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Abstract

In this paper we obtained existence and uniqueness results for the modified
second order slip Reynolds equation modeling the performance of the slider
head floating over a rotating disk inside a hard disk drive. The existence and
the uniqueness are proved using the Ky-Fan’s Lemma and some monotonicity
techniques.
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1. Introduction
The advent of mini-fabrication and the ability to develop micro-machines for
various applications have made micro-scale fluid dynamics increasingly impor-
tant. In terms of application, microelectromechanical systems are devices hav-
ing characteristic length of micrometer or even nanometer order. Microscale
flows are found in micro-pumps and micro-turbines and in such applications,
the flow cannot be considered as a continuum. This involves the selection of
an appropriate model and boundary conditions. This deviation is measured
by the Knudsen number(Kn) (the ratio of the molecular mean free path and
the film thickness). Normally, flow can be classified into three categories [2]:
Kn ≤ 10−3 the flow can be considered as a continuum;Kn > 10 the flow is
considered to be a free molecular flow;10−3 ≤ Kn ≤ 10 the flow can neither
be a continuum flow nor a free molecular one.

The conventional Navier-Stokes equations are based on a continuum as-
sumption and it is no longer valid if the Kundsen number is beyond a certain
limit [ 1]. A typical example is the case of the slider head floating over a rotating
disk inside a hard disk drive (HDD).

This type of thin-film problem has been approximated by the famous Reynolds
equation which is derived from the inertialess form of the Navier-Stokes equa-
tions combined with the continuity equation. Appropriate modifications such
as slip boundary conditions are the realm of micro-fluid mechanics. Another
approach is molecular-based models which are derived from kinetic theories.
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X1

X2X3

h2hh1

Upper plate is fixed

Lower plate is moving at constant velocity Uo

Figure 1: Slider-bearing flow geometry

1.1. Reynolds Equation and Molecular Models

1.1.1. Reynolds equation for thin film problems The well-known Reynolds
equation in the continuum regime is [7]:

∂

∂x1

(
ρh3

µ

∂p

∂x1

)
+

∂

∂x2

(
ρh3

µ

∂p

∂x2

)
= 6

(
2
∂(ρh)

∂t
+

∂(ρU0h)

∂x1

)
,

whereh is the local gas bearing thickness,p the local pressure,ρ the local gas
density,µ the viscosity andU0 is the moving plate velocity. In the slip regime
the above equation needs modifications. Taking the Hsia’s second order model,
the boundary conditions are given as follows [9]:

Ux1(x3 = 0) = U0 +
2− τ

τ
λ

∂Ux1

∂x3

∣∣∣∣
x3=0

− λ2

2

∂2Ux1

∂x2
3

∣∣∣∣
x3=0

+ · · ·
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Ux1(x3 = h) = −2− τ

τ
λ

∂Ux1

∂x3

∣∣∣∣
x3=h

− λ2

2

∂2Ux1

∂x2
3

∣∣∣∣
x3=h

+ · · ·

Ux2(x3 = 0) =
2− τ

τ
λ

∂Ux2

∂x3

∣∣∣∣
x3=0

− λ2

2

∂2Ux2

∂x2
3

∣∣∣∣
x3=0

+ · · ·

Ux2(x3 = h) = −2− τ

τ
λ

∂Ux2

∂x3

∣∣∣∣
x3=h

− λ2

2

∂2Ux2

∂x2
3

∣∣∣∣
x3=h

+ · · ·

Ux1 , Ux2 : the velocity distributions.
τ : is the surface accommodation coefficient.
λ: is the mean free path,λ = 16

5
µ
P

√
RT
2π

(whereR is a gas constant,T is a local

gas temperature andP = p
pa

with pa is the ambient temperature).
For these boundary conditions, the velocity distributions are obtained by solving
the momentum equation [9]:

Ux1 =
1

2µ
· ∂p

∂x1

(
x2

3 − hx3 − hλ− λ2
)

+ U0

(
1− λ + x3

h + 2λ

)
,

Ux2 =
1

2µ
· ∂p

∂x2

(
x2

3 − hx3 − hλ− λ2
)
.

