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ABSTRACT. Let R be the convex subset of "Rdefined byq simultaneous linear matrix in-
equalities (LMI)A&” + >, xiAEJ) =0, 7 =1,2,...,q. Given a strictly positive vector
w = (w1,ws, -+ ,wy), theweighted analytic center,.(w) is the minimizerargmin (¢, (z)) of
the strictly convex functiom,,(z) = >_, w; log det[AV) (z)]~! overR. We give a necessary
and sufficient condition for a point 6® to be a weighted analytic center. We study énigmin
function in this instance and show that it is a continuously differentiable open function.

In the special case of linear constraints, all interior points are weighted analytic centers. We
show that the regiomV = {z,.(w) | w > 0} C R of weighted analytic centers for LMI's is
not convex and does not generally eq@al These results imply that the techniques in linear
programming of following paths of analytic centers may require special consideration when ex-
tended to semidefinite programming. We show that the regitend its boundary are described
by real algebraic varieties, and provide slices of a non-trivial real algebraic variety to show that
W isn't convex. Stiemke’s Theorem of the alternative provides a practical test of whether a point
is in W. Weighted analytic centers are used to improve the location of standing points for the
Stand and Hit method of identifying necessary LMI constraints in semidefinite programming.
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1. INTRODUCTION

The study of Linear Matrix Inequalities (LMI's) in Semidefinite Programming (SDP), is im-
portant since, as was shown In [26], many classes of optimization problems can be formulated
as SDP problems. Interest in weighted analytic centers for feasible regions defined by LMI's
arises from the success of interior point methods in solving SDP problems, e.g., Rénéegar [20].
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2 IRWIN S. PRESSMAN AND SHAFIU JIBRIN

In [16], Mizuno, Todd and Ye studied surfaces of analytic centers in linear programming and
proved that these form manifolds.

Luo uses weighted analytic centers in a cutting plane method [14] for solving general convex
problems defined by a separation oracle. The method of centers for path following is described
by Nesterov and Nemirovsky in[17], and Sturm and Zhang [24] use weighted analytic centers to
study the central path for semidefinite programming. We extend the notion of weighted analytic
center for linear programming ([1], [14], [19]) to semidefinite constraints.

Let A = [a;;] and B = [b;;] bem x m real symmetric matrices4 is calledpositive definite
(positive semidefinijdf all its eigenvalues are strictly positive (nonnegative)Alfs positive
definite (positive semidefinite), we writé >= 0 (A > 0). The symbol>- is theLéwner partial
orderfor real symmetric matrices, i.e4 = B if and only if A — B is positive semidefinite.

Consider the following system qflinear matrix inequalityMI constraints:

(1.1) AV (2) = AV + 3" 2,AP =0, j=1,2,....q

1=1
WhereAZ(j), 0 <¢ < n, are allm; x m; symmetric matrices and € R". Let
(1.2) R={z|AD(z)=0,j=1,2,...,q}
denote thdeasible region

Assumption 1.1. We make the following set of assumptions throughout:

all the constraints hold in an open set, i®.7# 0 (this is a Slater conditiop

at every point ofR, n of the gradients of these constraints are linearly independent;
q > n, i.e., the number of constraints exceeds the dimension of the space;

R is bounded (unless stated otherwise).

Definition 1.1. A strictly positive vectokw = (wy,ws, - - - ,w,) is called a weight vector.

Fix a weight vectow > 0. Define¢,(z) : R — R by

q
> wilogdet[(AV(2)7] if z € R
Jj=1
00 otherwise.

(1.3) Pu(2) =

Note that setting thé!" weight to zero is equivalent to removing th& constraint.
Definition 1.2. Theweighted analytic centesf R is given by

Toe(w) = argmin{p,(z) | x € R} .

Lete =[1,1,---,1] be a vector of; ones Theanalytic centeof R is z,. = z..(e). If each
constraintd¥) (z) = 0 is a linear inequalitfa?))Tx — b\ > 0, then

q
Tae(w) = argmax{z w;log[(@ Tz — 9] | & € R}.
j=1
This shows that Definitign 1.2 is consistent with the usual definition of weighted analytic centers
for linear inequalities [1].

We investigate necessary and sufficient conditions for a poit tf be a weighted analytic
center. We use Stiemke’s Theorem|[23] of the alternative as a decision tool to decide whether or
not a point ofR is a weighted analytic center. We prove thatx) is a strictly convex function,
and that for a giverw, the weighted analytic center is unique and iSin We give examples
showing that a particular point € R can be the weighted analytic center for more than one
weight vector.
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We give a new proof that, in the special case of linear constraints, all interior points are
weighted analytic centers. We then show that, in general, the region

W={z4(w)|w>0}CR

of weighted analytic centers for LMI's does not eq@abnd is not convex.

