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Abstract

We present a method, based on series expansions and symmetric polynomials,
by which a mean of two variables can be extended to several variables. We
apply it mainly to the logarithmic mean.
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1. Introduction
Throughout this paper,n ≥ 2 is an integer andx1, . . . , xn are positive real
numbers.

The logarithmic mean ofx1 andx2 is defined by

L(x1, x2) =
x1 − x2

ln x1 − ln x2

if x1 6= x2,(1.1)

L(x1, x1) = x1.

There are several ways to extend this ton variables. Bullen ([1, p. 391]) writes
that perhaps the most natural extension is due to Pittenger [13]. Based on an
integral, it is

(1.2) L(x1, . . . , xn) =

[
(n− 1)

n∑
i=1

xn−2
i ln xi∏n

j=1
j 6=i

(ln xi − ln xj)

]−1

if all the xi’s are unequal. Bullen ([1, p. 392]) also writes that another natural
extension has been given by Neuman [9]. Based on the integral (6.3), it is

(1.3) L(x1, . . . , xn) = (n− 1)!
n∑

i=1

xi∏n
j=1
j 6=i

(ln xi − ln xj)

if all the xi’s are unequal. It is obviously different from (1.2).
If some of thexi’s are equal, then (1.2) and (1.3) are defined by continuity.
Mustonen [6] gave (1.3) in 1976 but published it only recently [7] in the

home page of his statistical data processing system, not in a journal. We will
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present his method. It is based on a series expansion and supports the notion
that (1.3) is the most natural extension of (1.1).

In general, we call a continuous real functionµ of two positive (or nonnega-
tive) variables a mean if, for allx1, x2, c > 0 (or x1, x2, c ≥ 0),

(i1) µ(x1, x2) = µ(x2, x1),

(i2) µ(x1, x1) = x1,

(i3) µ(cx1, cx2) = cµ(x1, x2),

(i4) x1 ≤ y1, x2 ≤ y2 ⇒ µ(x1, x2) ≤ µ(y1, y2),

(i5) min(x1, x2) ≤ µ(x1, x2) ≤ max(x1, x2).

Axiomatization of means is widely studied, see e.g. [1] and references
therein.
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2. Polynomials Corresponding to a Mean
To extend the arithmetic and geometric means

A(x1, x2) =
x1 + x2

2
, G(x1, x2) = (x1x2)

1
2

to n variables is trivial, but to visualize our method, it may be instructive.
Substituting

(2.1) x1 = eu1 , x2 = eu2 ,

we have

A(x1, x2) = Ã(u1, u2)(2.2)

=
1

2
(eu1 + eu2)

=
1

2

(
1 + u1 +

u2
1

2!
+ · · ·+ 1 + u2 +

u2
2

2!
+ · · ·

)
= 1 +

u1 + u2

2
+

1

2!
· u2

1 + u2
2

2
+

1

3!
· u3

1 + u3
2

2
+ · · · ,

G(x1, x2) = G̃(u1, u2)(2.3)

= (eu1eu2)
1
2 = e

u1+u2
2

= 1 +
u1 + u2

2
+

1

2!

(
u1 + u2

2

)2

+ · · ·

= 1 +
u1 + u2

2
+

1

2!
· (u1 + u2)

2

22
+

1

3!
· (u1 + u2)

3

23
+ · · · ,
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L(x1, x2) = L̃(u1, u2)(2.4)

=
eu1 − eu2

u1 − u2

=

(
1 + u1 +

u2
1

2!
+ · · · − 1− u2 −

u2
2

2!
− · · ·

)
(u1 − u2)

−1

=

(
u1 − u2 +

u2
1 − u2

2

2!
+

u3
1 − u3

2

3!
+ · · ·

)
(u1 − u2)

−1

= 1 +
u1 + u2

2
+

1

2!
· u2

1 + u1u2 + u2
2

3

+
1

3!
· u3

1 + u2
1u2 + u1u

2
2 + u3

2

4
+ · · · .