The second order modified Reynolds equation can hence be obtained by in-
corporating the expressions ofUx1 andUx2 into the continuity equation and then
integrating fromx3 = 0 to x3 = h

∂(ρh)

∂t
+

1

2
· ∂(ρU0h)

∂x1

=
∂

∂x1

[
1

2µ
· ∂p

∂x1

ρ

(
h3

6
+ λh2 + λ2h

)]
+

∂

∂x2

[
1

2µ
· ∂p

∂x2

ρ

(
h3

6
+ λh2 + λ2h

)]
.
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Normally, the non-dimensional second order slip Reynolds equation (in the sta-
tionary regime) is used which is given by [7]:

(1.1) ∇
[(

H3P + 6KnH
2 + 6K2

n

H

P

)
∇P

]
= Λ · ∇(PH),

Λ : is the bearing vector,H = h
h2

.

1.1.2. The Molecular Models The mean free path is the average distance
travelled by a molecule between collision and is defined as:

(1.2) λ =
mean thermal speed
collision frequency

.

To obtain the mean free path, it is essential to calculate both the mean ther-
mal speed and collision frequency, the terms in equation (1.2) depend on the
molecular models used.

There exists three models: the (HS) Hard sphere model (equation (1.1)), the
variable hard sphere model (VHS) [2] and the (VSS) variable soft sphere [10].
If we take the (HS) model as a reference, we can write a generalized mean free
pathλ

′
for the three cases (HS, VHS, VSS) whereλ

′
= ξλ such that

• ξ = 1 for the (HS) model;

• ξ =
Γ( 9

2
−$)
6

π
1
2
−$ for the (VHS) model;

• ξ =
αΓ( 9

2
−$)

(α+1)(α+2)
π

1
2
−$ for the (VSS) model,
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whereα, $, Γ are determined by the type of gas and can be obtained from
experimental data.

The non-dimensional modified Reynolds equation may be obtained as:

(1.3) ∇
[(

H3P + 6ξKnH
2 + 6ξ2K2

n

H

P

)
∇P

]
= Λ · ∇(PH).

In [4] Chipot and Luskin studied an analogous equation without the6ξ2K2 H
P

term, they proved existence and uniqueness by using a change of the unknown
function which leads to a new problem in which the nonlinearity appears in the
convection term.

The same proof technique does not work in our case due to the degenerate
term6ξ2K2 H

P
, which motivated our intention to search in this sense.

In this work we will prove existence and uniqueness of weak solutions of
equation (1.3) using a generalization of the Ky-Fan Lemma and preserving the
idea of a new unknown function.
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2. Existence and Uniqueness of Solutions
2.1. Existence

We consider the following problem (P):

(P)


∇

[(
H3P + 6ξKnH

2 + 6ξ2K2
n

H
P

)
∇P

]
= Λ.∇(PH),

x = (x1, x2) ∈ Ω

P = Ψ in ∂Ω,

whereΩ is a region ofR2 with a smooth boundary∂Ω.

We assume that the functionsH : Ω → R andΨ : ∂Ω → R satisfy the
following hypothesis:

(A1)


H ∈ W 1,∞(Ω)

H is bounded inW 1,∞(Ω) anda ≤ H(x) ≤ b a.e inΩ

with a, b are two positives constants

(A2)


Ψ is the restriction to∂Ω of a smooth functioñΨ defined onΩ

such that‖∇Ψ̃‖L2(Ω) ≤ M

with M is a positive constant.

We introduce the following set in order to give a variational formulation of (P):

V :=
{
u ∈ H1(Ω) ∩ L∞(Ω) / ∃α > 0 such thatu(x) ≥ α a.e inΩ

}
.
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For the following, we denote by‖ · ‖ the norm inL2(Ω).

Definition 2.1. We say thatP is a weak solution of (P) if P − Ψ̃ ∈ H1
0 (Ω),

P ∈ V and

(2.1)
∫

Ω

(
H3P + 6ξKnH

2 + 6ξ2K2
n

H

P

)
∇P · ∇v dx

=

∫
Ω

PHΛ · ∇v dx ∀v ∈ H1
0 (Ω).

We prove the existence of a weak solution of (P) by using a change of the
unknown function. Let us write forP > 0,

(2.2)

(
H3P + 6ξKnH

2 + 6ξ2K2
n

H

P

)
∇P

= H3∇
(

P 2

2
+ 6ξKn

P

H
+ 6ξ2K2

n

log(P )

H2

)
+ 6ξKnPH∇H + 12ξ2K2

n log(P )∇H.