This lack of convexity is clearly seen in Figufes|3.3 3.4 that show successive horizontal
slices of a given regiofR. This is interesting because there are many analytic center based
path following algorithms in the literature ([17], [24]) for problems with linear constraints. Itis
useful to know that the region of weighted analytic cenitéiss not always convex in the case
of LMI constraints. Further we establish that is a contractible open subset®f, and is the
projection of a real algebraic variety. We show that the boundady afan be described using
other real algebraic varieties. We also show how weighted analytic centers can improve the
location of standing points for the semidefinite stand and hit method (SSH) [12] for identifying
necessary constraints in semidefinite programming.

For square matrice§A;}/_, denote the block-diagonal matrix having, A,, --- , A, as its
block-diagonal elements, in the given orderdigg[A;, Az, - - - , A,]. Define the inner product
Ae B of matricesA andB by Ae B = 3, > a;;bi; = Tr(ATB). Fejer's theorem [[8], p.

459] states thatl ¢ B > 0 whenA = 0 andB = 0. TheFrobenius nornof A is denoted by
| A ||, where|| A ||p=[A e A]2. We introduce some notation:
Acyn = diag[A® AP ... A9 fori=0,1,2,...,n.

I 7 )

B(z) = inA<i> forx e R™.
i=1

A(z) = Aco> + B(x) forz € R™.

A(r) = diagloi(AV(2)7 - wy (A9 ()71,
SetN = 3¢, m;. Note thatA(z) is N x N andA,(z) = Oforallz € R.

2. THE WEIGHTED ANALYTIC CENTER

In Lemma[ 2.8 of this section we show thai(z) is strictly convex. This guarantees the
existence and uniqueness of the weighted analytic center. This result is already well known
when a single LMI is considered ([17],/[3]). Albeit our theorem extends their result, the proof
is not a direct consequence. We require the following assumption throughout which is equiv-
alent to saying thaB(x) = 0 < x = 0. Assumptior] 2]1 does not imply that the matrices
{(AV AV AP} are linearly independent for somjie
Assumption 2.1. The matricef A.1~, Acos, ..., Ao~} are linearly independent.

The barrier functiony,,(z) is a linear combination of convex functions, so it is convex. We
give a brief independent proof of this below and show thatz) is strictly convex. Gradient
and Hessian are linear operators on the space of continuously differentiable functidns [17, 3],
and we describe their action @ ().

Lemma 2.1. For ¢,,(z) defined as in (1]3)

q

Vidu(z) = Y w;Vilogdet[(AV(@)) "] = = w;(AV(2)) " e A = —A(x) o Acis

Hijlw) = Y wnVijlogdet[(A (@) 1] = 3 wnl(A®(@) " A o (A% @) A7)
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We can describe the gradient acting on a single constraint as:

(2.1)  Vlieg(det(AD (@) ™) = [—(AD(2)) ' e AV .. —(AV(z)) " e AT
We can rewrite the Hessian as a linear combination of Hessians of each constraint:
(2.2) H(z) = Z wp H® Z wpe VA® (z [VA(k) (2)] ’

Let adj(B) denote the adjugate matrix of matnR We have, for each constraint,

- a adj(A® (g a7
(2.3) Vlog(det(AY(z))™!) = {% ..,%.A;ﬂ

Corollary 2.2. Each term ofV log(det(AY) (z))~1) is a quotlent of polynomials and the de-
nominators are strictly positive iR. V log(det(AY)(x))~1) is analytic inR.

Proof. Each coefficient ofA*)(x) has the formb, + byz; + ... + b,z,, because of the defi-
nition of the constraints. Hence every term of the adjugate and determinant are polynomials
inzy,...,z,. The denominators are all determinants of positive definite matrices, so they are
strictly positive inR. SinceV log(det(AU)(x))~!) is a vector of quotients of polynomials with
strictly positive denominators iR, all higher derivatives exist also. Hence it is analytic. [

Lemma 2.3. ¢,,(x) is strictly convex overR

Proof. Let A (z) = diag[y/wi AV (z)71, -+, /0, A (z)7!]. Fors € R", using the Hessian
matrix H (z) = diag [H" (), ..., HY(xz)], convexity of¢,,(x) follows from

sTH(z)s = Z Z SiSjA\/J(x)A<i> ° fl\/;(x)A<j>
i=1 j=1

n n
P

= A () Z siAcis ® fl\/;(x) Z s;Acjs

i=1 j=1

= | Ag(@)B(s) 7> 0.