All these expansions are of the form

(2.5) 1 + P1(u1, u2) +
1

2!
P2(u1, u2) +

1

3!
P3(u1, u2) + · · · ,

where thePm’s are symmetric homogeneous polynomials of degreem. In all of
them,

P1(u1, u2) =
u1 + u2

2
= A(u1, u2).

The coefficients of

(2.6) Pm(u1, u2) = b0u
m
1 + b1u

m−1
1 u2 + · · ·+ bmum

2

are nonnegative numbers with sum1. They are forA

b0 =
1

2
, b1 = · · · = bm−1 = 0, bm =

1

2
,
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for G

bk =

(
m

k

)
2−m (0 ≤ k ≤ m),

and forL

b0 = · · · = bm =
1

m + 1
.

Let µ be a mean of two variables. Assume that it has a valid expansion (2.5).
Fix m ≥ 2, and denote byPm[µ] the polynomial (2.6). Its coefficients define
a discrete random variable, denoted byXm[µ], whose value isk (0 ≤ k ≤ m)
with probabilitybk. In particular,Xm[A] is distributed uniformly over{0, m},
andXm[G] binomially andXm[L] uniformly over{0, . . . ,m}. Their variances
satisfy

Var Xm[G] ≤ Var Xm[L] ≤ Var Xm[A],

which is an interesting reminiscent of

(2.7) G(x1, x2) ≤ L(x1, x2) ≤ A(x1, x2).

Let u1, u2 ≥ 0, then (2.7) holds in fact termwise:

(2.8) Pm[G](u1, u2) ≤ Pm[L](u1, u2) ≤ Pm[A](u1, u2)

for all m ≥ 1. The functions

Rm[µ](u1, u2) = (Pm[µ](u1, u2))
1
m

are means. In particular, forA they are moment means

Rm[A](u1, u2) =

(
um

1 + um
2

2

) 1
m

= Mm(u1, u2),
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for G all of them are equal to the arithmetic mean

Rm[G](u1, u2) =
u1 + u2

2
= A(u1, u2),

and forL they are special cases of complete symmetric polynomial means and
Stolarsky means (see e.g. [1, pp. 341, 393])

Rm[L](u1, u2) =

[
um+1

1 − um+1
2

(m + 1)(u1 − u2)

] 1
m

=

(
um

1 + um−1
1 u2 + · · ·+ um

2

m + 1

) 1
m

.

Since thePm|µ]’s are symmetric and homogeneous polynomials of two vari-
ables, they can be extended ton variables. Thusµ can also be likewise extended.
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3. Trivial Extensions: A and G
Consider firstA. By (2.2),

Pm[A](u1, u2) =
um

1 + um
2

2
.

To extend it ton variables is actually as trivial as to extendA directly. We obtain

Pm[A](u1, . . . , un) =
um

1 + · · ·+ um
n

n
,

and so

A(x1, . . . , xn) =
∞∑

m=0

1

m!
Pm[A](u1, . . . , un)

=
1

n

(
∞∑

m=0

um
1

m!
+ · · ·+

∞∑
m=0

um
n

m!

)
=

1

n
(eu1 + · · ·+ eun) =

x1 + · · ·+ xn

n
.

Next, studyG. By (2.3),

Pm[G](u1, u2) =

(
u1 + u2

2

)m

,

which can be immediately extended to

Pm[G](u1, . . . , un) =

(
u1 + · · ·+ un

n

)m

,
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and so

G(x1, . . . , xn) =
∞∑

m=0

1

m!
Pm[G](u1, . . . , un)

=
∞∑

m=0

1

m!

(
u1 + · · ·+ un

n

)m

= e
u1+···+un

n = (eu1 · · ·eun)
1
n = (x1 · · ·xn)

1
n .

We present a “termwise” (cf. (2.8)) proof of the geometric-arithmetic mean
inequality

(3.1) G(x1, . . . , xn) ≤ A(x1, . . . , xn).

