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Abstract

We prove the existence of a solution for the nonlinear boundary value problem

N N
W) = f <,r, TR TA u(‘“'”+“J> . xel01],

WP (0)=0=u®)1),  0<i<m+1,

Monotone Methods Applied to

where f : [0,1] x R™* — R is continuous. The technique used here is a Some Higher Order Boundary
monotone method in the presence of upper and lower solutions. We introduce Value Problems
a new maximum principle which generalizes one due to Bai which in turn was Sefin (4. D 2

an improvement of a maximum principle by Ma. Johnny Henderson
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In this paper, we are concerned with the existence of solutions of the higher
order boundary value problem,

(1.1) umth) — f (as,uﬂ/’, . ,u(2m+2)) , x € 0,1],

(1.2) u®(0)=0=u®)(1), 0<i<m+]1,

where f : [0,1] x R™"? — R is continuous, andn is a given nonnegative plolstonsiieios o rlicle
. . . Some Higher Order Boundary
integer. Our results generalize those of Bgi whose own results were for Value Problems

m = 0 and involved an application of a new maximum principle for a fourth o M. Davie and
order two-parameter linear eigenvalue problem. The maximum principle was Johnny Henderson

used in the presence of upper and lower solutions in developing a monotone

method for obtaining solutions of the boundary value problémy)((1.2).

Whenm = 0, this boundary value problem arises from the study of static Title Page
deflection of an elastic bending beam wherelenotes the deflection of the Contents
beam andf(z, u, v”) would represent the loading force that may depend on the <« NS
deflection and the curvature of the beam; for example, sg8, [2, 14, 15].

Some attention also has been givenidy) (1.2) in applications whem: > 1, < >

such as Meirovitch13] who used higher even order boundary value problems Go Back

in studying the open-loop control of a distributed structure, and Cabhdagd

upper and lower solutions methods to study higher order problems sutiias ( Close

(1.2. Quit
The method of upper and lower solutions is thoroughly developed for sec- Page 3 of 20

ond order equations, and several authors have used the method for fourth order

problems (e, whenm = 0); see [, 3, 4, 12, 18]. Kelly [1(] and Klaasen

http://jipam.vu.edu.au
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[11] obtained early upper and lower solutions applications to higher order ordi-
nary differential equations. Recently, Ehme, Eloe, and Hendef§enployed
truncations analogous to those of] and [L1] and have extended the applica-
tions of upper and lower solutions 2anth order ordinary differential equations,
where there was no dependency on odd order derivatives. Recently, Ehme, Eloe,
and Henderson/] generalized those results to atw:th order ordinary differ-
ential equation satisfying fully nonlinear boundary conditions using upper and
lower solutions. _
. L. _ Monotone Methods Applied to

In their monotonicity method development, Ma, Zhang, and = gs- Some Higher Order Boundary
tablished results for the fourth order version af1j, (1.2) by requiring that Value Problems
f(z,u,v) be nondecreasing i and nonincreasing in. Bai's [] results were John M. Davis and
improvements of [ /] in that Bai weakened the monotonicity constraintsfon Johnny Henderson
This paper extends the methods and results of Bai. We obtain a maximum prin-
ciple for a higher order operator in the context of this paper, and we develop a Title Page
monotonicity method for appropriate higher order problems. The process yields
extremal solutions ofl(.1), (1.2).
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In this section, we obtain a maximum principle which generalizes the one given
by Bai [Z]. First, define

F= {u e 000 1] | (—1)1um+2-2(0) < 0 and
(—1)f@mt2=20(1) <0for0 <i <m+ 1},

. Monotone Methods Applied to
and then define the operatér: F — C|[0, 1] by Some Higher Order Boundary
Value Problems

_ 2m+4 2m+2 2m
Lu = ul ) — au ) 4 bum), John M. Davis and
Johnny Henderson

wherea, b > 0, a? — 4ab > 0, andu € F.
We will need the following result, which is a maximum principle that appears