The new unknown function will be

(2.3) u =
P 2

2
+ 6ξKn

P

H
+ 6ξ2K2

n

log(P )

H2
.

We consider the functiong : ]0, +∞[ → R

g(t) =
t2

2
+ 6ξKnt + 6ξ2K2

n log(t).
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It is easy to see thatg is an increasing and bijective function. We have from the
above equality

(2.4) P =
1

H
κ(x, u),

with

(2.5) κ(x, u) = g−1
(
H2u + 6ξ2K2

n log H
)
.

Our initial problem (P) becomes inu

(Pu)



∇ · (H3u)

= ∇ · [(Λ− 6ξKn∇H) κ(x, u)− 12ξ2K2
n log κ(x, u)∇H]

+∇ · [12ξKn log H∇H] in Ω

u = Ψu =
Ψ2

2
+ 6ξKn

Ψ

H
+ 6ξ2K2

n

log(Ψ)

H2
in ∂Ω.

We set

Ψ̃u =
Ψ̃2

2
+ 6ξKn

Ψ̃

H
+ 6ξ2K2

n

log(Ψ̃)

H2
,

while keeping (due to (A2)) the fact that‖∇Ψ̃u‖ ≤ M1 (with M1 is a positive
constant).
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Definition 2.2. We say thatu is a weak solution of (Pu) if u− Ψ̃u ∈ H1
0 (Ω) and

(2.6)
∫

Ω

H3∇u.∇v dx =

∫
Ω

(Λ− 6ξKn∇H) κ(x, u)∇v dx

−
∫

Ω

12ξ2K2
n log κ(x, u)∇H∇v dx

+

∫
Ω

12ξKn log H∇H∇v dx ∀v ∈ H1
0 (Ω).

The equivalence between (P) and (Pu) is given by the following result.

Lemma 2.1. u is a weak solution of (Pu) if and only ifP, given by (2.4), is a
weak solution of (P).

Proof. It is clear from (2.2) that the two variational formulas are equivalent.
And from (2.3) it is obvious that ifP ∈ V thenu ∈ H1(Ω). It remains to show
that if u is a solution of (Pu) thenP ∈ V . From (2.4) we have thatP ∈ H1(Ω)
since(g−1)′ is bounded. On the other hand, we have classicallyu ∈ L∞(Ω).
From (2.4) we deduce thatP belongs toL∞(Ω) with P bounded away from0,
and the proof is ended.

Proposition 2.2. Under hypotheses (A1) and (A2), if we have

(2.7)
a3

Cpb2
(
‖Λ‖e

6ξKn
+ 3 ‖∇H‖

) > 1
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(whereCp is the constant of Poincaré [3], ‖Λ‖e is the Euclidean norm ofΛ),
then, for all solutionz1 of the following inequality∫

Ω

H3∇
(
z1 + Ψ̃u

)
· ∇z1dx

≤
∫

Ω

(Λ− 6ξKn∇H) κ(x, z1 + Ψ̃u)∇z1dx

−
∫

Ω

12ξ2K2
n log κ(x, z1 + Ψ̃u)∇H∇z1dx

+

∫
Ω

12ξKn log H∇H∇z1dx,

we have

(2.8) ‖∇z1‖ ≤ C.

Proof. We have∫
Ω

H3∇
(
z1 + Ψ̃u

)
· ∇z1dx

≤
∫

Ω

(Λ− 6ξKn∇H) κ(x, z1 + Ψ̃u)∇z1dx

−
∫

Ω

12ξ2K2
n log κ(x, z1 + Ψ̃u)∇H∇z1dx

+

∫
Ω

12ξKn log H∇H∇z1dx,
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then∫
Ω

H3(∇z1)
2 ≤

∫
Ω

(Λ− 6ξKn∇H) κ(x, z1 + Ψ̃u)∇z1

−
∫

Ω

12ξ2K2
n log κ(x, z1 + Ψ̃u)∇H∇z1

+

∫
Ω

12ξKn log H∇H∇z1 −
∫

Ω

H3∇z1∇Ψ̃u.