We can assume thatu1, . . . , un ≥ 0; if not, considercG ≤ cA for a suitable
c > 0. Let m ≥ 1. Then

(3.2) Pm[G](u1, . . . , un) ≤ Pm[A](u1, . . . , un)

or equivalently

(3.3) Rm[G](u1, . . . , un) ≤ Rm[A](u1, . . . , un),

since
u1 + · · ·+ un

n
≤
(

um
1 + · · ·+ um

n

n

) 1
m

by Schlömilch’s inequality (see e.g. [1, p. 203]). Therefore (3.1) follows.
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4. Extending L

Let 1 ≤ m ≤ n. Themth complete symmetric polynomialof u1, . . . , un ≥ 0
(see e.g. [1, p. 341]) is defined by

Cm(u1, . . . , un) =
∑

i1+···+in=m

u1
i1 · · ·un

in .

(Herei1, . . . , in ≥ 0, and we define00 = 1.)
Let us now studyL. DenoteQm = Pm[L]. By (2.4),

Qm(u1, u2) =
um

1 + um−1
1 u2 + · · ·+ um

2

m + 1
.

This can be easily extended to

(4.1) Qm(u1, . . . , un) =

(
n + m− 1

m

)−1

Cm(u1, . . . , un).

The corresponding mean,

Rm[L](u1, . . . , un) = Qm(u1, . . . , un)
1
m ,

is called [1] themth complete symmetric polynomial meanof u1, . . . , un.
Thus we extend

(4.2) L(x1, . . . , xn) = 1 +
∞∑

m=1

1

m!
Qm(u1, . . . , un).
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We compute this explicitly. Fixm ≥ 2. Assume thatu1, . . . , un ≥ 0 are
all unequal. We claim that if2 ≤ n ≤ m + 1, thenCm−n+1(u1, . . . , un) is
the (n − 1)th divided difference of the functionf(u) = um with arguments
u1, . . . , un. In other words,

(4.3) Cm−n+1(u1, . . . , un) =
Cm−n+2(u2, . . . , un)− Cm−n+2(u1, . . . , un−1)

un − u1

.

(Forn = 2, we have simplyCm−1(u1, u2) =
um
2 −um

1

u2−u1
.)

To prove this, note that fork ≥ 1

(4.4) Ck(u1, . . . , un) = uk
n + uk−1

n C1(u1, . . . , un−1)

+ · · ·+ unCk−1(u1, . . . , un−1) + Ck(u1, . . . , un−1)

and

Ck(u1, . . . , un) = Ck(u1, un) + Ck−1(u1, un)C1(u2, . . . , un−1)

+ · · ·+ C1(u1, un)Ck−1(u2, . . . , un−1) + Ck(u2, . . . , un−1).

Hence,

Cm−n+2(u2, . . . , un)− Cm−n+2(u1, . . . , un−1)

= Cm−n+2(u2, . . . , un)− Cm−n+2(u2, . . . , un−1, u1)

= um−n+2
n + um−n+1

n C1(u2, . . . , un−1) + · · ·+ Cm−n+2(u2, . . . , un−1)

− um−n+2
1 − um−n+1

1 C1(u2, . . . , un−1)− · · · − Cm−n+2(u2, . . . , un−1)

= (um−n+2
n − um−n+2

1 ) + (um−n+1
n − um−n+1

1 )C1(u2, . . . , un−1) + · · ·
+ (un − u1)Cm−n+1(u2, . . . , un−1)

http://jipam.vu.edu.au/
mailto:jorma.merikoski@uta.fi
http://jipam.vu.edu.au/


Extending Means of Two
Variables to Several Variables

Jorma K. Merikoski

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 23

J. Ineq. Pure and Appl. Math. 5(3) Art. 65, 2004

http://jipam.vu.edu.au

= (un − u1)
[
Cm−n+1(u1, un) + Cm−n(u1, un)C1(u2, . . . , un−1) + · · ·

+ Cm−n+1(u2, . . . , un−1)
]

= (un − u1)Cm−n+1(u1, . . . , un),

and (4.3) follows.
By a well-known formula of divided differences (see e.g. [4, p. 148]), we

now have

Cm−n+1(u1, . . . , un) =
n∑

i=1

um
i

Ui

,

where

Ui =
n∏

j=1
j 6=i

(ui − uj).