: : - Title P
in Protter and Weinberget. {]. me rage
o Contents
Lemma 2.1. Suppose: () satisfies
44 44
u'(z) + g(a)d'(z) + h(z)u(z) 20,  z € (a,b), p R
whereh(z) < 0; g andh are bounded functions on any closed subsgt.of); Go Back
and there exists a € (a, b) such that Close
M = u(c) = max u(z) Quit
z€(a,b)
Page 5 of 20

is a nonnegative maximum. Thefr) = M. Moreover, ifh(zx) # 0, then

M - 0 J. Ineq. Pure and Appl. Math. 2(1) Art. 2, 2001
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Our next lemma extends maximum results frothdnd [L7] in a manner
useful for application to ourl(1), (1.2).

Lemma 2.2. If u € F satisfiesCu > 0, then

(2.1) (—=1)'uCm+2=20 (1) <0, 1<i<m+1.

Proof. Let Az = 2. Then

(2m—+4) au(2m+2) + bu(Qm) Monotone Methods Applied to

Lu=u Some Higher Order Boundary
(2m) Value Problems
=(A—-1r)(A—ry)u""
John M. Davis and
> 0 Johnny Henderson
where
- a+va®—4b >0 Title Page
1,72 = — =~ U.
2 Contents
Let
y=(A— 7a2)u(2m) — 2m+2) _ rgu@m). 44 42
Then(A — r;)y > 0 and soy” > ry. On the other handy, 7, > 0 andu € F < 4
imply Go Back
y(0) = U(2m+2)(0) - T2u(2m)<0) <0, Close
(1) = a2 (1) = (1) < 0 Qui
ui
By Lemmaz2.1, w n concl h < 0 for 1]. Hen
y Lemma2.1, we can conclude that(z) < 0 for z € [0, 1]. Hence Page 6 of 20

u®m ) (z) — rou®™(2) <0, z € [0,1].
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Using this, Lemma&.1, and the fact that
u®M(0)>0 and  u®™(1) >0,

we getu®™(z) > 0 for all z € [0,1]. The boundary conditions. (2) in turn
imply (2.0). m

Lemma 2.3.[5] Given(a, b) € R?, the boundary value problem

u — au” +bu =0,

(2.2) w(0) = u"(0) = 0 = u(1) = u"(1),

has a nontrivial solution if and only if

(2.3)

for somek € N.

In developing a monotonicity method relative th1), (1.2), we will apply
an extension of Lemma.3. This extension we can state as a corollary.

Corollary 2.4. Given(a,b) € R?, the boundary value problem

u(2m+4) o au(2m+2) + bu(2m) _ O7

@4 u®(0) =0 = u(1),

0<i:<m+1,

has a nontrivial solution if and only if2.3) holds for somé < N.

Monotone Methods Applied to
Some Higher Order Boundary
Value Problems

John M. Davis and
Johnny Henderson

Title Page
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Proof. Suppose: is a solution of 2.4). Letv(z) = u®*™(x). Then
0= u(2m+4) o au(2m+2) + bu(2m)

— (u(2m))<4) —a (u®™)" 4 pu@m
= oW —av” 4 bv
and
v(0) =0 =2"(0)
v(1) =0=12"(1).
Henceuv(x) is a solution of 2.2) and so £.3) holds. Each step is reversible and
therefore the converse direction holds as well. O

Monotone Methods Applied to
Some Higher Order Boundary
Value Problems

John M. Davis and
Johnny Henderson
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In this section, we develop a monotone method which yields solutiors 3f (

(1.2).

Definition 3.1. Let o € C?™+4[0, 1]. We saya is anupper solutionof (1.1),
(1.2 provided

o (z) > f(a,a(x), o (z),.

