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Abstract

We prove the existence of a solution for the nonlinear boundary value problem

u(2m+4) = f
(
x, u, u′′, . . . , u(2m+2)

)
, x ∈ [0, 1],

u(2i)(0) = 0 = u(2i)(1), 0 ≤ i ≤ m + 1,

where f : [0, 1] × Rm+2 → R is continuous. The technique used here is a
monotone method in the presence of upper and lower solutions. We introduce
a new maximum principle which generalizes one due to Bai which in turn was
an improvement of a maximum principle by Ma.
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1. Introduction
In this paper, we are concerned with the existence of solutions of the higher
order boundary value problem,

u(2m+4) = f
(
x, u, u′′, . . . , u(2m+2)

)
, x ∈ [0, 1],(1.1)

u(2i)(0) = 0 = u(2i)(1), 0 ≤ i ≤ m+ 1,(1.2)

wheref : [0, 1] × Rm+2 → R is continuous, andm is a given nonnegative
integer. Our results generalize those of Bai [2], whose own results were for
m = 0 and involved an application of a new maximum principle for a fourth
order two-parameter linear eigenvalue problem. The maximum principle was
used in the presence of upper and lower solutions in developing a monotone
method for obtaining solutions of the boundary value problem (1.1), (1.2).

Whenm = 0, this boundary value problem arises from the study of static
deflection of an elastic bending beam whereu denotes the deflection of the
beam andf(x, u, u′′) would represent the loading force that may depend on the
deflection and the curvature of the beam; for example, see [1, 5, 9, 14, 15].
Some attention also has been given to (1.1), (1.2) in applications whenm ≥ 1,
such as Meirovitch [13] who used higher even order boundary value problems
in studying the open-loop control of a distributed structure, and Cabada [3] used
upper and lower solutions methods to study higher order problems such as (1.1),
(1.2).

The method of upper and lower solutions is thoroughly developed for sec-
ond order equations, and several authors have used the method for fourth order
problems (i.e., whenm = 0); see [1, 3, 4, 12, 18]. Kelly [ 10] and Klaasen

http://jipam.vu.edu.au/
file:Johnprotect T1	extunderscore Mprotect T1	extunderscore Davis@baylor.edu
file:hendej2@mail.auburn.edu
http://jipam.vu.edu.au/


Monotone Methods Applied to
Some Higher Order Boundary

Value Problems

John M. Davis and
Johnny Henderson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 20

J. Ineq. Pure and Appl. Math. 2(1) Art. 2, 2001

http://jipam.vu.edu.au

[11] obtained early upper and lower solutions applications to higher order ordi-
nary differential equations. Recently, Ehme, Eloe, and Henderson [6] employed
truncations analogous to those of [10] and [11] and have extended the applica-
tions of upper and lower solutions to2mth order ordinary differential equations,
where there was no dependency on odd order derivatives. Recently, Ehme, Eloe,
and Henderson [7] generalized those results to any2mth order ordinary differ-
ential equation satisfying fully nonlinear boundary conditions using upper and
lower solutions.

In their monotonicity method development, Ma, Zhang, and Fu [17] es-
tablished results for the fourth order version of (1.1), (1.2) by requiring that
f(x, u, v) be nondecreasing inu and nonincreasing inv. Bai’s [2] results were
improvements of [17] in that Bai weakened the monotonicity constraints onf .
This paper extends the methods and results of Bai. We obtain a maximum prin-
ciple for a higher order operator in the context of this paper, and we develop a
monotonicity method for appropriate higher order problems. The process yields
extremal solutions of (1.1), (1.2).
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2. A Maximum Principle
In this section, we obtain a maximum principle which generalizes the one given
by Bai [2]. First, define

F =
{
u ∈ C(2m+4)[0, 1]

∣∣∣ (−1)iu(2m+2−2i)(0) ≤ 0 and

(−1)iu(2m+2−2i)(1) ≤ 0 for 0 ≤ i ≤ m+ 1
}
,

and then define the operatorL : F → C[0, 1] by

Lu = u(2m+4) − au(2m+2) + bu(2m),

wherea, b ≥ 0, a2 − 4ab ≥ 0, andu ∈ F .
We will need the following result, which is a maximum principle that appears

in Protter and Weinberger [16].