Therefore, since

1

(m− n + 1)!

(
n + (m− n + 1)− 1

m− n + 1

)−1

=
(n− 1)!

m!
,

we obtain

1

(m− n + 1)!
Qm−n+1(u1, . . . , un) =

(n− 1)!

m!
Cm−n+1(u1, . . . , un)

=
(n− 1)!

m!

n∑
i=1

um
i

Ui

.
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Hence, and because themth divided difference of the functionf(u) = um is 1
if m = n− 1 and0 if m ≤ n− 2, we have

L(x1, . . . , xn) = 1 +
∞∑

k=1

1

k!
Qk(u1, . . . , un)

= 1 +
∞∑

m=n

1

(m− n + 1)!
Qm−n+1(u1, . . . , un)

= 1 + (n− 1)!
∞∑

m=n

1

m!

n∑
i=1

um
i

Ui

= (n− 1)!
∞∑

m=n−1

1

m!

n∑
i=1

um
i

Ui

= (n− 1)!
∞∑

m=0

1

m!

n∑
i=1

um
i

Ui

= (n− 1)!
n∑

i=1

1

Ui

∞∑
m=0

um
i

m!
= (n− 1)!

n∑
i=1

eui

Ui

= (n− 1)!
n∑

i=1

eui∏n
j=1
j 6=i

(ui − uj)

= (n− 1)!
n∑

i=1

xi∏n
j=1
j 6=i

(ln xi − ln xj)
.

Thus (1.3) is found.
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5. Numerical Computation of L

Mustonen [7] noted that, in computingL numerically, the explicit formula (1.3)
is very unstable. He programmed a fast and stable algorithm based on (4.1),
(4.2), and (4.4). His experiments lead to a conjecture that, denotingGn =
G(1, . . . , n) andLn = L(1, . . . , n), we have

lim
n→∞

(Gn+1 −Gn) = lim
n→∞

(Ln+1 − Ln) =
1

e

and

lim
n→∞

Gn

n
= lim

n→∞

Ln

n
=

1

e
.

For Gn, these limit conjectures can be proved by using Stirling’s formula. For
Ln, they remain open.
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6. Inequality G ≤ L ≤ A

It is natural to ask, whether

(6.1) G(x1, . . . , xn) ≤ L(x1, . . . , xn) ≤ A(x1, . . . , xn)

is generally valid.
Forn = 2, this inequality is old (see e.g. [1, pp. 168-169]). Carlson [2] (see

also [1, p. 388]) sharpened the first part and Lin [5] (see also [1, p. 389]) the
second:

(6.2) (G(x1, x2)M1/2(x1, x2))
1
2 ≤ L(x1, x2) ≤ M1/3(x1, x2).

Neuman [9] defined (as a special case of [9, Eq. (2.3)])

(6.3) L(x1, . . . , xn) =

∫
En−1

(
exp

n∑
i=1

ui ln xi

)
du,

whereu1 + · · ·+ un = 1,

En−1 = {(u1, . . . , un−1) |u1, . . . , un−1 ≥ 0, u1 + · · ·+ un−1 ≤ 1},

and du = du1 · · ·dun−1. He ([9], Theorem 1 and the last formula) proved (6.1)
and reduced (6.3) into (1.3).

Pěcaríc and Šimíc [12] tied Neuman’s approach to a wider context. As a
special case ([12, Remark 5.4]), they obtained (1.3).
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Let V denote the Vandermonde determinant and letVi denote its subdeter-
minant obtained by omitting its last row andith column. Xiao and Zhang [14]
(unaware of [9]) defined

L(x1, . . . , xn) =
(n− 1)!

