi}{n+1}\right) \ln & \left(2(n+1) a_{n n}\right) \tag{4.12}\\
& =O\left(\left\{\ln \left(2(n+1) a_{n n}\right)\right\}^{1-\frac{1}{r}}\left\{a_{n n} H\left(r ; a_{n n}\right)\right\}^{\frac{1}{r}}\right) .
\end{align*}
$$

Proof. Let $r=1$. Using the monotonicity of the modulus of continuity

$$
\begin{aligned}
\omega\left(f, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right) & \leq 2 a_{n n} \omega\left(f, \frac{\pi}{n+1}\right)(n+1) \\
& \leq 4 a_{n n} \omega\left(f, \frac{\pi}{n+1}\right) \int_{1}^{n+1} d t \\
& \leq 4 a_{n n} \int_{1}^{n+1} \omega\left(f, \frac{\pi}{t}\right) d t \\
& =4 \pi a_{n n} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\omega(f, u)}{u^{2}} d u
\end{aligned}
$$

Rate of Strong Summability by Matrix Means
Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 16 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
K_{1} \int_{\frac{\pi}{n+1}}^{\pi(K+1) a_{n n}} \frac{\omega(f, t)}{t} d t & \leq 2 K_{1}(K+1) \pi \int_{\frac{1}{(K+1)(n+1)}}^{a_{n n}} \frac{\omega(f, u)}{u} d u \\
& \leq K_{2} \int_{0}^{a_{n n}} \frac{\omega(f, u)}{u} d u
\end{aligned}
$$

and by Lemma 4.1 we obtain (4.12).
Assuming $r>1$ we can use the Hölder inequality to estimate the following integrals

$$
\begin{aligned}
\int_{\frac{\pi}{n+1}}^{\pi} \frac{\omega(f, u)}{u^{2}} d u & \leq\left\{\int_{\frac{\pi}{n+1}}^{\pi} \frac{\omega^{r}(f, u)}{u^{2}} d u\right\}^{\frac{1}{r}}\left\{\int_{\frac{\pi}{n+1}}^{\pi} \frac{1}{u^{2}} d u\right\}^{1-\frac{1}{r}} \\
& \leq\left(\frac{n+1}{\pi}\right)^{1-\frac{1}{r}}\left\{\int_{\frac{\pi}{n+1}}^{\pi} \frac{\omega^{r}(f, u)}{u^{2}} d u\right\}^{\frac{1}{r}}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\frac{1}{(K+1)(n+1)}}^{a_{n n}} \frac{\omega(f, u)}{u} d u & \leq\left\{\int_{\frac{1}{(K+1)(n+1)}}^{a_{n n}} \frac{\omega^{r}(f, u)}{u} d u\right\}^{\frac{1}{r}}\left\{\int_{\frac{1}{(K+1)(n+1)}}^{a_{n n}} \frac{1}{u} d u\right\}^{1-\frac{1}{r}} \\
& \leq\left\{\ln \left(2(n+1) a_{n n}\right)\right\}^{1-\frac{1}{r}}\left\{\int_{0}^{a_{n n}} \frac{\omega^{r}(f, u)}{u} d u\right\}^{\frac{1}{r}}
\end{aligned}
$$

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page

Contents

\square
Page 17 of 27
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
=O\left(\left\{(n+1) a_{n n}\right\}^{1-\frac{1}{r}}\left\{a_{n n} H\left(r ; \frac{\pi}{n}\right)\right\}^{\frac{1}{r}}\right)
$$

and if (1.17) and (1.18) hold then

$$
\begin{aligned}
& \omega\left(f, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right) \\
& \quad \leq 2 K_{1}(K+1) \pi\left\{\ln \left(2(n+1) a_{n n}\right)\right\}^{1-\frac{1}{r}}\left\{\int_{0}^{a_{n n}} \frac{\omega^{r}(f, u)}{u} d u\right\}^{\frac{1}{r}} \\
& \quad=O\left(\left\{\ln \left(2(n+1) a_{n n}\right)\right\}^{1-\frac{1}{r}}\left\{a_{n n} H\left(r ; \frac{\pi}{n}\right)\right\}^{\frac{1}{r}}\right) .
\end{aligned}
$$

