UPPER AND LOWER BOUNDS FOR REGULARIZED DETERMINANTS

M. I. GIL'
Department of Mathematics
Ben Gurion University of the Negev P.0. Box 653, Beer-Sheva 84105, Israel gilmi@cs.bgu.ac.il

Received 11 January, 2007; accepted 21 January, 2008
Communicated by F. Hansen

Abstract

Let S_{p} be the von Neumann-Schatten ideal of compact operators in a separable Hilbert space. In the paper, upper and lower bounds for the regularized determinants of operators from S_{p} are established.

Key words and phrases: von Neumann-Schatten ideal, Regularized determinant.
2000 Mathematics Subject Classification 47B10.

1. UPPER bOUNDS

For an integer $p \geq 2$, let S_{p} be the von Neumann-Schatten ideal of compact operators A in a separable Hilbert space with the finite norm $N_{p}(A)=\left[\operatorname{Trace}\left(A A^{*}\right)^{p / 2}\right]^{1 / p}$ where A^{*} is the adjoint. Recall that for an $A \in S_{p}$ the regularized determinant is defined as

$$
\operatorname{det}_{p}(A):=\prod_{j=1}^{\infty}\left(1-\lambda_{j}(A)\right) \exp \left[\sum_{m=1}^{p-1} \frac{\lambda_{j}^{m}(A)}{m}\right]
$$

where $\lambda_{j}(A)$ are the eigenvalues of A with their multiplicities arranged in decreasing order.
The inequality

$$
\begin{equation*}
\operatorname{det}_{p}(A) \leq \exp \left[q_{p} N_{p}^{p}(A)\right] \tag{1.1}
\end{equation*}
$$

is well-known, cf. [2], p. 1106], [4, p. 194]. Recall that $\left|\operatorname{det}_{2}(A)\right| \leq e^{N_{2}^{2}(A) / 2}$, cf. [5], Section IV. 2]. However, to the best of our knowledge, the constant q_{p} for $p>2$ is unknown in the available literature although it is very important, in particular, for perturbations of determinants. In the present paper we suggest bounds for $q_{p}(p>2)$. In addition, we establish lower bounds for $\operatorname{det}_{p}(A)$. As far as we know, the lower bounds have not yet been investigated in the available literature.

Our results supplement the very interesting recent investigations of the von Neumann-Schatten operators [1, 3, 8, 9, 10]. In connection with the recent results on determinants, the paper [6]

[^0]should be mentioned. It is devoted to higher order asymptotics of Toeplitz determinants with symbols in weighted Wienar algebras.

To formulate the main result we need the algebraic equation

$$
\begin{equation*}
x^{p-2}=p(1-x)\left[1+\sum_{m=1}^{p-3} \frac{x^{m}}{m+2}\right] \quad(p>2) . \tag{1.2}
\end{equation*}
$$

Below we prove that it has a unique positive root $x_{0}<1$. Moreover,

$$
\begin{equation*}
x_{0} \leq \sqrt[p-2]{\frac{p}{p+1}} \tag{1.3}
\end{equation*}
$$

Theorem 1.1. Let $A \in S_{p}(p=3,4, \ldots)$. Then inequality (1.1) holds with

$$
q_{p}=\frac{1}{p\left(1-x_{0}\right)}
$$

The proof of this theorem is divided into a series of lemmas presented below.
Lemma 1.2. Equation (1.2) has a unique positive root $x_{0}<1$.
Proof. Rewrite (1.2) as

$$
g(x):=\frac{x^{p-2}}{p(1-x)}-\left(1+\sum_{m=3}^{p-1} \frac{x^{m-2}}{m}\right)=0 .
$$

Clearly, $g(0)=-1, g(x) \rightarrow+\infty$ as $x \rightarrow 1-0$. So (1.2) has at least one root from $(0,1)$. But from (1.2) it follows that a root from $[1, \infty)$ is impossible. Moreover, (1.2) is equivalent to the equation

$$
\frac{1}{p(1-x)}=\frac{1}{x^{p-2}}+\sum_{m=3}^{p-1} \frac{x^{m-p}}{m}
$$

The left part of this equation increases and the right part decreases on $(0,1)$. So the positive root is unique.