( 1) (2m+2— 27,( )S

( 1)a2m+2 21( )S

Definition 3.2. Let 3 € C®™+4)[0,1]. We sayg3 is alower solutionof (1.1),
(1.2) provided

P £ 10,00, 1),
(1 200) < o,
(1)) < o,

,aPm (), ze0,1],
0<i<m+l1,
0<i<m+1.

BT (@), we|0,1],
0<i<m+1,
0<i<m+1.

Definition 3.3. A functionv € C®™)|0, 1] is in theorder interval (3, ] if, for
each0 <i <m,

(_1>iﬁ(2mf2i)(x) < (_1>iv(2m72i)(x) < (_1)ia(2mf2i)(x)’ = [0’ 1].
Fora,b > 0andf : [0,1] x R™"*? — R, define

fr(zyug, ury oo Uumer) = f(x, ug, Uy e oy Upp1) + DUy, — Q1.

Monotone Methods Applied to
Some Higher Order Boundary
Value Problems

John M. Davis and
Johnny Henderson
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Then (L.1) is equivalent to
(3.1) Lu = w7 — g CmH2) 4y, 2m) — Az, u,u”, ... ,u(2m+2)).

Therefore, ifa is an upper solution ofl( 1), (1.2), thena is an upper solution
for (3.1), (1.2). The same is true for the lower solutigh,
Our main goal now is to obtain solutions & .{), (1.2).

Theorem 3.1.Let« and 5 be upper and lower solutions, respectively, fbrl),
(1.2) which satisfy

BP(z) < a®™(z) and () +r(a - 5) () 2 o (@),

for z € [0,1] and wheref : [0,1] x R™*? — R is continuous. Let,b > 0,
a? —4b >0, and

a+va®—4b
rLre = —5" -
2
Suppose
f(fL',Uo,Ul,...,S,Um+1) —f(l',UO,Ul,...,t,Um+1) Z —b(S—t),
for
B () <t <s < al(2),
whereug, uq, ..., un_1,unt1 € Randz € [0, 1]. Suppose also that
f(x7u07u17"'7umap) —f<l',U0,U1,...,Um,O') < a(P_U)a
for
a2 () —r(a = §)P(@) < 0 < p+r(a—5)*"()

Monotone Methods Applied to
Some Higher Order Boundary
Value Problems

John M. Davis and
Johnny Henderson
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with

p < B () +r(a - ) (2),
whereug, uy, ..., u, € Randz € [0, 1]. Then there exist sequencgs, }, -,
and{3,}:7, in C®m+4 such that

a=a and [ =0,

which converge irC 2% to extremal solutions of1.1), (1.2) in the order in-

terval [3, a]. Furthermore, ifm is even, these sequences satisfy the montonicity ~ Monotone Methods Applied to
Some Higher Order Boundary

conditions Value Problems
@2 . . . John M. Davis and

{af | }._, is nonincreasing fof even Ty Honerane
{af?"}""_ is nondecreasing forodd
{B%"}>"_ is nondecreasing for even Title Page
{ﬁﬁf“}zio is nonincreasing foi odd Contents

If m is odd, the sequences satisfy the montonicity conditions <44 44
{a?}™ is nondecreasing for even S %
{af?1* is nonincreasing fo odd Go Back
{B#9}"", is nonincreasing for even Close
{B%7}"", is nondecreasing for odd Quit

Proof. Consider the associated problem Page 11 of 20

(32) u(2m+4) (.T) - au(2m+2) (Z’) "’ bu(zm) (;L’) = f (aj’ Sp’ ()0//’ e ¢(2m+2)) R J. Ineq. Purlt.a and Appl. Math. 2(1) Art. 2, 2001
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satisfying (..2), wherep € C?™+2)[0,1]. Sincea,b > 0, (a,b) is not an
eigenvalue pair of4.2). By Lemmaz2.3 and the Fredholm Alternative’], the
problem 3.2), (1.2) has a unique solution,. Based on this, we can define the
operator