This ends our proof.
Lemma 4.6. If (1.2), (1.6) hold and $\omega(f ; t)$ satisfies (1.17) with $r>0$ then

$$
\begin{equation*}
\sum_{k=0}^{n} a_{n k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right)=O\left(a_{n 0} H\left(r ; \frac{\pi}{n}\right)\right) \tag{4.13}
\end{equation*}
$$

If, in addition, $\omega(f ; t)$ satisfies (1.18), then

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 18 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for any $n \geq m \geq 0$, whence we have
(4.15)

$$
a_{n n} \leq(K+1) a_{n m}
$$

From this and using (1.17) we get

$$
\begin{aligned}
\sum_{k=0}^{n} a_{n k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) & \leq(K+1) a_{n 0} \sum_{k=0}^{n} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \\
& \leq K_{1} a_{n 0} \int_{1}^{n+1} \omega^{r}\left(f ; \frac{\pi}{t}\right) d t \\
& =\pi K_{1} a_{n 0} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\omega^{r}(f ; u)}{u^{2}} d u \\
& =O\left(a_{n 0} H\left(r ; \frac{\pi}{n}\right)\right) .
\end{aligned}
$$

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 19 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Using again (1.2), (1.6) and the monotonicity of the modulus of continuity, we get
(4.16) $\quad \sum_{k=0}^{n} a_{n k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right)$

$$
\begin{aligned}
& \leq(K+1) a_{n 0} \sum_{k=0}^{\left[\frac{1}{(K+1) a_{n 0}}\right]-1} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \\
& \quad+K_{1} \omega^{r}\left(f ; \pi(K+1) a_{n o}\right) \sum_{k=\left[\frac{1}{(K+1) a_{n 0}}\right]-1}^{n} a_{n k} \\
& \leq K_{2} a_{n 0} \int_{1}^{\frac{1}{(K+1) a_{n 0}}} \omega^{r}\left(f ; \frac{\pi}{t}\right) d t+K_{1} \omega^{r}\left(f ; \pi(K+1) a_{n o}\right) \\
& \leq K_{3}\left(a_{n 0} \int_{a_{n 0}}^{\pi} \frac{\omega^{r}(f ; u)}{u^{2}} d u+\omega^{r}\left(f ; a_{n 0}\right)\right) .
\end{aligned}
$$

According to

$$
\omega^{r}\left(f ; a_{n 0}\right) \leq 4^{r} \omega^{r}\left(f ; \frac{a_{n 0}}{2}\right) \leq 2 \cdot 4^{r} \int_{\frac{a_{n 0}}{2}}^{a_{n 0}} \frac{\omega^{r}(f ; t)}{t} d t \leq 2 \cdot 4^{r} \int_{0}^{a_{n 0}} \frac{\omega^{r}(f ; t)}{t} d t
$$

(1.17), (1.18) and (4.16) lead us to (4.14).

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 20 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

5. Proofs of the Theorems

In this section we shall prove Theorems 2.1, 2.2 and 2.3.

5.1. Proof of Theorem 2.1

Setting

$$
R_{n}(x+h, x)=T_{n}(f, r ; x+h)-T_{n}(f, r ; x)
$$

and

$$
g_{h}(x)=f(x+h)-f(x)
$$

and using the Minkowski inequality for $r \geq 1$, we get

$$
\begin{aligned}
& \left|R_{n}(x+h, x)\right| \\
& =\left|\left\{\sum_{k=0}^{n} a_{n k}\left|S_{k}(f ; x+h)-f(x+h)\right|^{r}\right\}^{\frac{1}{r}}-\left\{\sum_{k=0}^{n} a_{n k}\left|S_{k}(f ; x)-f(x)\right|^{r}\right\}^{\frac{1}{r}}\right| \\
& \leq\left\{\sum_{k=0}^{n} a_{n k}\left|S_{k}\left(g_{h} ; x\right)-g_{h}(x)\right|^{r}\right\}^{\frac{1}{r}} .
\end{aligned}
$$

