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ABSTRACT. The purpose of this note is to present a theorem having conditions of new type and
to weaken some assumptions given in two previous papers simultaneously.
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1. I NTRODUCTION

Recently there have been a number of papers written dealing with absolute summability fac-
tors of infinite series, see e.g. [3] – [9]. Among others in [6] we also proved a theorem of this
type improving a result of H. Bor [3]. Very recently H. Bor and L. Debnath [5] enhanced a
theorem of S.M. Mazhar [9] considering a quasiβ-power increasing sequence{Xn} for some
0 < β < 1 instead of the caseβ = 0.

The purpose of this note is to moderate the conditions of the theorems of Bor-Debnath and
ours.

To recall these theorems we need some definitions.
A positive sequencea := {an} is said to bequasi β- power increasingif there exists a

constantK = K(β, a) ≥ 1 such that

(1.1) K nβ an ≥ mβ am

holds for alln ≥ m. If (1.1) stays withβ = 0 thena is simply called aquasi increasing
sequence. In [6] we showed that this latter class is equivalent to the class ofalmost increasing
sequences.
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2 L. LEINDLER

A series
∑

an with partial sumssn is said to be summable|N, pn|k, k ≥ 1, if (see [2])
∞∑

n=1

(
Pn

pn

)k−1

|tn − tn−1|k < ∞,

where{pn} is a sequence of positive numbers such that

Pn :=
n∑

ν=0

pν →∞

and

tn :=
1

Pn

n∑
ν=0

pν sν .

First we recall the theorem of Bor and Debnath.

Theorem 1.1. Let X := {Xn} be a quasiβ-power increasing sequence for some0 < β < 1,
andλ := {λn} be a real sequence. If the conditions

(1.2)
m∑

n=1

1

n
Pn = O(Pm),

(1.3) λn Xn = O(1),

(1.4)
m∑

n=1

1

n
|tn|k = O(Xm),

(1.5)
m∑

n=1

pn

Pn

|tn|k = O(Xm),

and

(1.6)
∞∑

n=1

n Xn|∆2 λn| < ∞, (∆2 λn = ∆ λn −∆ λn+1)

are satisfied, then the series
∑

an λn is summable|N, pn|k, k ≥ 1.

In my view, the proof of Theorem 1.1 has a little gap, but the assertion is true.
Our mentioned theorem [7] reads as follows.

Theorem 1.2. If X is a quasi increasing sequence and the conditions (1.4), (1.5),

(1.7)
∞∑

n=1

1

n
|λn| < ∞,

(1.8)
∞∑

n=1

Xn|∆ λn| < ∞

and

(1.9)
∞∑

n=1

n Xn|∆|∆ λn|| < ∞

are satisfied, then the series
∑

an λn is summable|N, pn|k, k ≥ 1.
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2. RESULT

Now we prove the following theorem.

Theorem 2.1. If the sequenceX is quasiβ-power increasing for some0 ≤ β < 1, λ satisfies
the conditions

(2.1)
m∑

n=1

λn = o(m)

and

(2.2)
m∑

n=1

|∆ λn| = o(m),

furthermore (1.4), (1.5) and

(2.3)
∞∑

n=1

n Xn(β)|∆|∆ λn|| < ∞

hold, whereXn(β) := max(nβ Xn, log n), then the series
∑

an λn is summable|N, pn|k, k ≥
1.

Remark 2.2. It seems to be worth comparing the assumptions of these theorems.
By Lemma 3.3 it is clear that(1.7) ⇒ (2.1), furthermore ifX is quasi increasing then

(1.8) ⇒ (2.2). It is true that(2.3) in the caseβ = 0 claims a little bit more than(1.9) does,
but only if Xn < K log n. However, in general,Xn ≥ K log n holds, see(1.4) and(1.5). In
the latter case, Theorem 2.1 under weaker conditions provides the same conclusion as Theorem
1.2.

If we analyze the proofs of Theorem 1.1 and Theorem 1.2, it is easy to see that condition
(1.2) replaces(1.7), (1.3) and(1.6) jointly imply (1.8), finally (1.9) requires less than(1.6).
Thus we can say that the conditions of Theorem 2.1 also claim less than that of Theorem 1.1.