T : 20, 1] — CPm+0, 1]

by 7y = u. Next, let
O — {cp e 00 1] | (—1)'a® < (—1)ip®) < (~1)i3), 0 <i<m,
anda®*? — r(a — 6)(27”)} _

Fory € C, set

o 6)(2m) < S0(2m—‘,—2) < 5(2m+2) —|—T(Oé

C is a nonempty, closed, bounded subset06t"+2)[0, 1].
w = T1. Then, forzx € [0, 1],
L{a—w)(x) = (a —w)* I (z) - a(a

- w)(2m+2>( )+ b(ar = w) ) (x)
(), .

> f* (x,a(:c) 2m+2 (Z‘)) ( (), w(2m+2 <$))
= [ (z,a(@),... a2 (2) = f (2,0(@), ..., @™ (@)
 afa = 9P (a) + oo - ) )
>0,
and by the definition ofy,
(=)' (@—w)®2720(0) <0,  0<i<m+1,
(—Di(a—w)®m220(1) <0,  0<i<m+1

Employing Lemma&.2, we have

(1) (@ —w)® 220 (z) <0,  1<i<m+1, z€[0,1].

Monotone Methods Applied to
Some Higher Order Boundary
Value Problems

John M. Davis and
Johnny Henderson
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By a similar argument, we see that

(—1)'(w = P22 (z) <0, 1<i<m+1, €01

Hence
(_1)ia(2m+2—2i) < (_1)iw(2m+2—2i) < (_1)2'6(2711—4-2—22‘)7 1 < i <m+ 1.
Note
(o — W) () — r(a — w)®™(z) <0, z € [0, 1],
or

(3.3) w2 () 4 (o — w) @ (z) > D (), z € 0,1].
Using (3.3 we have

WD (1) (o — B) P (2) > WP (2) + (o — w) P (2)

> o2m+2) (z)

or
a2 (z) — (o — B)E)(z) < W™ (), z € 0,1].

By a similar argument, we can conclude
w@m+2) () < [em+2) () +r(a— ﬂ)(zm) (x), x € [0, 1].

Therefore 7 : C — C.

Monotone Methods Applied to
Some Higher Order Boundary
Value Problems

John M. Davis and
Johnny Henderson
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Next, letu; = 7 p; anduy, = 7 o Wherep:, o € C with

(—1)'8 < (1), 0<i<m,
(2m+2) + T( 6)(2m) > 80(22m+2)'

We claim that the analogous inequalities hold in terms,0ti;. That is,
3.4 (1)l < (=), 0<i<m,
. (2m+2) + r( 6)(2,”) > uézm+2)'

To verify the claim, note first that
E(UQ - Ul)(l‘) = f (I’, ©2, 90/2,7 e 7¢g2m+2)> - f (CC) @1, 90/1,, e 7¢§2m+2))
>0

and ‘
(uz — u1)®(0) = 0 = (uz — uy) (1),

By LemmaZ2.2, we have

(_1)i(u2 . ul)(2m+2—2z’) (ZL‘) S 07

0<i:<m.

1<i<m+1, z€l0,1],
or

(=D (@) < (1) u™ (@),
By the same reasoning used to shibw C' — C, we deduce

(2m+2) (2m) (2m+2)
+r(a—3) > Us .

1<i<m+1, z€]0,1].

Monotone Methods Applied to
Some Higher Order Boundary

Value Problems

John M. Davis and
Johnny Henderson
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Therefore 8.4) holds.
Finally, we construct our sequences. Define

Qp = @, O{n:TO{n_l, 'I’LZ 17

60:67 6n:7—6n—1; n > 1.