Furthermore, consider the function

$$
f(z):=\operatorname{Re}\left[\ln (1-z)+\sum_{m=1}^{p-1} \frac{z^{m}}{m}\right] \quad(z \in \mathbb{C} ; p>2) .
$$

Clearly,

$$
f(z)=-\operatorname{Re} \sum_{m=p}^{\infty} \frac{z^{m}}{m} \quad(|z|<1)
$$

Lemma 1.3. Let $w \in(0,1)$. Then

$$
|f(z)| \leq \frac{r^{p}}{p(1-w)} \quad(r \equiv|z|<w) .
$$

Proof. Clearly,

$$
|f(z)| \leq \sum_{m=p}^{\infty} \frac{r^{m}}{m} \quad(r<1)
$$

Consequently,

$$
|f(z)| \leq \int_{0}^{r} \sum_{m=p}^{\infty} s^{m-1} d s=\int_{0}^{r} s^{p-1} \sum_{k=0}^{\infty} s^{k} d s=\int_{0}^{r} \frac{s^{p-1} d s}{1-s}
$$

Hence we get the required result.
Lemma 1.4. For any $w \in(0,1)$ and all $z \in \mathbb{C}$ with $|z| \geq w$, the following inequality is valid:

$$
|f(z)| \leq h_{p}(w) r^{p} \quad \text { where } \quad h_{p}(w)=w^{-p}\left[w^{2}+\sum_{m=3}^{p-1} \frac{w^{m}}{m}\right] \quad(p>2) .
$$

Proof. Take into account that

$$
\left|(1-z) e^{z}\right|^{2}=\left(1-2 \operatorname{Re} z+r^{2}\right) e^{2 x} \leq e^{-2 \operatorname{Re} z+r^{2}} e^{2 \operatorname{Re} z}=e^{r^{2}} \quad(z \in \mathbb{C}),
$$

since $1+x \leq e^{x}, x \in \mathbb{R}$. So

$$
\left|(1-z) \exp \left[\sum_{m=1}^{p-1} \frac{z^{m}}{m}\right]\right| \leq \exp \left[r^{2}+\sum_{m=3}^{p-1} \frac{r^{m}}{m}\right] .
$$

Therefore,

$$
|f(z)| \leq r^{2}+\sum_{m=3}^{p-1} \frac{r^{m}}{m} \quad(z \in \mathbb{C})
$$

But

$$
\left[r^{2}+\sum_{m=3}^{p-1} \frac{r^{m}}{m}\right] r^{-p} \leq h_{p}(w) \quad(r \geq w) .
$$

This proves the lemma.
Lemmas 1.3 and 1.4 imply

Corollary 1.5. One has

$$
|f(z)| \leq \tilde{q}_{p} r^{p}(z \in \mathbb{C}, p>2) \quad \text { where } \quad \tilde{q}_{p}:=\min _{w \in(0,1)} \max \left\{h_{p}(w), \frac{1}{p(1-w)}\right\}
$$

However, function $h_{p}(w)$ decreases in $w \in(0,1)$ and $\frac{1}{p(1-w)}$ increases. So the minimum in the previous corollary is attained when

$$
h_{p}(w)=\frac{1}{p(1-w)} .
$$

This equation is equivalent to (1.2). So $\tilde{q}_{p}=q_{p}$ and we thus get the inequality

$$
\begin{equation*}
|f(z)| \leq q_{p} r^{p} \quad(z \in \mathbb{C}) \tag{1.4}
\end{equation*}
$$

Lemma 1.6. Let $A \in S_{p}, p>2$. Then $\operatorname{det}_{p}(A) \leq \exp \left[q_{p} w_{p}(A)\right]$ where

$$
w_{p}(A):=\sum_{k=1}^{\infty}\left|\lambda_{k}(A)\right|^{p} .
$$

Proof. Due to (1.4),

$$
\operatorname{det}_{p}(A) \leq \prod_{j=1}^{\infty} e^{q_{p}\left|\lambda_{j}(A)\right|^{p}} \leq \exp \left[\sum_{k=1}^{\infty} q_{p}\left|\lambda_{j}(A)\right|^{p}\right]
$$

As claimed.

