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ABSTRACT. The purpose of this note is to present a theorem having conditions of new type and
to weaken some assumptions given in two previous papers simultaneously.
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1. INTRODUCTION

Recently there have been a number of papers written dealing with absolute summability fac-
tors of infinite series, see e.d./ [3]= [9]. Among others in [6] we also proved a theorem of this
type improving a result of H. Bor [3]. Very recently H. Bor and L. Debnath [5] enhanced a
theorem of S.M. Mazhal [9] considering a quaspower increasing sequen¢&’,, } for some
0 < B < 1instead of the casé = 0.

The purpose of this note is to moderate the conditions of the theorems of Bor-Debnath and
ours.

To recall these theorems we need some definitions.

A positive sequence := {a,} is said to bequasi - power increasingf there exists a
constantk’ = K(f3,a) > 1 such that

(1.1) Kn’a, >m" a,

holds for alln > m. If (L.T) stays withG = 0 thena is simply called aguasi increasing
sequence. Iri[6] we showed that this latter class is equivalent to the clabaaxdt increasing
sequences.
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2 L. LEINDLER

A seriesy_ a,, with partial sumss,, is said to be summabl&V, p,, |z, k& > 1, if (see [2])

00 P k-1
> (—”) Ity — " < o0,
p

n=1 n

where{p, } is a sequence of positive numbers such that

n
P, = Zp,, — 00
v=0
and

1 n
t, = Fn ;py Sy.

First we recall the theorem of Bor and Debnath.

Theorem 1.1.LetX := {X,} be a quasis-power increasing sequence for sofme: 3 < 1,
and )\ := {)\,} be areal sequence. If the conditions

1
1.2 P =0O(P
(1.2) ;n w = O(Pu),
(1.3) A X = O(1),
1
1.4 “|t.|F = O(X
(1.4) ;n’tn’ O(Xom),
m p_n .
(1.5) 2 Pn|tn| = 0(X,),
and
(1.6) D XA N <o, (ATA =AN —AN)
n=1

are satisfied, then the serigs a,, \, is summableN, p,|., k > 1.

In my view, the proof of Theorein 1.1 has a little gap, but the assertion is true.
Our mentioned theorem|[7] reads as follows.

Theorem 1.2.1f X is a quasi increasing sequence and the conditipng (1.4), (1.5),

[e.e]

1

17 - )\n )

(L.7) Z ~[An] < 00

(1.8) D XaAN| < oo
n=1

and

(1.9) D n X, AJAN,|| < oo

n=1

are satisfied, then the serigs a,, \, is summableN, p,|., k > 1.
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2. RESULT
Now we prove the following theorem.

Theorem 2.1.If the sequenc& is quasig-power increasing for some < § < 1, \ satisfies
the conditions

(2.1) > A =o(m)

and -

@.2) 318 = ofm)
furthermore [[T4),[(T]5) and -

(2.3) ilan(ﬂ)]A\A)\nH <0

hold, whereX,,(3) := max(n® X,,,logn), then the serie§_ a, \, is summableN, p,
1.

o k>

Remark 2.2. It seems to be worth comparing the assumptions of these theorems.
By Lemma[3.8 it is clear thafl.7) = (2.1]), furthermore ifX is quasi increasing then

(1.8) = (2.2)). Itis true that(2.3) in the case3 = 0 claims a little bit more thar|1.9) does,
but only if X,, < K logn. However, in generalX,, > K logn holds, sed]l.4) and(|1.5). In
the latter case, Theorgm .1 under weaker conditions provides the same conclusion as Theorem
[L.2.
If we analyze the proofs of Theorgm [L.1 and Theofem 1.2, it is easy to see that condition

(1.2) replaces(1.7), (1.3) and (1.6) jointly imply (L.8), finally (1.9) requires less thafl.d].

Thus we can say that the conditions of Theofem 2.1 also claim less than that of Thedrem 1.1.

3. LEMMAS

Later on we shall use the notatidh < R if there exists a positive constaht such that

L < K R holds.
To avoid needless repetition we collect the relevant partial results proved in [3] into a lemma.
In [3] the following inequality is verified implicitly.

Lemma 3.1. LetT,, denote the:-th (N, p,,) mean of the seri€s. a, \,. If {X,,} is a sequence
of positive numbers, ankl, — 0, plus (1.7) and[(1]5) hold, then

m Pn k—1 m m
> (p—) Ty — Tt IF < Al X+ ) A XX + ) [l F[A N
n n=1 n=1

n=1

Lemma 3.2([7]). Let{v,} be a sequence of real numbers and denote

oo

r, = Z"yk and R, :Z‘A")/k’
k=1

k=n

If ', = o(n) then there exists a natural numbErsuch that
7| < 2R,
forall n > N.
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Lemma 3.3([1, 2.2.2., p. 72]) If { i, } is a positive, monotone increasing and tending to infinity
sequence, then the convergence of the sérjes, 1., * implies the estimate

> ai = olpn).

4. PROOF OF THEOREM [2.1

In order to use Lemna 3.1 we first have to show that its conditions follow from the assump-
tions of Theorem 2]1. Thus we must show that

(4.1) An — 0.
By Lemmd 3.2, conditiorj (2] 1) implies that

Al <23 AN,
k=n

and by (2.2)

@2 ISHES) SINISH]
k=n

whence

(4.3) Al < in!Am Al

k=n

holds. Thus[(2]3) andl (4.3) clearly proye (4.1).
Next we verify [1.7). In view of[(4]3) and (2.3)

o0

> %|)\n| < Z%kam Mel| <) KIAJA X[ log k < o0,

n=1 n=1 k=n k=1

that is, [1.7) is satisfied.
In the following steps we show that

(4.4) | X, < 1,

(4.5) S lANIX, <1
n=1

and

(4.6) > It F AN < 1.
n=1

Utilizing the quasi monotonicity ofn” X}, (2.3) and[(4.B) we get that

A7) AalXn < 0P INX, <R XGIRIAJA N <Dk X (B)|AJA ]| < 0.

k=n k=n
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Similar arguments give that

(4.8) STIANMIX, < DX, Y AIA N
n=1 n=1 k=n

00 k
IAJA NS S n? Xy

k=1 n=1

00 k
<SR XAIAN Y 0
k=1 n=1

<Y B X AJAN| < 0.

k=1
Finally to verify (4.6) we apply Abel transformation as follows:

m m—1 n m

1 1
> [tafJAN] < D JAMmAND] D gltil’“rmIAMIE ~[tnl*
n=1 n=1 =1 n=1

m—1 m—1
(4.9) < nlAAN]Xn D 1A Nt [ X+ m]A N[ X
n=1 n=1

Here the first term is bounded Ky (R.3), the second ong¢ by (4.5), and the third tgrm|by (2.3) and
(4.2), namely

(4.10) MIA X | X < X Y AJAN]] < D n X, |AJAN,|| < o

n=m n=m

Herewith [4.6) is also verified.
Consequently Lemnfa 3.1 exhibits that

o] k—1
P,
§ (—) T, — T, |* < o0,
“—~ \ Pn

and this completes the proof of our theorem.
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