By (4.2) we have

$$
\begin{aligned}
& \left|R_{n}(x+h, x)\right| \\
& \leq K_{1}\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} E_{k}^{r}\left(g_{h}\right)+\left(E_{\left[\frac{n+1}{4}\right]}\left(g_{h}\right) \ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r}}
\end{aligned}
$$

Rate of Strong Summability by Matrix Means
Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page

Contents

Page 21 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\leq K_{2}\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(g_{h}, \frac{\pi}{k+1}\right)+\left(\omega\left(g_{h}, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r}} .
$$

Since

$$
\left|g_{h}(x+l)-g_{h}(x)\right| \leq|f(x+l+h)-f(x+h)|+|f(x+l)-f(x)|
$$

and
$\left|g_{h}(x+l)-g_{h}(x)\right| \leq|f(x+l+h)-f(x+l)|+|f(x+h)-f(x)| \leq 2 \omega(|h|)$, therefore, for $0 \leq k \leq n$,

$$
\begin{equation*}
\omega\left(g_{h}, \frac{\pi}{k+1}\right) \leq 2 \omega\left(f, \frac{\pi}{k+1}\right) \tag{5.1}
\end{equation*}
$$

and $f \in H^{\omega}$

$$
\begin{equation*}
\omega\left(g_{h}, \frac{\pi}{k+1}\right) \leq 2 \omega(|h|) . \tag{5.2}
\end{equation*}
$$

From (5.2) and (1.2)

$$
\begin{align*}
\left|R_{n}(x+h, x)\right| & \leq 2 K_{2} \omega(|h|)\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k}+\left(\ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r}} \tag{5.3}\\
& \leq 2 K_{2} \omega(|h|)\left(1+\ln \left(2(n+1) a_{n n}\right)\right) .
\end{align*}
$$

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 22 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

On the other hand, by (5.1),
(5.4) $\left|R_{n}(x+h, x)\right|$

$$
\leq 2 K_{2}\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)+\left(\omega\left(f, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r}}
$$

Using (5.3) and (5.4) we get

$$
\begin{align*}
\sup _{h \neq 0} & \frac{\left\|T_{n}(f, r ; \cdot+h)-T_{n}(f, r ; \cdot)\right\|_{C}}{\omega(|h|)} \tag{5.5}\\
= & \sup _{h \neq 0} \frac{\left(\left\|R_{n}(\cdot+h, \cdot)\right\|_{C}\right)^{\frac{p}{q}}}{\omega(|h|)}\left(\left\|R_{n}(\cdot+h, \cdot)\right\|_{C}\right)^{1-\frac{p}{q}} \\
\leq & K_{3}\left(1+\ln \left(2(n+1) a_{n n}\right)\right)^{\frac{p}{q}} \\
& \quad\left\{\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)\right.\right. \\
& \left.\quad+\left(\omega\left(f, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r}\left(1-\frac{p}{q}\right)} .
\end{align*}
$$

Similarly, by (4.2) we have
(5.6) $\left\|T_{n}(f, r)\right\|_{C} \leq K_{4}\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)\right.$

Rate of Strong Summability by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page

Contents

Page 23 of 27

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \left.+\left(\omega\left(f, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r}} \\
& \leq K_{4}\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)\right. \\
& \left.+\left(\omega\left(f, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r} \frac{p}{q}} \\
& \times\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)\right. \\
& \left.+\left(\omega\left(f, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r}\left(1-\frac{p}{q}\right)} \\
& \leq K_{5}\left(1+\ln \left(2(n+1) a_{n n}\right)\right)^{\frac{p}{q}} \\
& \times\left\{\sum_{k=0}^{\left[\frac{n+1}{4}\right]} a_{n, 4 k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)\right. \\
& \left.+\left(\omega\left(f, \frac{\pi}{n+1}\right) \ln \left(2(n+1) a_{n n}\right)\right)^{r}\right\}^{\frac{1}{r}\left(1-\frac{p}{q}\right)} .
\end{aligned}
$$

Rate of Strong Summability by Matrix Means

> Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page

Contents

Page 24 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
Collecting our partial results (5.5), (5.6) and using Lemma 4.4 and Lemma 4.5 we obtain that (2.1) and (2.2) hold. This completes our proof.
issn: 1443-575b