Proof of Theorem 1.1. The assertion of Theorem 1.1 follows from the previous lemma and the inequality

$$
\sum_{k=1}^{\infty}\left|\lambda_{j}(A)\right|^{p} \leq N_{p}^{p}(A)
$$

cf. [5].
Furthermore, from (1.2) it follows that

$$
x_{0}^{p-2} \leq p\left(1-x_{0}\right) \sum_{m=0}^{p-3} x_{0}^{m}=p\left(1-x_{0}^{p-2}\right)
$$

since

$$
\sum_{m=0}^{p-3} x_{0}^{m}=\frac{1-x_{0}^{p-2}}{1-x_{0}}
$$

This proves inequality (1.3). Thus

$$
q_{p} \leq \frac{1}{p\left(1-\sqrt[p-2]{\frac{p}{p+1}}\right)}
$$

Note that if the spectral radius $r_{s}(A)$ of A is less than one, then according to Lemma 1.3 one can take

$$
q_{p}=\frac{1}{p\left(1-r_{s}(A)\right)}
$$

Corollary 1.7. Let $A, B \in S_{p} \quad(p>2)$. Then

$$
\left|\operatorname{det}_{p}(A)-\operatorname{det}_{p}(B)\right| \leq N_{p}(A-B) \exp \left[q_{p}\left(1+N_{p}(A)+N_{p}(B)\right)^{p}\right]
$$

Indeed, this result is due to Theorem 1.1] and the theorem by Seiler and Simon [7] (see also [4, p. 32]).

2. Lower Bounds

In this section for brevity we put $\lambda_{j}(A)=\lambda_{j}$. Denote by L a Jordan contour connecting 0 and 1 , lying in the disc $\{z \in \mathbb{C}:|z| \leq 1\}$, not containing the points $1 / \lambda_{j}$ for any eigenvalue λ_{j}, such that

$$
\begin{equation*}
\phi_{A}:=\inf _{s \in L ; k=1,2, \ldots}\left|1-s \lambda_{k}\right|>0 \tag{2.1}
\end{equation*}
$$

Let $l=|L|$ be the length of L. For example, if A does not have eigenvalues on $[1, \infty)$, then one can take $L=[0,1]$. In this case $l=1$ and $\phi_{A}=\inf _{k, s \in[0,1]}\left|1-s \lambda_{k}\right|$. If $r_{s}(A)<1$, then $l=1, \phi_{A} \geq 1-r_{s}(A)$.
Theorem 2.1. Let $A \in S_{p}(p=2,3, \ldots), 1 \notin \sigma(A)$ and condition (2.1) hold. Then

$$
\left|\operatorname{det}_{p}(A)\right| \geq e^{-\frac{l N_{p}^{p}(A)}{\phi_{A}}} .
$$

Proof. Consider the function

$$
D(z)=\prod_{j=1}^{\infty} G_{j}(z) \quad \text { where } \quad G_{j}(z):=\left(1-z \lambda_{j}\right) \exp \left[\sum_{m=1}^{p-1} \frac{z^{m} \lambda_{j}^{m}}{m}\right] .
$$

Clearly,

$$
D^{\prime}(z)=\sum_{k=1}^{\infty} G_{k}^{\prime}(z) \prod_{j=1, j \neq k}^{\infty} G_{j}(z)
$$

and

$$
G_{j}^{\prime}(z)=\left[-\lambda_{j}+\left(1-z \lambda_{j}\right) \sum_{m=0}^{p-2} z^{m} \lambda_{j}^{m+1}\right] \exp \left[\sum_{m=1}^{p} \frac{z^{m} \lambda_{j}^{m}}{m}\right] .
$$

