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Abstract

In this paper we study a Dirichlet problem relative to a linear elliptic equa-
tion with lower-order terms, whose ellipticity condition is given in terms of the
function ϕ(x)=(2π)−

n
2 exp(−|x|2/2) , the density in the Gaussian measure. Using

the notion of rearrangement with respect to the Gauss measure, we prove a
comparison result with a problem of the same type defined in a half space, with
data depending only on the first variable.

2000 Mathematics Subject Classification: 35B05, 35J70
Key words: Linear elliptic equation, Comparison theorem, Rearrangements of func-

tions, Gauss measure
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1. Introduction
The object of this paper is to give comparison results for the solution of the
problem

(1.1)


− (aij(x)uxi

)xj
+ bi(x)uxi

+ c(x)u = f(x)ϕ(x) in Ω

u = 0 on∂Ω

whereϕ(x) = (2π)−
n
2 exp

(
− |x|2 /2

)
is the density in the Gaussian measure,

Ω is an open set ofRn (n ≥ 2) which has Gauss measure less than one,aij(x),
bi(x) andc(x), i, j = 1, . . . , n, are measurable functions onΩ such that

(i) aij(x)ξiξj ≥ ϕ(x) |ξ|2 , ∀ξ ∈ Rn, a.e. x ∈ Ω,

(ii) (
∑
b2i )

1
2 ≤ ϕ(x)B,

(iii) c (x) ≥ c0 (x) ϕ(x), c0 (x) ∈ L∞ (Ω),

andf is taken in a suitable weightedLp space in order to guarantee the existence
of a solutionu of the problem (1.1).

We recall thatu ∈ H1
0 (ϕ,Ω) is a weak solution of the problem (1.1), if

(1.2)
∫

Ω

(aij(x)uxi
ψxj

+ bi(x)uxi
ψ + c(x)u(x)ψ)dx

=

∫
Ω

f(x)ϕ(x)ψdx, ∀ψ ∈ H1
0 (ϕ,Ω).
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Let us observe that the operator in (1.1) is uniformly elliptic if Ω is bounded.
It is well known that whenΩ is bounded, comparison results for elliptic prob-
lems have been obtained via Schwarz symmetrization, for a simpler problem
which is defined in a ball and has spherically symmetric data (see for example
[1], [2], [4], [3], [6], [17], [20], [19], [18], [21]).

In our caseΩ can be not bounded and ellipticity condition (i) is given in
terms of the density in the Gaussian measure. We consider solutions of problem
(1.1) in the weighted Sobolev spaceH1

0 (ϕ,Ω) (see §2) and we compare the
solution of the problem (1.1) with the solution of a problem in which the data
depend only on the first variable and the domain is a half-space which has the
same Gauss measure asΩ.

More precisely letΩ? = {x = (x1, x2, . . . , xn) ∈ Rn : x1 > λ} such that
γn (Ω?) = γn (Ω), and letf ? (x) be the rearrangement with respect to the Gauss
measure of the functionf (x) (see §2 for the definition). To give an example of
the obtained results we consider the casec0 (x) = 0.

Letw (x) = w (x1) be the solution of

(1.3)


− (wx1ϕ (x))x1

−Bwx1ϕ (x) = f ?(x1)ϕ (x) in Ω?,

w = 0 on∂Ω?.

We prove that the pointwise comparison

(1.4) u? (x) = u? (x1) ≤ w (x1) = w? (x) for a.ex = (x1, x2, . . . , xn) ∈ Ω?

holds, whereu? andw? are the rearrangements with respect to the Gauss mea-
sure ofu andw respectively. In this case the comparison also gives an explicit
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estimate ofu? that is also a condition for the existence of the solution for the
problem (1.1) in terms of the existence of the solution of (1.3).

If c0 (x) 6= 0, a comparison with a problem which also takes the term
“c(x) u(x)” into account can be found. In this case, depending on the sign
of c0 (x) , pointwise comparison (1.4) is false in general, but a comparison be-
tween the concentrations can be found (see Theorem3.2).

In the proofs of our results we use tools similar to the classical methods
based on the isoperimetric inequality and Schwarz symmetrization (see [2]).
In our case a fundamental rule is played by the isoperimetric inequality with
respect to the Gauss measure.