Then{a,},, {B.}22, € C®™*+1 But, in particular, from the earlier portion

of the proof {«a,,}°°,, {#.}>2, C C and
(—1)iad™ 7 < (18P 1<i<m+,
a(()2m+2) < ﬂézm+2) —l—r(ao _ ﬁo)(Qm)'
We can argue as before that

(_ 1)ia(2m+2*2i) Z (_ 1)iag2m+2*2i)

(3.5) ’ | | | |
> > (=B > (i 1< <m+ 1,
and
g(2m+2) _ 5(()2m+2) 0 2m+2) _ O[((]2m+2)7
(3.6) al™ ) —r(ag — Bo)®™ < a®m+?),

BED < G (g — By) ™.
From the definition of7,
Lan(x) = al"™ (@) — acf?™? (z) + ba™ ()
= f (x, Qp1(x),. .. ,045171”) (x))

Monotone Methods Applied to
Some Higher Order Boundary

Value Problems

John M. Davis and
Johnny Henderson
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and

This in turn yields

o (@) = f* (w, an 1 (@), 0l @)
3.7) + aa™ () — ba@m (z)
< £ (w.0na(@). 0P (@)
+a [ﬁ@m“) +r(a = 8)] (@) - b3%7 ()
and
(3.8) a®(0)=0=a)(1), 0<i<m+1.
Analogously,

B (@) < £ (3, s (@), B (@)
+a [P (e = B)M] (2) - o3P (),
BE0)=0=pP(1), 0<i<m+1.

n

By (3.5—(3.7), there exists a constait,, s > 0 (independent of. andz) such
that

(3.9) ™ (2)| < Mo forallz €0, 1].

Monotone Methods Applied to
Some Higher Order Boundary
Value Problems

John M. Davis and
Johnny Henderson
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By (3.9), for eachn € N, there exists a, € (0, 1) such that?" ™ (t,,) = 0.
Using this and §.9), we obtain

(3.10)  |al?"(2)| = < M, 5.

Oé;2m+3)(tn)—|—/ Oé£L2m+4)(S) ds
tn

Combining @3.6) and @.8) and arguing as above, we know that there is a con-
stantN, g > 0 (independent of. andx) such that

Monotone Methods Applied to
Some Higher Order Boundary

(3-11) |O‘£LZ)($)’ < Na,ﬂv I<i<2m+ 27 LS [07 1]' Value Problems
By (3.5, (3.10, and @.11), we have{a,}°, is bounded inC™*%-norm. jﬁﬂﬁn“y”HDe%Zri’;‘i

Similarly, {,}:2, is bounded irC>™*+4-norm as well.
Appropriate equicontinuity conditions are satisfied as well, and then by stan-

dard convergence theorems as well as the monotonl(:l{yy&‘ } and Title Page
n=0 Contents
(24)
{ﬁn , 0 < i < m, it follows that{«,} -, and{b,} -, converge to the
extremal solutlons of3.1), (1.2) and hence to the extremal solutions dfij, o s
(1.2). O < >
Go Back
Close
Quit
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We conclude the paper with two examples which illustrate the usefulness of

Theorem3.1above.
Exampled.1 Consider the boundary value problem

6)

1
ul —u"(z) — Pu(‘l) + sin 7, z € [0,1],
(4.1) w(0) = u"(0) = u(0) =0,
u(1) = u"(1) = u™®(1) = 0.
One can easily verify that the conditions of Theorérare satisfied if we take
a(z) = —% sinmz as an upper solution ané(z) = 0 as a lower solution of

(4.1). We then conclude that there exists a solutiofy), of (4.1) such that
—Zsinme < u(x) < 0forz e [0,1].

Exampled.2 Consider the boundary value problem

ul® = —u"(z) + % (u(4))2 + sin 7z, z € [0, 1],
42 w(0) = w'(0) = u®(0) = 0,
u(1) = u"(1) = u®(1) = 0

Again, the hypotheses of Theoregnl hold for the upper solutiom(z) =

—1 cosmz and the lower solutiom(z) = 0. Hence, there exists a solution,

u(x), of (4.2) satisfying— = cos mz < u(z) < 0 forz € [0, 1].
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