Lemma 2.1. Supposeu(x) satisfies

u′′(x) + g(x)u′(x) + h(x)u(x) ≥ 0, x ∈ (a, b),

whereh(x) ≤ 0; g andh are bounded functions on any closed subset of(a, b);
and there exists ac ∈ (a, b) such that

M = u(c) = max
x∈(a,b)

u(x)

is a nonnegative maximum. Thenu(x) ≡ M . Moreover, ifh(x) 6≡ 0, then
M = 0.
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Our next lemma extends maximum results from [2] and [17] in a manner
useful for application to our (1.1), (1.2).

Lemma 2.2. If u ∈ F satisfiesLu ≥ 0, then

(2.1) (−1)iu(2m+2−2i)(x) ≤ 0, 1 ≤ i ≤ m+ 1.

Proof. LetAx = x′′. Then

Lu = u(2m+4) − au(2m+2) + bu(2m)

= (A− r1)(A− r2)u
(2m)

≥ 0

where

r1, r2 =
a±

√
a2 − 4b

2
≥ 0.

Let
y = (A− r2)u

(2m) = u(2m+2) − r2u
(2m).

Then(A− r1)y ≥ 0 and soy′′ ≥ r1y. On the other hand,r1, r2 ≥ 0 andu ∈ F
imply

y(0) = u(2m+2)(0)− r2u
(2m)(0) ≤ 0,

y(1) = u(2m+2)(1)− r1u
(2m)(1) ≤ 0.

By Lemma2.1, we can conclude thaty(x) ≤ 0 for x ∈ [0, 1]. Hence

u(2m+2)(x)− r2u
(2m)(x) ≤ 0, x ∈ [0, 1].
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Using this, Lemma2.1, and the fact that

u(2m)(0) ≥ 0 and u(2m)(1) ≥ 0,

we getu(2m)(x) ≥ 0 for all x ∈ [0, 1]. The boundary conditions (1.2) in turn
imply (2.1).

Lemma 2.3. [5] Given(a, b) ∈ R2, the boundary value problem

(2.2)
u(4) − au′′ + bu = 0,

u(0) = u′′(0) = 0 = u(1) = u′′(1),

has a nontrivial solution if and only if

(2.3)
a

(kπ)2
+

b

(kπ)4
+ 1 = 0

for somek ∈ N.

In developing a monotonicity method relative to (1.1), (1.2), we will apply
an extension of Lemma2.3. This extension we can state as a corollary.

Corollary 2.4. Given(a, b) ∈ R2, the boundary value problem

(2.4)
u(2m+4) − au(2m+2) + bu(2m) = 0,

u(2i)(0) = 0 = u(2i)(1), 0 ≤ i ≤ m+ 1,

has a nontrivial solution if and only if(2.3) holds for somek ∈ N.
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Proof. Supposeu is a solution of (2.4). Let v(x) = u(2m)(x). Then

0 = u(2m+4) − au(2m+2) + bu(2m)

=
(
u(2m)

)(4) − a
(
u(2m)

)′′
+ bu(2m)

= v(4) − av′′ + bv

and
v(0) = 0 = v′′(0)

v(1) = 0 = v′′(1).

Hencev(x) is a solution of (2.2) and so (2.3) holds. Each step is reversible and
therefore the converse direction holds as well.
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3. The Monotone Method
In this section, we develop a monotone method which yields solutions of (1.1),
(1.2).

Definition 3.1. Let α ∈ C(2m+4)[0, 1]. We sayα is anupper solutionof (1.1),
(1.2) provided

α(2m+4)(x) ≥ f(x, α(x), α′′(x), . . . , α(2m+2)(x)), x ∈ [0, 1],

(−1)iα(2m+2−2i)(0) ≤ 0, 0 ≤ i ≤ m+ 1,

(−1)iα(2m+2−2i)(1) ≤ 0, 0 ≤ i ≤ m+ 1.

Definition 3.2. Let β ∈ C(2m+4)[0, 1]. We sayβ is a lower solutionof (1.1),
(1.2) provided

β(2m+4)(x) ≤ f(x, β(x), β′′(x), . . . , β(2m+2)(x)), x ∈ [0, 1],

(−1)iβ(2m+2−2i)(0) ≤ 0, 0 ≤ i ≤ m+ 1,

(−1)iβ(2m+2−2i)(1) ≤ 0, 0 ≤ i ≤ m+ 1.

Definition 3.3. A function v ∈ C(2m)[0, 1] is in theorder interval[β, α] if, for
each0 ≤ i ≤ m,

(−1)iβ(2m−2i)(x) ≤ (−1)iv(2m−2i)(x) ≤ (−1)iα(2m−2i)(x), x ∈ [0, 1].