The problem (1.1) has been studied using rearrangement with respect to the
Gauss measure in [7], whenbi(x) = c(x) = 0.

Existence results for weak solutions of problem (1.1) can be obtained for
example via the Lax Milgram theorem when (i) and (ii) hold andaij(x)

ϕ(x)
, c(x)

ϕ(x)
∈

L∞ (Ω) andf (x) ∈ L2 (ϕ,Ω) (see also [15], [22]).
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2. Notations and Preliminary Results
In this section we recall some definitions and results which will be useful in
what follows. LetΩ be an open set ofRn and letγn be then−dimensional
Gauss measure onRn defined by

γn (dx) = ϕ (x) dx = (2π)−
n
2 exp

(
−|x|

2

2

)
dx, x ∈ Rn

normalized byγn (Rn) = 1.

One of the main tools used to prove the comparison result is the isoperimetric
inequality with respect to the Gauss measure, to recall this result we define the
perimeter with respect to the Gauss measure as (see [13])

P (E) = (2π)−
n
2

∫
∂E

exp

(
−|x|

2

2

)
Hn−1 (dx) ,

whereE is a(n−1)−rectificable set andHn−1 denotes the(n−1)−dimensional
Hausdorff measure. For allλ ∈ R, we denote byH (ξ, λ) the half-space defined
by

H (ξ, λ) = {x ∈ Rn : (x, ξ) > λ}

and we setH (ξ, λ) = Rn if λ = −∞ andH (ξ, λ) = ∅ if λ = +∞.
It is well known (see [11]) that among all measurable sets ofRn with pre-

scribed Gauss measure, the half-spaces take the smallest perimeter. In other
words, the half-spaces are extremal in the isoperimetric problem for the Gauss
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measure. From an appropriate form of the Brunn - Minkowski inequality, the
isoperimetric inequality follows (see [8], [11], [10], [12])

P (E) ≥ P (H (ξ, λ))

for all subsetsE ⊂ Rn such thatγn (E) = γn (H (ξ, λ)). For the sake of
simplicity we shall considerξ = (1, 0, . . . , 0).

Now we consider the notion of rearrangement with respect to the Gauss mea-
sure. Ifu is a measurable function inΩ, we define the distribution function of
u, denoted byµ, as the Gauss measure of the level set ofu, i.e.

µ : t ∈ [0,∞[ −→ µ (t) ∈ [0, 1] ,

where
µ (t) = γn ({x ∈ Ω : |u| > t}) .

We denote byu∗ the decreasing rearrangement ofu (with respect to the Gauss
measure), i.e.

u∗ (s) = inf {t ≥ 0 : µ (t) ≤ s} , s ∈ ]0, 1] ,

the functionsµ andu∗ are decreasing and right - continuous. Moreover the
increasing rearrangement ofu is the function defined as follows

u∗ (s) = u∗ (γn (Ω)− s) , s ∈ [0, 1[ .

Finally we define the rearrangement ofu with respect to the Gauss measure,
denoted byu?, as the function whose level sets are half-spaces having the same
Gauss measure of the level sets ofu. More precisely we define

Φ (τ) = γn ({x ∈ Rn : x1 > τ}) =
1√
2π

∫ +∞

τ

exp

(
−t

2

2

)
dτ
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for all τ ∈ R. Thenu? is a map fromΩ? into [0,+∞[ defined by

u? (x) = u∗ (Φ (x1)) ,

whereΩ? = {x = (x1, x2, . . . , xn) ∈ Rn : x1 > λ} such thatγn (Ω?) = γn (Ω).
For statements about the properties of rearrangement with respect to a posi-

tive measure see, for example, [9], [20], [16].
We recall that iff (x) , g (x) are measurable functions, a Hardy type inequal-

ity (see [9])∫
Ω

|f (x) g (x)| γn (dx) ≤
∫

Ω?

f ? (x) g? (x) γn (dx) =

∫ γn(Ω)

0

f ∗ (s) g∗ (s) ds

and a Polya-Szëgo inequality for a Lipschitz continuous functionu (x) (see

[20])

(2.1)
∫

Rn

|∇u?| γn (dx) ≤
∫

Rn

|∇u| γn (dx)

holds. Moreover we have

∫
Ω

|f (x)|p γn (dx) =

∫
Ω?

|f ? (x)|p γn (dx) =

∫ γn(Ω)

0

f ∗ (s)p ds,

that is, theLp weighted norm is invariant under the rearrangement.
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Now define the weighted Sobolev spaceH1
0 (ϕ,Ω) as the closure ofC∞

0 (Ω)
under the norm

(2.2) ‖u‖H1
0 (ϕ,Ω) =

(∫
Ω

|∇u (x)|2 dγn (x)

) 1
2

.