3. L EMMAS

Later on we shall use the notationL � R if there exists a positive constantK such that
L ≤ K R holds.

To avoid needless repetition we collect the relevant partial results proved in [3] into a lemma.
In [3] the following inequality is verified implicitly.

Lemma 3.1. LetTn denote then-th (N, pn) mean of the series
∑

an λn. If {Xn} is a sequence
of positive numbers, andλn → 0, plus (1.7) and (1.5) hold, then

m∑
n=1

(
Pn

pn

)k−1

|Tn − Tn−1|k � |λm|Xm +
m∑

n=1

|∆ λn|Xn +
m∑

n=1

|tn|k|∆ λn|.

Lemma 3.2([7]). Let{γn} be a sequence of real numbers and denote

Γn :=
n∑

k=1

γk and Rn :=
∞∑

k=n

|∆ γk|.

If Γn = o(n) then there exists a natural numberN such that

|γn| ≤ 2Rn

for all n ≥ N.
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Lemma 3.3([1, 2.2.2., p. 72]). If {µn} is a positive, monotone increasing and tending to infinity
sequence, then the convergence of the series

∑
an µ−1

n implies the estimate

n∑
i=1

ai = o(µn).

4. PROOF OF THEOREM 2.1

In order to use Lemma 3.1 we first have to show that its conditions follow from the assump-
tions of Theorem 2.1. Thus we must show that

(4.1) λn → 0.

By Lemma 3.2, condition (2.1) implies that

|λn| ≤ 2
∞∑

k=n

|∆ λk|,

and by (2.2)

(4.2) |∆ λn| ≤ 2
∞∑

k=n

|∆|∆ λk||,

whence

(4.3) |λn| �
∞∑

k=n

n|∆|∆ λn||

holds. Thus (2.3) and (4.3) clearly prove (4.1).
Next we verify (1.7). In view of (4.3) and (2.3)

∞∑
n=1

1

n
|λn| �

∞∑
n=1

1

n

∞∑
k=n

k|∆|∆ λk|| �
∞∑

k=1

k|∆|∆ λk|| log k < ∞,

that is, (1.7) is satisfied.
In the following steps we show that

(4.4) |λn|Xn � 1,

(4.5)
∞∑

n=1

|∆ λn|Xn � 1

and

(4.6)
∞∑

n=1

|tn|k|∆ λk| � 1.

Utilizing the quasi monotonicity of{nβ Xn}, (2.3) and (4.3) we get that

(4.7) |λn|Xn ≤ nβ|λn|Xn �
∞∑

k=n

kβ|Xk|k|∆|∆ λk|| �
∞∑

k=n

k Xk(β)|∆|∆ λk|| < ∞.
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Similar arguments give that
∞∑

n=1

|∆ λn|Xn �
∞∑

n=1

Xn

∞∑
k=n

|∆|∆ λk||(4.8)

=
∞∑

k=1

|∆|∆ λk||
k∑

n=1

nβ Xn n−β

�
∞∑

k=1

kβ Xk|∆|∆ λk||
k∑

n=1

n−β

�
∞∑

k=1

k Xk|∆|∆ λk|| < ∞.

Finally to verify (4.6) we apply Abel transformation as follows:

m∑
n=1

|tn|k|∆ λn| �
m−1∑
n=1

|∆(n|∆ λn|)|
n∑

i=1

1

i
|ti|k + m|∆ λm|

m∑
n=1

1

n
|tn|k

�
m−1∑
n=1

n|∆|∆ λn||Xn +
m−1∑
n=1

|∆ λn+1|Xn+1 + m|∆ λm|Xm.(4.9)

Here the first term is bounded by (2.3), the second one by (4.5), and the third term by (2.3) and
(4.2), namely

(4.10) m|∆ λm|Xm � m Xm

∞∑
n=m

|∆|∆ λn|| �
∞∑

n=m

n Xn|∆|∆ λn|| < ∞.

Herewith (4.6) is also verified.
Consequently Lemma 3.1 exhibits that

∞∑
n=1

(
Pn

pn

)k−1

|Tn − Tn−1|k < ∞,

and this completes the proof of our theorem.
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