Fora, b ≥ 0 andf : [0, 1]× Rm+2 → R, define

f ∗(x, u0, u1, . . . , um+1) = f(x, u0, u1, . . . , um+1) + bum − aum+1.
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Then (1.1) is equivalent to

(3.1) Lu = u(2m+4) − au(2m+2) + bu(2m) = f ∗(x, u, u′′, . . . , u(2m+2)).

Therefore, ifα is an upper solution of (1.1), (1.2), thenα is an upper solution
for (3.1), (1.2). The same is true for the lower solution,β.

Our main goal now is to obtain solutions of (3.1), (1.2).

Theorem 3.1.Letα andβ be upper and lower solutions, respectively, for(1.1),
(1.2) which satisfy

β(2m)(x) ≤ α(2m)(x) and β(2m+2)(x) + r(α− β)(2m)(x) ≥ α(2m+2)(x),

for x ∈ [0, 1] and wheref : [0, 1] × Rm+2 → R is continuous. Leta, b ≥ 0,
a2 − 4b ≥ 0, and

r1, r2 =
a±

√
a2 − 4b

2
.

Suppose

f(x, u0, u1, . . . , s, um+1)− f(x, u0, u1, . . . , t, um+1) ≥ −b (s− t) ,

for
β(2m)(x) ≤ t ≤ s ≤ α(2m)(x),

whereu0, u1, . . . , um−1, um+1 ∈ R andx ∈ [0, 1]. Suppose also that

f(x, u0, u1, . . . , um, ρ)− f(x, u0, u1, . . . , um, σ) ≤ a (ρ− σ) ,

for
α(2m+2)(x)− r(α− β)(2m)(x) ≤ σ ≤ ρ+ r(α− β)(2m)(x)
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with
ρ ≤ β(2m+2)(x) + r(α− β)(2m)(x),

whereu0, u1, . . . , um ∈ R andx ∈ [0, 1]. Then there exist sequences{αn}∞n=0

and{βn}∞n=0 in C(2m+4) such that

α0 = α and β0 = β,

which converge inC(2m+4) to extremal solutions of(1.1), (1.2) in the order in-
terval [β, α]. Furthermore, ifm is even, these sequences satisfy the montonicity
conditions {

α(2i)
n

}∞
n=0

is nonincreasing fori even,{
α(2i)

n

}∞
n=0

is nondecreasing fori odd,{
β(2i)

n

}∞
n=0

is nondecreasing fori even,{
β(2i)

n

}∞
n=0

is nonincreasing fori odd.

If m is odd, the sequences satisfy the montonicity conditions{
α(2i)

n

}∞
n=0

is nondecreasing fori even,{
α(2i)

n

}∞
n=0

is nonincreasing fori odd,{
β(2i)

n

}∞
n=0

is nonincreasing fori even,{
β(2i)

n

}∞
n=0

is nondecreasing fori odd.

Proof. Consider the associated problem

(3.2) u(2m+4)(x)− au(2m+2)(x) + bu(2m)(x) = f
(
x, ϕ, ϕ′′, . . . , ϕ(2m+2)

)
,
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satisfying (1.2), whereϕ ∈ C(2m+2)[0, 1]. Sincea, b ≥ 0, (a, b) is not an
eigenvalue pair of (2.2). By Lemma2.3 and the Fredholm Alternative [8], the
problem (3.2), (1.2) has a unique solution,u. Based on this, we can define the
operator

T : C(2m+2)[0, 1] → C(2m+4)[0, 1]

by T ϕ = u. Next, let

C =
{
ϕ ∈ C(2m+2)[0, 1]

∣∣∣ (−1)iα(2i) ≤ (−1)iϕ(2i) ≤ (−1)iβ(2i), 0 ≤ i ≤ m,

andα(2m+2) − r(α− β)(2m) ≤ ϕ(2m+2) ≤ β(2m+2) + r(α− β)(2m)
}
.

C is a nonempty, closed, bounded subset ofC(2m+2)[0, 1]. For ψ ∈ C, set
ω = T ψ. Then, forx ∈ [0, 1],

L(α− ω)(x) = (α− ω)(2m+4)(x)− a(α− ω)(2m+2)(x) + b(α− ω)(2m)(x)

≥ f ∗
(
x, α(x), . . . , α(2m+2)(x)

)
− f ∗

(
x, ψ(x), . . . , ψ(2m+2)(x)

)
= f

(
x, α(x), . . . , α(2m+2)(x)

)
− f

(
x, ψ(x), . . . , ψ(2m+2)(x)

)
− a(α− ψ)(2m+2)(x) + b(α− ψ)(2m)(x)

≥ 0,

and by the definition ofα,

(−1)i(α− ω)(2m+2−2i)(0) ≤ 0, 0 ≤ i ≤ m+ 1,

(−1)i(α− ω)(2m+2−2i)(1) ≤ 0, 0 ≤ i ≤ m+ 1.