We remark that the following Poincarè type inequality can be proved.

Proposition 2.1. Let Ω be a open subset ofRn with γn (Ω) < 1. For each
functionf ∈ H1

0 (ϕ,Ω) we have

(2.3) ‖f‖L2(ϕ,Ω) ≤ C ‖∇f‖L2(ϕ,Ω) ,

whereC is a constant depending onn andΩ.

Proof. By (2.1) we have the following inequality

‖f‖2
L2

(ϕ,Ω)

‖∇f‖2
L2

(ϕ,Ω)

≤
‖f ?‖2

L2
(ϕ,Ω?)

‖∇f ?‖2
L2

(ϕ,Ω?)

(2.4)

=

∫ +∞
λ

f ? (x1)
2 exp

(
−x2

1

2

)
dx1∫ +∞

λ

(
d

dx1
f ? (x1)

)2

exp
(
−x2

1

2

)
dx1

,

whereλ is such thatγn (Ω?) = γn (Ω) with Ω? = {x = (x1, x2, . . . , xn) ∈ Rn :
x1 > λ}. The ratio in (2.4) is bounded (see e.g. [14, Theorem 1.3.1./2]).
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The previous Poincaré type inequality ensures the equivalence between the
norm (2.2) and the following one

‖u‖H1
0 (ϕ,Ω) =

(∫
Ω

|u (x)|2 dγn (x)

) 1
2

+

(∫
Ω

|∇u (x)|2 dγn (x)

) 1
2

.

Now, we recall the following lemmas which will be useful in the following.

Lemma 2.2. Letf (x) , g (x) be measurable, positive functions such that∫ α

0

f (x) dx ≤
∫ α

0

g (x) dx, α ∈ [0, a] .

If h(x) ≥ 0 is a decreasing function then∫ α

0

f (x)h(x)dx ≤
∫ α

0

g (x)h(x)dx, α ∈ [0, a] .

Lemma 2.3. Letz be a bounded function,K a nonnegative integrable function,
andψ a function with bounded variation that vanishes at+∞. If

z (t) ≤
∫ ∞

t

K (s) z (s) ds+ ψ (t)

for almost everyt > 0, then

z (t) ≤
∫ ∞

t

exp

[∫ s

t

K (τ) dτ

]
[−dψ (s)]

for almost everyt > 0.
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3. Comparison Results
In this section we prove some comparison results for the solution of the problem
(1.1). We consider first the casec0(x) = 0 and then the casec0(x) 6= 0.

Theorem 3.1.LetΩ be an open set ofRn withγn (Ω) < 1 and letu ∈ H1
0 (ϕ,Ω)

be the solution of (1.1) with the assumptions (i), (ii) and (iii). Letc0(x) = 0 and

(3.1)
∫ +∞

λ

exp

(
τ 2

2

)(∫ +∞

τ

f ? (σ) exp

(
B (σ − τ)− σ2

2

)
dσ

)2

dτ < +∞,

whereλ is such thatΩ? = {x1 > λ} . Then we have

(3.2) u?(x1) ≤ w(x) for a.e.x ∈ Ω?

and

(3.3)
∫

Ω

|∇u|q ϕ (x) dx ≤
∫

Ω?

|∇w|q ϕ (x) dx for all 0 < q ≤ 2,

where

w (x)=w (x1)=

∫ x1

λ

exp

(
τ 2

2

)(∫ +∞

τ

f ? (σ) exp

(
B (σ − τ)− σ2

2

)
dσ

)
dτ

is the solution of the problem (1.3).

Remark 3.1. Condition (3.1) ensures the existence of a solutionw (x1) =
w? (x) ∈ H1

0 (ϕ,Ω) of (1.3). It is satisfied for a wide class of functions, for
instance for functionsf such that

f ? ≤ exp

(
−B (σ − τ) +

σ2

4

)
(1 + |τ |)

1
2
−ε ∀τ ≥ λ

for some constantsC > 0, ε > 0.
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Remark 3.2. The assumptionγn (Ω) < 1 is made to guarantee that the Poincarè
type inequality (2.3) holds.