5.2. Proof of Theorem 2.2

Using (4.3) and the same method as in the proof of Lemma 4.4 we can show that

$$
\begin{equation*}
\sum_{k=0}^{\left[\frac{n+1}{2}\right]} a_{n, 2 k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)=O\left(a_{n n} H\left(r ; \frac{\pi}{n}\right)\right) \tag{5.7}
\end{equation*}
$$

holds, if $\omega(t)$ satisfies (1.17) and (1.18), and

$$
\begin{equation*}
\sum_{k=0}^{\left[\frac{n+1}{2}\right]} a_{n, 2 k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)=O\left(a_{n n} H\left(r ; a_{n n}\right)\right) \tag{5.8}
\end{equation*}
$$

if $\omega(t)$ satisfies (1.17).
The proof of Theorem 2.2 is analogously to the proof of Theorem 2.1. The only difference being that instead of (4.2), (4.5) and (4.6) we use (4.3), (5.7) and (5.8) respectively. This completes the proof.

5.3. Proof of Theorem 2.3

Using the same notations as in the proof of Theorem 2.1, from (4.4) and (5.2) we get

$$
\begin{align*}
\left|R_{n}(x+h, x)\right| & \leq K_{1}\left\{\sum_{k=0}^{n} a_{n k} E_{k}^{r}\left(g_{h}\right)\right\}^{\frac{1}{r}} \tag{5.9}\\
& \leq K_{2}\left\{\sum_{k=0}^{n} a_{n k} \omega^{r}\left(g_{h}, \frac{\pi}{k+1}\right)\right\}^{\frac{1}{r}} \\
& \leq 2 K_{2} \omega(|h|) .
\end{align*}
$$

Rate of Strong Summability by Matrix Means

> Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 25 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

On the other hand, by (4.4) and (5.1), we have

$$
\begin{align*}
\left|R_{n}(x+h, x)\right| & \leq K_{2}\left\{\sum_{k=0}^{n} a_{n k} \omega^{r}\left(g_{h}, \frac{\pi}{k+1}\right)\right\}^{\frac{1}{r}} \tag{5.10}\\
& \leq 2 K_{2}\left\{\sum_{k=0}^{n} a_{n k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)\right\}^{\frac{1}{r}} .
\end{align*}
$$

Similarly, we can show that

$$
\begin{equation*}
\left\|T_{n}(f, r)\right\|_{C} \leq K_{3}\left\{\sum_{k=0}^{n} a_{n k} \omega^{r}\left(f, \frac{\pi}{k+1}\right)\right\}^{\frac{1}{r}} \tag{5.11}
\end{equation*}
$$

Finally, using the same method as in the proof of Theorem 2.1 and Lemma 4.6, (2.6) and (2.7) follow from (5.9) - (5.11).

> Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page

Contents

Page 26 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] P. CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. Hungar., 52 (1988), 199-205.
[2] P. CHANDRA, A note on the degree of approximation of continuous function, Acta Math. Hungar., 62 (1993), 21-23.
[3] L. LEINDLER, On the degree of approximation of continuous functions, Acta Math. Hungar., 104(1-2), (2004), 105-113.
[4] R.N. MOHAPATRA AND P. CHANDRA, Degree of approximation of functions in the Hölder metric, Acta Math. Hungar., 41(1-2) (1983), 67-76.
[5] T. SINGH, Degree of approximation to functions in a normed spaces, Publ. Math. Debrecen, 40(3-4) (1992), 261-271.
[6] XIE-HUA SUN, Degree of approximation of functions in the generalized Hölder metric, Indian J. Pure Appl. Math., 27(4) (1996), 407-417.
[7] B. SZAL, On the strong approximation of functions by matrix means in the generalized Hölder metric, Rend. Circ. Mat. Palermo (2), 56(2) (2007), 287304.

Rate of Strong Summability by Matrix Means

Bogdan Szal

vol. 9, iss. 1, art. 28, 2008

Title Page
Contents

Page 27 of 27
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