Employing Lemma2.2, we have

(−1)i(α− ω)(2m+2−2i)(x) ≤ 0, 1 ≤ i ≤ m+ 1, x ∈ [0, 1].
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By a similar argument, we see that

(−1)i(ω − β)(2m+2−2i)(x) ≤ 0, 1 ≤ i ≤ m+ 1, x ∈ [0, 1].

Hence

(−1)iα(2m+2−2i) ≤ (−1)iω(2m+2−2i) ≤ (−1)iβ(2m+2−2i), 1 ≤ i ≤ m+ 1.

Note
(α− ω)(2m+2)(x)− r(α− ω)(2m)(x) ≤ 0, x ∈ [0, 1],

or

(3.3) ω(2m+2)(x) + r(α− ω)(2m)(x) ≥ α(2m+2)(x), x ∈ [0, 1].

Using (3.3) we have

ω(2m+2)(x) + r(α− β)(2m)(x) ≥ ω(2m+2)(x) + r(α− ω)(2m)(x)

≥ α(2m+2)(x)

or
α(2m+2)(x)− r(α− β)(2m)(x) ≤ ω(2m+2)(x), x ∈ [0, 1].

By a similar argument, we can conclude

ω(2m+2)(x) ≤ β(2m+2)(x) + r(α− β)(2m)(x), x ∈ [0, 1].

Therefore,T : C → C.
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Next, letu1 = T ϕ1 andu2 = T ϕ2 whereϕ1, ϕ2 ∈ C with

(−1)iϕ
(2i)
2 ≤ (−1)iϕ

(2i)
1 , 0 ≤ i ≤ m,

ϕ
(2m+2)
1 + r(α− β)(2m) ≥ ϕ

(2m+2)
2 .

We claim that the analogous inequalities hold in terms ofu1, u2. That is,

(3.4)
(−1)iu

(2i)
2 ≤ (−1)iu

(2i)
1 , 0 ≤ i ≤ m,

u
(2m+2)
1 + r(α− β)(2m) ≥ u

(2m+2)
2 .

To verify the claim, note first that

L(u2 − u1)(x) = f
(
x, ϕ2, ϕ

′′
2, . . . , ϕ

(2m+2)
2

)
− f

(
x, ϕ1, ϕ

′′
1, . . . , ϕ

(2m+2)
1

)
≥ 0

and
(u2 − u1)

(2i)(0) = 0 = (u2 − u1)
(2i)(1), 0 ≤ i ≤ m.

By Lemma2.2, we have

(−1)i(u2 − u1)
(2m+2−2i)(x) ≤ 0, 1 ≤ i ≤ m+ 1, x ∈ [0, 1],

or

(−1)iu
(2m+2−2i)
2 (x) ≤ (−1)iu

(2m+2−2i)
1 (x), 1 ≤ i ≤ m+ 1, x ∈ [0, 1].

By the same reasoning used to showT : C → C, we deduce

u
(2m+2)
1 + r(α− β)(2m) ≥ u

(2m+2)
2 .
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Therefore (3.4) holds.
Finally, we construct our sequences. Define

α0 = α, αn = T αn−1, n ≥ 1,

β0 = β, βn = T βn−1, n ≥ 1.

Then{αn}∞n=0, {βn}∞n=0 ⊂ C(2m+4). But, in particular, from the earlier portion
of the proof,{αn}∞n=0, {βn}∞n=0 ⊂ C and

(−1)iα
(2m+2−2i)
0 ≤ (−1)iβ

(2m+2−2i)
0 , 1 ≤ i ≤ m+ 1,

α
(2m+2)
0 ≤ β

(2m+2)
0 + r(α0 − β0)

(2m).

We can argue as before that

(3.5)
(−1)iα

(2m+2−2i)
0 ≥ (−1)iα

(2m+2−2i)
1

≥ · · · ≥ (−1)iβ
(2m+2−2i)
1 ≥ (−1)iβ

(2m+2−2i)
0 , 1 ≤ i ≤ m+ 1,

and

(3.6)

β(2m+2) = β
(2m+2)
0 , α(2m+2) = α

(2m+2)
0 ,

α
(2m+2)
0 − r(α0 − β0)

(2m) ≤ α(2m+2)
n ,

β(2m+2)
n ≤ β

(2m+2)
0 + r(α0 − β0)

(2m).