Proof. If we choose in (1.2), for h > 0 andt ∈ [0, sup |u|[

ψ(x) =


h sgnu if |u| > t+ h,

(|u| − t) sgnu if t < |u| ≤ t+ h,

0 otherwise,

we get

1

h

∫
t<|u|≤t+h

aij(x)uxi
uxj

dx

+
1

h

∫
t<|u|≤t+h

bi(x)uxi
(|u| − t) sgnudx+

∫
|u|>t+h

bi(x)uxi
sgnudx

+
1

h

∫
t<|u|≤t+h

c(x) (|u| − t) sgnudx+

∫
|u|>t+h

c(x)u (x) sgnudx

=
1

h

∫
t<|u|≤t+h

f(x)ϕ(x) (|u| − t) sgnudx+

∫
|u|>t+h

f(x)ϕ(x) sgnudx.

By the ellipticity condition (i), (ii) and (iii) and lettingh go to 0, we obtain

(3.4) − d

dt

∫
|u|>t

|∇u|2 ϕ(x)dx

≤ B

∫
|u|>t

|∇u|ϕ (x) dx+

∫
|u|>t

f(x) sgnuϕ(x)dx
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On the other hand, the coarea formula (see [13]) and the isoperimetric inequality
with respect to the Gauss measure give

− d

dt

∫
|u|>t

|∇u|ϕ(x)dx ≥
∫

∂{|u|>t}?
ϕ(x)Hn−1(dx)(3.5)

=
1√
2π

exp

(
−Φ−1 (µ (t))2

2

)
,

where{|u| > t}? is the half space having Gauss measureµ(t).

Then using (3.5) and the Hölder inequality we obtain

(3.6) 1 ≤ (2π)
1
2 exp

(
Φ−1 (µ (t))2

2

)

× (−µ′(t))
1
2

(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

.

Using (3.6) and the Hölder inequality, (3.4) becomes

− d

dt

∫
|u|>t

|∇u|2 ϕ(x)dx

≤ B (2π)
1
2

∫ ∞

t

(
− d

ds

∫
|u|>s

|∇u|2 ϕ(x)dx

)
exp

(
Φ−1 (µ (s))2

2

)

× (−µ′ (s)) ds+

∫ µ(t)

0

f ∗ (s) ds.
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By Gronwall’s Lemma2.3we obtain

− d

dt

∫
|u|>t

|∇u|2 ϕ(x)dx(3.7)

≤
∫ µ(t)

0

exp

[
B (2π)

1
2

∫ µ(t)

r

exp

(
Φ−1 (τ)2

2

)
dτ

]
f ∗ (r) dr

=

∫ µ(t)

0

exp
[
B(Φ−1 (r)− Φ−1 (µ (t)))

]
f ∗ (r) dr.

Using again (3.6) we have

(3.8) 1 ≤ 2π exp
[
Φ−1 (µ (t))2] (−µ′ (t))

×
∫ µ(t)

0

exp
[
B(Φ−1 (r)− Φ−1 (µ (t)))

]
f ∗ (r) dr.

Then using (3.8) and integrating between0 andt, (3.7) becomes

t ≤ 2π

∫ γn(Ω)

µ(t)

exp
[
Φ−1 (σ)2] ∫ σ

0

exp
[
B(Φ−1 (s)− Φ−1 (σ))

]
f ∗ (s) dsdσ,

which, puttingµ (t) = s ands = Φ (x1) , gives

u? (x) = u? (x1)(3.9)

≤
∫ x1

λ

exp

(
τ 2

2

)(∫ +∞

τ

f ? (σ) exp

(
B (σ − τ)− σ2

2

)
dσ

)
dτ,
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whereλ is such thatγn (Ω?) = γn (Ω) with Ω? = {x = (x1, x2, . . . , xn) ∈
Rn : x1 > λ}. This completes the proof of (3.2) observing that the right-hand
side of (3.9) is the solution of (1.3).

Let us prove now (3.3). Using the Hölder inequality and (3.7) we have

(3.10) − d

dt

∫
|u|>t

|∇u|q ϕ (x) dx

≤ (−µ′ (t))1− q
2

(∫ µ(t)

0

exp
[
B(Φ−1 (r)− Φ−1 (µ (t)))

]
f ∗ (r) dr

) q
2

.