But

$$
-\lambda_{j}+\left(1-z \lambda_{j}\right) \sum_{m=0}^{p-2} z^{m} \lambda_{j}^{m+1}=-z^{p-1} \lambda_{j}^{p}
$$

since

$$
\sum_{m=0}^{p-2} z^{m} z_{j}^{m}=\frac{1-\left(z \lambda_{j}\right)^{p-1}}{1-z \lambda_{j}}
$$

So

$$
G_{j}^{\prime}(z)=-z^{p-1} \lambda_{j}^{p} \exp \left[\sum_{m=1}^{p} \frac{z^{m} \lambda_{j}^{m}}{m}\right]=-\frac{z^{p-1} \lambda_{j}^{p}}{1-z \lambda_{j}} G_{j}(z)
$$

Hence, $D^{\prime}(z)=h(z) D(z)$, where

$$
h(z):=-z^{p-1} \sum_{k=1}^{\infty} \frac{\lambda_{k}^{p}}{1-z \lambda_{k}} .
$$

Consequently,

$$
D(1)=\operatorname{det}_{p}(A)=\exp \left[\int_{L} h(s) d s\right]
$$

But $|s| \leq 1$ for any $s \in L$ and thus

$$
\left|\int_{L} h(s) d s\right| \leq \sum_{k=1}^{\infty} \lambda_{k}^{p} \int_{L} \frac{|s|^{p-1}|d s|}{\left|1-s \lambda_{k}\right|} \leq w_{p}(A) l \phi_{A}^{-1}
$$

Therefore,

$$
\left.\left|\operatorname{det}_{p}(A)\right|=\mid \exp \left[\int_{L} h(s) d s\right]\right] \mid \geq \exp \left[-\left|\int_{L} h(s) d s\right|\right] \geq \exp \left[-w_{p}(A) l \phi_{A}^{-1}\right]
$$

This proves the theorem.

REFERENCES

[1] P. CHAISURIYA AND SING-CHEONG ONG, Schatten's theorems on functionally defined Schur algebras, Int. J. Math. Math. Sci., (14) 2005, 2175-2193.
[2] N. DUNFORD And J.T. SCHWARTZ, Linear Operators, Part II. Spectral Theory. Interscience Publishers, New York, London, 1963.
[3] L.G. GHEORGHE, Hankel operators in Schatten ideals, Ann. Mat. Pura Appl., IV Ser., 180(2) (2001), 203-210.
[4] I. GOHBERG, S. GOLBERG AND N. KRUPNIK, Traces and Determinants of Linear Operators, Birkháuser Verlag, Basel, 2000.
[5] I.C. GOHBERG AND M.G. KREIN, Introduction to the Theory of Linear Nonselfadjoint Operators, Trans. Mathem. Monographs, v. 18, Amer. Math. Soc., Providence, R. I., 1969.
[6] A. Yu KARLOVICH, Higher order asymptotics of Toeplitz determinants with symbols in weighted Wienar algebras, Math. Analysis Appl., 320 (2006), 944-963
[7] E. SEILER AND B. SIMON, An inequality for determinants, Proc. Nat. Acad. Sci., 72 (1975), 3277-3278.
[8] M. SIGG, A Minkowski-type inequality for the Schatten norm, J. Inequal. Pure Appl. Math., 6(3) (2005), Art. 87. [ONLINE: http://jipam.vu.edu.au/article.php?sid=560].
[9] M.W. WONG, Schatten-von Neumann norms of localization operators, Arch. Inequal. Appl., 2(4) (2004), 391-396.
[10] JINGBO XIA, On the Schatten class membership of Hankel operators on the unit ball, Ill. J. Math., 46(3) (2002), 913-928.

[^0]: This research was supported by the Kamea fund of the Israel.
 021-07