From the definition ofT ,

Lαn(x) = α(2m+4)
n (x)− aα(2m+2)

n (x) + bα(2m)
n (x)

= f ∗
(
x, αn−1(x), . . . , α

(2m+2)
n−1 (x)

)
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and
α(2i)

n (0) = 0 = α(2i)
n (1), 0 ≤ i ≤ m+ 1.

This in turn yields

(3.7)

α(2m+4)
n (x) = f ∗

(
x, αn−1(x), . . . , α

(2m+2)
n−1 (x)

)
+ aα(2m+2)

n (x)− bα(2m)
n (x)

≤ f ∗
(
x, αn−1(x), . . . , α

(2m+2)
n−1 (x)

)
+ a

[
β(2m+2) + r(α− β)(2m)

]
(x)− bβ(2m)(x)

and

(3.8) α(2i)
n (0) = 0 = α(2i)

n (1), 0 ≤ i ≤ m+ 1.

Analogously,

β(2m+4)
n (x) ≤ f ∗

(
x, βn−1(x), . . . , β

(2m+2)
n−1 (x)

)
+ a

[
β(2m+2) + r(α− β)(2m)

]
(x)− bβ(2m)(x),

β(2i)
n (0) = 0 = β(2i)

n (1), 0 ≤ i ≤ m+ 1.

By (3.5)–(3.7), there exists a constantMα,β > 0 (independent ofn andx) such
that

(3.9)
∣∣α(2m+4)

n (x)
∣∣ ≤Mα,β for all x ∈ [0, 1].
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By (3.8), for eachn ∈ N, there exists atn ∈ (0, 1) such thatα(2m+3)
n (tn) = 0.

Using this and (3.9), we obtain

(3.10)
∣∣α(2m+3)

n (x)
∣∣ =

∣∣∣∣α(2m+3)
n (tn) +

∫ x

tn

α(2m+4)
n (s) ds

∣∣∣∣ ≤Mα,β.

Combining (3.6) and (3.8) and arguing as above, we know that there is a con-
stantNα,β > 0 (independent ofn andx) such that

(3.11)
∣∣α(i)

n (x)
∣∣ ≤ Nα,β, 1 ≤ i ≤ 2m+ 2, x ∈ [0, 1].

By (3.5), (3.10), and (3.11), we have{αn}∞n=0 is bounded inC(2m+4)-norm.
Similarly, {βn}∞n=0 is bounded inC(2m+4)-norm as well.

Appropriate equicontinuity conditions are satisfied as well, and then by stan-

dard convergence theorems as well as the monotonicity of
{
α

(2i)
n

}∞
n=0

and{
β

(2i)
n

}∞
n=0

, 0 ≤ i ≤ m, it follows that{αn}∞n=0 and{bn}∞n=0 converge to the

extremal solutions of (3.1), (1.2) and hence to the extremal solutions of (1.1),
(1.2).
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4. Examples
We conclude the paper with two examples which illustrate the usefulness of
Theorem3.1above.

Example4.1. Consider the boundary value problem

(4.1)

u(6) = −u′′(x)− 1

π2
u(4) + sin πx, x ∈ [0, 1],

u(0) = u′′(0) = u(4)(0) = 0,

u(1) = u′′(1) = u(4)(1) = 0.

One can easily verify that the conditions of Theorem3.1are satisfied if we take
α(x) = − 1

π2 sin πx as an upper solution andβ(x) ≡ 0 as a lower solution of
(4.1). We then conclude that there exists a solution,u(x), of (4.1) such that
− 1

π2 sin πx ≤ u(x) ≤ 0 for x ∈ [0, 1].

Example4.2. Consider the boundary value problem

(4.2)

u(6) = −u′′(x) +
1

π4

(
u(4)

)2
+ sin πx, x ∈ [0, 1],

u(0) = u′′(0) = u(4)(0) = 0,

u(1) = u′′(1) = u(4)(1) = 0.

Again, the hypotheses of Theorem3.1 hold for the upper solutionα(x) =
− 1

π
cos πx and the lower solutionβ(x) ≡ 0. Hence, there exists a solution,

u(x), of (4.2) satisfying− 1
π

cos πx ≤ u(x) ≤ 0 for x ∈ [0, 1].
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