By (3.6) we have

(3.11) (−µ′ (t))−
q
2 (2π)−

q
2 exp

[
−
(q

2

)
Φ−1 (µ (t))2

]
≤
(
− d

dt

∫
|u|>t

|∇u|2 ϕ (x) dx

) q
2

.

Using (3.11), (3.7) and integrating between0 and+∞, (3.10) becomes∫
Ω

|∇u|q ϕ (x) dx ≤ (2π)
q
2

∫ γn(Ω)

0

(∫ s

0

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
f ∗ (r) dr

)q

× exp
[(q

2

)
Φ−1 (s)2

]
ds

= (2π)
1
2

∫ +∞

λ

(∫ +∞

τ

f ? (σ) exp

(
B (σ − τ)− σ2

2

)
dσ

)q

× exp

[
q

2
τ 2 − τ 2

2

]
dτ,
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that is, (3.3).

In the next theorem we consider the casec0(x) 6= 0 and we compare problem
(1.1) with a “symmetrized” problem which also takes account of the influence
of the term “c (x)u (x)”.

Theorem 3.2.LetΩ be an open set ofRn withγn (Ω) < 1 and letu ∈ H1
0 (ϕ,Ω)

be a solution of (1.1) with the assumptions (i), (ii) and (iii). Moreover, let

c+0 (x) = max {c0(x), 0} , c−0 (x) = max {−c0(x), 0} , c+0?(x) = c+0∗(Φ(x1)).

We will assume that the problem

(3.12)


− (wx1ϕ (x))x1

−Bwx1ϕ (x)

+
[
c+0?(x1)− c−?

0 (x1)
]
wϕ(x) = f ?(x1)ϕ (x) in Ω?,

w = 0 on∂Ω?,

has a solutionw(x) = w?(x1). Then

u∗ (s) ≤ w∗ (s)

holds in[0, s′1] , wheres′1 = inf
{
s : c+0∗ (s) > 0

}
, and∫ s

0

u∗ (r) dr ≤
∫ s

0

w∗ (r) dr

holds in]s′1, γn (Ω)].

http://jipam.vu.edu.au/
mailto:giuseppina.diblasio@dma.unina.it
http://jipam.vu.edu.au/


Linear Elliptic Equations and
Gauss Measure

G. di Blasio

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 24

J. Ineq. Pure and Appl. Math. 4(5) Art. 106, 2003

http://jipam.vu.edu.au

Proof. Using (iii), the Schwartz inequality and the Hardy inequality we have,

−
∫
|u|>t

c(x) |u| dx ≤ −
∫
|u|>t

c0(x) |u|ϕ(x)dx(3.13)

≤ −
∫ µ(t)

0

[
c+0∗(s)− c−∗0 (s)

]
u∗(s)ds,

wherec+0∗(s) is the increasing rearrangement ofc+0 (x) andµ(t) is the distribu-
tion function ofu(x). Proceeding as in Theorem3.1and using (3.13) we obtain

(3.14) − d

dt

∫
|u|>t

|∇u|2 ϕ(x)dx

≤ B

∫ ∞

t

(
− d

ds

∫
|u|>s

|∇u|2 ϕ(x)dx

) 1
2

(−µ′(s))
1
2ds

−
∫ µ(t)

0

[
c+0∗(s)− c−∗0 (s)

]
u∗(s)ds+

∫ µ(t)

0

f ∗(s)ds.

By (3.6) we have

(3.15)
1

−µ′ (t)
≤ 2π exp

[
Φ−1 (s)2](− d

dt

∫
|u|>t

|∇u|2 ϕ(x)dx

)
.

Following the same steps as in Theorem3.1and using (3.14), (3.15) becomes

(3.16) (−u∗)′ (s) ≤ 2π exp
[
Φ−1 (s)2] ∫ s

0

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
× [f ∗ (r) + [c−∗0 (r)− c+0∗ (r)]u∗ (r)]dr.
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Now if we consider the problem (3.12) we can proceed in the same way
except that the inequalities should be replaced by equalities.