Due to the fact that, for alls ∈ R,

0 ≤ dg−1

ds
(s) =

g−1(s)

(g−1)2(s) + 6ξKng−1(s) + 6ξ2K2
n

≤ 1

6ξKn

,(2.9)

0 ≤ d

ds
log(g−1(s)) =

1

(g−1)2(s) + 6ξKng−1(s) + 6ξ2K2
n

≤ 1

6ξ2K2
n

,

it follows that

a3 ‖∇z1‖2 ≤ ‖(Λ− 6ξKn∇H)‖∞
1

6ξKn

×
[∥∥∥H2

(
z1 + Ψ̃u

)
+ 6ξ2K2

n log H − 1
∥∥∥ + |Ω|1/2 g−1(1)

]
‖∇z1‖

+ 2 ‖∇H‖∞
[∥∥∥H2

(
z1 + Ψ̃u

)
+ 6ξ2K2

n log H − 1
∥∥∥

+ |Ω|
1
2 log

(
g−1(1)

)]
‖∇z1‖

+ 12ξKn ‖log H∇H‖ ‖∇z1‖+ b3
∥∥∥∇Ψ̃u

∥∥∥ ‖∇z1‖ ,
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i.e.(
a3 − ‖(Λ− 6ξKn∇H)‖∞

1

6ξKn

Cpb
2 − 2 ‖∇H‖∞ Cpb

2

)
‖∇z1‖

≤ ‖(Λ− 6ξKn∇H)‖∞
1

6ξKn

[∥∥∥H2Ψ̃u + 6ξ2K2
n log H − 1

∥∥∥ + |Ω|1/2 g−1(1)
]

+ 2 ‖∇H‖∞
[∥∥∥H2Ψ̃u + 6ξ2K2

n log H − 1
∥∥∥ + |Ω|1/2 log

(
g−1(1)

)]
+ 12ξKn ‖log H∇H‖+ b3

∥∥∥∇Ψ̃u

∥∥∥ ,

where|Ω| is the measure ofΩ.

However, if
a3

Cpb2
(
‖Λ‖e

6ξKn
+ 3 ‖∇H‖∞

) > 1,

hence(
a3 − ‖(Λ− 6ξKn∇H)‖∞

1

6ξKn

Cpb
2 − 2 ‖∇H‖∞ Cpb

2

)
> 0,

then‖∇z1‖ ≤ C, where

C =
cte

a3 − ‖(Λ− 6ξKn∇H)‖∞
1

6ξKn
Cpb2 − 2 ‖∇H‖∞ Cpb2

such that

cte = ‖(Λ− 6ξKn∇H)‖∞
1

6ξKn

[∥∥∥H2Ψ̃u + 6ξ2K2
n log H − 1

∥∥∥ + |Ω|1/2 g−1(1)
]
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+ 2 ‖∇H‖∞
[∥∥∥H2Ψ̃u + 6ξ2K2

n log H − 1
∥∥∥ + |Ω|1/2 log

(
g−1(1)

)]
+ 12ξKn ‖log H∇H‖+ b3

∥∥∥∇Ψ̃u

∥∥∥ .

Now, we will prove the existence of a weak solution for the problem (Pu).

Proposition 2.3. If the hypotheses (A1), (A2) and (2.7) are verified then there
exists at least one weak solution for (Pu).

For the proof we need the following theorem:

Notation . We denote byF(X) the family of all non-empty finite subsets of
X and byF(X, x0) all elements ofF(X) containingx0. We shall denote by

conv(A) the convex hull ofA, byA
X

the closure ofA in X and byintX(A) the
interior of A in X.

Theorem 2.4.LetE be a topological vector space andX be a non-empty con-
vex subset ofE; Φ1, Φ2 : X ×X → R such that:

1. Φ1(χ, q) ≤ Φ2(χ, q) for all χ, q ∈ X andΦ2(χ, χ) ≤ 0 for all χ ∈ X.

2. For all A ∈ F(X) and allχ ∈ conv(A), q 7→ Φ1(χ, q) is lower semicon-
tinuous onconv(A).

3. For all q ∈ X, the set{χ ∈ X, Φ2(χ, q) > 0} is convex.

4. For all A ∈ F(X) and allχ, q ∈ conv(A) and for every net{qα} converg-
ing in X to q with Φ1(tχ + (1 − t)q, qα) ≤ 0 for all α and all t ∈ [0, 1] ,
we haveΦ1(χ, q) ≤ 0.
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5. There exists a non-empty closed and compactK of X andx0 ∈ K such
thatΦ1(x0, q) > 0 ∀q ∈ X\K.

Then there existsq ∈ K such thatΦ1(χ, q) ≤ 0 ∀χ ∈ X.