V (ln x1, . . . , ln xn)

n∑
i=1

(−1)n+ixiVi(ln x1, . . . , ln xn),

which in fact equals to (1.3). Also they proved (6.1).
We conjecture that (6.2) can be extended to

(G(x1, . . . , xn)M1/2(x1, . . . , xn))
1
2 ≤ L(x1, . . . , xn) ≤ M1/3(x1, . . . , xn).
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7. Inequalities Pm[G] ≤ Pm[L] ≤ Pm[A]

In view of (3.2) and (3.3), it is now natural to ask, whether (6.1) can be strength-
ened to hold termwise. In other words: Do we have

Pm[G] ≤ Pm[L] ≤ Pm[A]

or equivalently
Rm[G] ≤ Rm[L] ≤ Rm[A],

that is

(7.1)
u1 + · · ·+ un

n
≤ Qm(u1, . . . , un)

1
m ≤

(
um

1 + · · ·+ um
n

n

) 1
m

for all u1, . . . , un ≥ 0, m ≥ 1?
Fix u1, . . . , un and denoteqm = Qm(u1, . . . , un)

1
m . Neuman ([8, Corollary

3.2]; see also [1, pp. 342-343]) proved that

(7.2) k ≤ m ⇒ qk ≤ qm.

The first part of (7.1), q1 ≤ qm, is therefore true. We conjecture that the second
part is also true.

DeTemple and Robertson [3] gave an elementary proof of (7.2) for n = 2,
but Neuman’s proof for generaln is advanced, applyingB-splines.

Mustonen [7] gave an elementary proof of (7.1) for n = 2.
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8. Other Means
Pěcaríc and Šimíc [12] (see also [1, p. 393]) studied a very large class of means,
calledStolarsky-Tobey means, which includes all the ordinary means as special
cases. They first defined these means for two variables and then, applying cer-
tain integrals, extended them ton variables. It might be of interest to apply
our method to all these extensions, but we take only a small step towards this
direction.

Let r ands be unequal nonzero real numbers. (Actually [12] allows s = 0
and [1] allows r = 0, both of which are obviously incorrect.) Consider ([12,
Eq. (6)]) the mean

(8.1) Er,s(x1, x2) =

(
r

s
· xs

1 − xs
2

xr
1 − xr

2

) 1
s−r

,

wherex1 6= x2. Assuming thats 6= −r,−2r, . . . ,−(n − 2)r, this can be
extended ([12, Theorem 5.2(i)]) to

(8.2) Er,s(x1, . . . , xn)

=

[
(n− 1)! rn−1

s(s + r) · · · (s + (n− 2)r)

n∑
i=1

x
s+(n−2)r
i∏n

j=1
j 6=i

(xr
i − xr

j)

] 1
s−r

,

where all thexi’s are unequal.
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To extend (8.1) by our method, we simply note that

Er,s(x1, x2) =

[
xs

1 − xs
2

s(ln x1 − ln x2)

/
xr

1 − xr
2

r(ln x1 − ln x2)

] 1
s−r

=

(
L(xs

1, x
s
2)

L(xr
1, x

r
2)

) 1
s−r

,

which can be immediately extended to

Er,s(x1, . . . , xn)(8.3)

=

(
L(xs

1, . . . , x
s
n)

L(xr
1, . . . , x

r
n)

) 1
s−r

=

{
n∑

i=1

xs
i∏n

j=1
j 6=i

[s(ln xi − ln xj)]

/
n∑

i=1

xr
i∏n

j=1
j 6=i

[r(ln xi − ln xj)]

} 1
s−r

=

[(r

s

)n−1
n∑

i=1

xs
i∏n

j=1
j 6=i

(ln xi − ln xj)

/
n∑

i=1

xr
i∏n

j=1
j 6=i

(ln xi − ln xj)

] 1
s−r

.

This is obviously different from (8.2).
Unfortunately the problem of whether (8.3) indeed is a mean, i.e., whether it

lies between the smallest and largestxi, remains open.
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Addendum
Neuman ([10, Theorem 6.2]) proved the second part of (7.1) and [11] showed
that (8.3) is a mean.
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