Then if we callw(x) = w?(x) the solution of the problem (3.12), we obtain
the following equality

(3.17) (−w∗)′ (s) = 2π exp
[
Φ−1 (s)2] ∫ s

0

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
× [f ∗ (r) + [c−∗0 (r)− c+0∗ (r)]w∗ (r)]dr.

To prove the comparison result, we putv(s) = u∗(s)−w∗(s). By (3.16) and
(3.17) we have

(3.18) (−v)′ (s) ≤ 2π exp
[
Φ−1 (s)2] ∫ s

0

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
× [c−∗0 (r)− c+0∗ (r)]v (r) dr.

Let us supposec−∗0 (x) , c+0∗ (x) 6= 0 and let us puts′1 = inf
{
s : c+0∗ (s) > 0

}
ands′0 = sup

{
s : c−∗0 (s) > 0

}
. We write

V1(s) =

∫ s

0

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
c−∗0 (r) v(r)dr, s ∈ [0, s′0]

V2 (s) =

∫ s

s′1

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
c+0∗ (r) v(r)dr, s ∈ ]s′1, γn(Ω)] .

We assume initially thatc−∗0 (s) is continuous ats′0, we have to prove, now, that
V1(s) ≤ 0. Arguing as in [1] we observe that the existence of a solutionw (x) =
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w? (x) of (3.12), that implies (3.17), guarantees that the problem:
−
(
c−∗0 (s)−1 Z ′ (s)

)′
= (2π) exp

[
Φ−1 (s)2]Z (s) + 2π exp

[
Φ−1 (s)2]

×
∫ s

0
exp [B(Φ−1 (r)− Φ−1 (s))] f ∗ (r) dr,

Z (0) = Z ′(s′0) = 0,

has the following positive solution

Z (s) =

∫ s

0

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
c−∗0 (r)w∗(r)dr.

This allows us to state (see [5]) that the problem

(3.19)


(
c−∗0 (s)−1 ξ′ (s)

)′
+ λ (2π) exp

[
Φ−1 (s)2] ξ (s) = 0,

ξ (0) = ξ′(s′0) = 0,

has the first eigenvalueλ1 > 1, and consequently in the following problem
(
c−∗0 (s)−1 V ′

1 (s)
)′

+ 2π exp
[
Φ−1 (s)2]V1 (s) ≥ 0,

V1 (0) = V ′
1(s

′
0) = 0,

we have
V1(s) ≤ 0 and V ′

1(s) ≤ 0, s ∈ [0, s′0] ,
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that is,

(3.20) u∗(s) ≤ w∗(s), s ∈ [0, s′0] .

On the other hand, from (3.18) and (3.20), we have
(
c+0∗ (s)−1 V ′

2 (s)
)′ − 2π exp

[
Φ−1 (s)2]V2 (s) ≥ 0,

V2 (s′1) = V ′
2 (γn(Ω)) = 0.

Here we can use the maximum principle to obtainV2(s) ≤ 0. For Lemma2.2
with h(r) = c+0∗(r)

−1, we have for eachs ∈ ]s′1, γn(Ω)] ,

(3.21)
∫ s

s′1

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
u∗(r)dr

≤
∫ s

s′1

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
w∗(r)dr,

that is,
u∗(s′1) ≤ w∗(s′1).

On the other hand, from (3.16), (3.17), (3.20) and the definition ofv (s) we have

−v′(s) ≤ 0, s ∈ [s′0, s
′
1] .

Now sinceu∗(s′1) ≤ w∗(s′1), integrating betweens ands′1 we obtain

(3.22) u∗(s) ≤ w∗(s), s ∈ [s′0, s
′
1] .
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From (3.20) and (3.22) we have

u∗(s) ≤ w∗(s), s ∈ [0, s′1] .

Moreover, fors ∈
[
s′1,γn(Ω)

]
, (3.21) becomes

0 ≥
∫ s

0

exp
[
B(Φ−1 (r)− Φ−1 (s))

]
[u∗(r)− w∗(r)]dr,

that is, ∫ s

0

u∗(r)dr ≤
∫ s

0

w∗(r)dr, s ∈ [s′1, γn(Ω)] .

Finally we can remove the hypothesis about the continuity ofc−∗0 (s) at s′0 pro-
ceeding by approximations.

If c+0∗ (x) = 0 or c−∗0 (x) = 0 thens′1 = γn(Ω) or s′0 = 0 and the result
follows with the obvious modifications.
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