Remark 2.1. If the applicationq 7→ Φ1(χ, q) is lower semicontinuous onX for
all χ ∈ X, then the conditions (2) and (4) are verified.

Definition 2.3. [6]. T : X → 2E is said to be aKKM -application if for all
A ∈ F(X), conv(A) ⊆ ∪

χ∈A
T (χ).

First, we recall the following lemma that is a generalization of the Ky-Fan’s
lemma.

Lemma 2.5. [5]. Let X a non-empty convex subset⊆ E (a topological vector
space) andT : X → 2E is a KKM-application, we suppose that there exists
x0 ∈ X such that:

i) T (x0) ∩X
X

is compact onX.

ii) ∀A ∈ F(X, x0),∀χ ∈ conv(A), T (χ) ∩ conv(A) is closed inconv(A).

iii) ∀A ∈ F(X, x0), X ∩ ( ∩
χ∈conv(A)

T (χ))
X
∩ conv(A) =

(
∩

χ∈conv(A)
T (χ)

)
∩

conv(A).

Then ∩
χ∈X

T (χ) 6= ∅.
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Proof of Theorem2.4. We put for allχ ∈ X

T (χ) = {q ∈ X / Φ1(χ, q) ≤ 0} .

The condition (5) implies thatT (x0) ⊆ K , i.e. T (x0)
X

is compact onX.
The condition (2) implies that∀χ ∈ conv(A), T (χ) ∩ conv(A) is closed on
conv(A).
Conditions (1) and (3) imply thatT is aKKM−application.
Indeed, let us suppose the opposite (T is not aKKM−application), then there
existsA ∈ F(X) and there existsq0 ∈ conv(A) such thatq0 /∈ ∪

χ∈A
T (χ), i.e.

∀χ ∈ A, Φ1(χ, q0) > 0. However{χ ∈ X / Φ1(χ, q0) > 0} is convex, then
conv(A) ⊂ {χ ∈ X / Φ1(χ, q0) > 0}. ThereforeΦ1(q0, q0) > 0 by following
Φ2(q0, q0) > 0 (which is absurd).

It remains to show that

X ∩ ( ∩
χ∈conv(A)

T (χ))
X
∩ conv(A)

=

(
∩

χ∈conv(A)
T (χ)

)
∩ conv(A), for all A ∈ F(X).

Let q ∈ X ∩ ( ∩
χ∈conv(A)

T (χ))
X
∩ conv(A), then there exists a sequence(qα)

such thatqα → q andqα ∈ X ∩ ( ∩
χ∈conv(A)

T (χ)). Howeverqα ∈ ∩
χ∈conv(A)

T (χ)

implies thatΦ1(χ, qα) ≤ 0 for all χ ∈ conv(A), i.e. Φ1(tχ + (1− t)q, qα) ≤ 0,
for all χ, q ∈ conv(A) and for all t ∈ [0, 1] then (4) implies thatΦ1(χ, q) ≤ 0

for all χ ∈ conv(A) i.e. q ∈
(

∩
χ∈conv(A)

T (χ)

)
∩ conv(A). By application of
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Lemma2.5, there existsq ∈ K such thatq ∈ T (χ) ∀χ ∈ X, i.e. there exists
q ∈ K such thatΦ1(χ, q) ≤ 0 ∀χ ∈ X.

Proof of Proposition2.3. We make a translation for the unknown function to
bring it to the same space that functions test. Letw = u − Ψ̃u ∈ H1

0 (Ω), then
we searchw ∈ H1

0 (Ω) such that

(2.10)
∫

Ω

H3∇w · ∇vdx =

∫
Ω

(Λ− 6ξKn∇H) κ1(x, w)∇vdx

−
∫

Ω

12ξ2K2
n log κ1(x, w)∇H∇vdx +

∫
Ω

12ξKn log H∇H∇vdx

−
∫

Ω

H3∇Ψ̃u · ∇v dx ∀v ∈ H1
0 (Ω),

with κ1(x, w) = κ(x, w + Ψ̃u).
Let us consider the spaceE := H1

0 (Ω) endowed with its weak topology and

X :=
{

ϕ ∈ E / ‖ϕ‖H1
0 (Ω) ≤ C + 1

}
(C is the constant given in Proposition2.2). Consider the following applica-
tions:

Φ1(χ, q) := Φ2(χ, q) :=

∫
Ω

H3∇q∇(q − χ)dx−
∫

Ω

F (q)∇(q − χ)dx

such that

F (q) := (Λ− 6ξKn∇H) κ1(x, q)− 12ξ2K2
n log κ1(x, q)∇H

+ 12ξKn log H∇H −H3∇Ψ̃u
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for all χ, q in H1
0 (Ω).

We will show that conditions of the theorem2.4are satisfied.
Condition(1) is evidently satisfied. Since the applicationχ → Φ1(χ, q) is

linear then condition(3) is also verified. For condition(5) it is sufficient to take

K := X =
{

ϕ ∈ E / ‖ϕ‖H1
0 (Ω) ≤ C + 1

}
.

According to Remark2.1, it is sufficient to demonstrate that the application
q 7→ Φ1(χ, q) is weakly lower semicontinuous inH1

0 (Ω) to conclude that con-
ditions(2) and(4) are satisfied. Indeed, letqn ⇀ q in H1

0 (Ω), then there exists a
subsequenceqnk

such thatqnk
→ q in L2(Ω) and∇qnk

⇀ ∇q in L2(Ω). There-
fore while using the Lebesgue dominated convergence theorem and estimations
(2.9), we have∫

Ω

a2F (qnk
)∇qnk

− χ =

∫
Ω

a2F (qnk
)∇qnk

−
∫

Ω

a2F (qnk
)∇χ

→
∫

Ω

a2F (q)∇q −
∫

Ω

a2F (q)∇χ.

For the other term ofΦ1(χ, qnk
) we have∫

Ω

H3.∇qnk
∇(qnk

− χ) =

∫
Ω

H3 · ∇qnk
∇qnk

−
∫

Ω

H3 · ∇qnk
∇χ.

However∇qnk
⇀ ∇q in L2(Ω), then

∫
Ω

H3 · ∇qnk
∇χ →

∫
Ω

H3 · ∇q∇χ. It
remains to show thatq 7→

∫
Ω

H3 · (∇qnk
)2 is weakly lower semicontinuous in

H1
0 (Ω).
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We consider the applicationT : L2(Ω) → R, z 7→
∫

Ω
H3 · z2 which is con-

vex and strongly semi continuous inL2(Ω) therefore weakly semi continuous in
L2(Ω). However∇qnk

⇀ ∇q in L2(Ω) thenlim (H3 · ((∇qnk)
2 − (∇q)2)) ≥

0, from where we obtain the result.
By application of Theorem2.4, there existsw ∈ K such thatΦ1(χ, w) ≤ 0

for all χ ∈ X, howeverw ∈ intE(X) (according to Proposition2.2), then
Φ1(χ, w) ≤ 0. In particular, forχ = w + σ · ξ ∈ X, for all ξ ∈ D(Ω) andσ
appropriately chosen, we deduct thatΦ1(ξ, w) = 0, for all ξ ∈ H1

0 (Ω) (by den-
sity of D(Ω) in H1

0 (Ω)) which implies that there existsw ∈ H1
0 (Ω) satisfying

the equation (2.10).

It follows that we have solutions for the problems (Pu) and (P).

2.2. Uniqueness

In the next lemma we give a general monotonicity and uniqueness result for a
class of semi-linear elliptic problems.

Lemma 2.6. Let I ⊆ R and l : Ω × I → Rn an uniform Lipschitz function in
the following sense:

(2.11) ∃N > 0, |l(x, u1)− l(x, u2)| ≤ N |u1 − u2| ,
∀x ∈ Ω and u1, u2 ∈ R.

Let j : Ω → R be a function satisfyingj(x) ≥ α0 > 0 a.e.x ∈ Ω. Suppose that
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ui, i = 1, 2, is a weak solution to

(2.12)

 −∇ · (j(x)∇ui) = ∇ · l(x, ui), x ∈ Ω

ui = ϕi, x ∈ ∂Ω.

If ϕ1 ≥ ϕ2 a.e. on∂Ω, thenu1 ≥ u2 a.e. onΩ.

Proof. We takeu3 = u1 − u2 which satisfies the problem

(2.13)

 u3 ∈ ϕ1 − ϕ2 + H1
0 (Ω)∫

Ω
j(x)∇u · ∇vdx =

∫
Ω

(l(x, u1)− l(x, u2)) · ∇vdx.

We have thatu+
3 ∈ H1

0 (Ω), so we can take (as in [8]) v =
u+
3

u+
3 +δ

as a test function

in (2.13) with δ > 0, which gives

(2.14)
∫

Ω

j(x)∇u+
3 · ∇

(
u+

3

u+
3 + δ

)
dx

=

∫
Ω

(l(x, u1)− l(x, u2)) · ∇
(

u+
3

u+
3 + δ

)
dx.

However

∇
(

u+
3

u+
3 + δ

)
= δ

∇u+
3(

u+
3 + δ

)2 , ∇ log

(
1 +

u+
3

δ

)
=

∇u+
3(

u+
3 + δ

) ,
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which implies

(2.15)
∫

Ω

j(x)∇u+
3 · ∇

(
u+

3

u+
3 + δ

)
dx = δ

∫
Ω

j(x)

∣∣∣∣∇ log

(
1 +

u+
3

δ

)∣∣∣∣2 dx.

The right-hand side of (2.14) can be estimated as∣∣∣∣∫
Ω

(l(x, u1)− l(x, u2)) · ∇
(

u+
3

u+
3 + δ

)
dx

∣∣∣∣(2.16)

≤
n∑

i=1

∫
Ω

|li(x, u1)− li(x, u2)|
∣∣∣∣ ∂

∂xi

(
u+

3

u+
3 + δ

)∣∣∣∣ dx

≤ N
n∑

i=1

∫
Ω

|u3|
∣∣∣∣ ∂

∂xi

(
u+

3

u+
3 + δ

)∣∣∣∣ dx

= N

n∑
i=1

∫
Ω

∣∣∣∣u+
3

∂

∂xi

(
u+

3

u+
3 + δ

)∣∣∣∣ dx.

However ∣∣∣∣u+
3

∂

∂xi

(
u+

3

u+
3 + δ

)∣∣∣∣(2.17)

= δ

∣∣∣∣∣∂u+
3

∂xi

u+
3(

u+
3 + δ

)2

∣∣∣∣∣ ≤ δ

∣∣∣∣∂u+
3

∂xi

(
1

u+
3 + δ

)∣∣∣∣
= δ

∣∣∣∣ ∂

∂xi

log

(
1 +

u+
3

δ

)∣∣∣∣ ≤ δ

∣∣∣∣∇ log

(
1 +

u+
3

δ

)∣∣∣∣ .
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So, from (2.14) we obtain using also (2.15) – (2.17),

(2.18) α0

∫
Ω

∣∣∣∣∇ log

(
1 +

u+
3

δ

)∣∣∣∣2 dx ≤ N · n
∫

Ω

∣∣∣∣∇ log

(
1 +

u+
3

δ

)∣∣∣∣ dx.

Sincelog
(
1 +

u+
3

δ

)
∈ H1

0 (Ω), from the Poincaré inequality we deduce

(2.19)
∫

Ω

∣∣∣∣log

(
1 +

u+
3

δ

)∣∣∣∣2 dx ≤ C2,

whereC2 is independent onδ.
Then we haveu+

3 = 0 a.e.x ∈ Ω and the proof is ended.

Proposition 2.7. Under the hypotheses (A1) and (A2), we have uniqueness
among all weak solutions of problem (P).

Lemma 2.8. We suppose thatui is a weak solution to (Pu) corresponding to
the boundary dataΨi

u, i = 1, 2. If Ψ1
u ≥ Ψ2

u a.e. on∂Ω, thenu1 ≥ u2 a.e. on
Ω. Further, we have uniqueness among all weak solutions of problem (Pu).

Proof. We apply Lemma2.6with j = H3 and

l = (Λ− 6ξKn∇H) κ(x, u)− 12ξ2K2
n log κ(x, u)∇H + 12ξKn log H∇H.

Due to the fact that, for alls ∈ R,

0 ≤ dg−1

ds
(s) =

g−1(s)

(g−1)2(s) + 6ξKng−1(s) + 6ξ2K2
n

≤ 1

6ξKn

,
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0 ≤ d

ds
log(g−1(s)) =

1

(g−1)2(s) + 6ξKng−1(s) + 6ξ2K2
n

≤ 1

6ξ2K2
n

and the fact thatH ∈ W 1,∞(Ω), the Lipschitz condition (2.11) is satisfied for
l.

Proof of Proposition2.7. The proof is a consequence of Lemmas2.1 and2.8
and the fact thatg−1 is an increasing function.
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