Since A 5 (z) = 0in R,thensTH(z)s = 0 < B(s) = 37 s,dcn =0 & s =0by
Assumptior} 2.]1. Hence,,,(x) is strictly convex. O
Unlike the instance of linear inequalities, not all feasible points can be expressed as a weighted

analytic center (cf. Theorem 3.3). Necessary and sufficient conditions for this are given in the
next proposition.

Proposition 2.4. z* € R is a weighted analytic cente there existsw > 0 such that
S0 w; VAU (2%) = 0, or equivalentlyy ! w; A9 (z*) e AP =0, i=1,2,...,n

Proof. By Lemmg 2.0, () is strictly convex, hence the gradient is zero at the absolute minu-
mum [15]. Thus forl <i <n, V,¢,(z*) = 0 < z* is a weighted analytic center. O

The following proposition shows that the barrier functign(x) is bounded if and only if the
feasible regiomR is bounded.
Proposition 2.5. The following are equivalent:

[a] R is unbounded

[b] there is a directiors # Osuch that B(s) = 0, i.e., > . | s A(J =0,1<j<q
[c] ¢.(z)is unbounded below.
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Proof. [a] = [b] Suppose thaR is unbounded and, € R. By the convexity ofR, for some
directions # 0 the rayR, = {x¢ + os | 0 > 0} is feasible. Therefore, we have

A(zg + 0s) = A(zg) + 0B(s) = 0Vo > 0.

This means3(s) o Y + L A(zy) o Y > O for all o > 0 andY = 0. HenceB(s) ¢ Y > 0 for all
Y = 0. By Fejer's Theoreni [8]B(s) = 0 andB(s) # 0 by Assumptior 2]1.

[b] = [c] Givenzy € R and a nonzero directionfor which B(s) = 0, thenA(zo+os) = 0
for all o > 0. ThereforeA@ (z,) = 0 and>", 5;,A% = 0, 1 < j < ¢. By [8, Corollary 7.6.5]
we can find a nonsingular matrix; such thatC; AV (z0)CT = I, C;(3°7, siAEj))CJT =
diag((a;)1, (a;)2, - - -, (@;)m;], With (a;)r > 0,1 < k < m;. By Assumptior] 2 it leastone
(a;)r > 0. Therefore,

A(j)(xo +os) = Cj’l(I + o diag|(a;)1, (aj)2, ..., (aj)mj])C;fF’1

q
bo(xo +08) = Z w; log det[AY) (zg + o5) 7!

j=1
q q My

= Z 2log det(C;) — Z Zlog(l +o(a;);) — —oo0 aso — oo.
j=1 =1 k=1

[c] = [a] ¢, is bounded below on every bounded region since it is strictly convex by Lemma
2.3. Hence, ifp,,(z) is unbounded, theR is unbounded. O

3. THE REGION W OF WEIGHTED ANALYTIC CENTERS

3.1. Theorems of the alternative and the boundary of\V. In this section we investigate
properties of the region of weighted analytic centétsand its boundary. Denote the boundary
of a setS by 0(S). We recall the standard definition of derivative of a function of several
variables([21, p. 216] and apply it t,(z). We define the matrid/(z) :

Definition 3.1.
_d¢w(x)

@.1) M) = [T

r AD(z) T e A ... AW(z) e A

A(l) (x)_l ('Y Agll) . e A(Q) (x)_l ('Y A’slq)

The j®* column of M (z) is —V log det[AU) (x)~!]. These columns are the components of
the gradient of the barrier term i, () for each constraint, i.e., sde (2.1).(x) is an analytic
function onR by Corollary[2.2. For a unit vector, s” M (z) gives thedirectional derivativen
directions of A’(x) for each constrain#/(x) = 0. At each pointr € R, for a weight vector
w >0, M(z)w =—V¢,(x). The region of weighted analytic centers is

(3.2) W ={z: z € R and there exist& > 0 such thatV/(z)w =0}

We recall Stiemke’s Theorem of the alternative to obtain another characterization of the region
of weighted analytic centeid/.

Theorem 3.1. (Stiemke’s Theoreff23,/15]) Let M be an x ¢ matrix and letw € R?and s €
R". Exactly one of the following two systems has a solution:

System1: s"M > 0,s"M #0,s€R"
System2: Mw = 0, w>0,weR%.
Corollary 3.2. W = {z : = € R such thats" M (z) > 0, s" M(z) # 0 is infeasiblg
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The Corollary shows that if there exists a directidn which s” M (z) > 0 ands” M (x) # 0,
thenz isn’t a weighted analytic center. The set of weight vectors for any givenR is the
intersection of the null space 6f (=) with the positive orthant in R

In general )V does not have a simple description. However, in the case of linear constraints,
all interior points are weighted analytic centers afid= R.

Theorem 3.3.1f R is defined by the linear system")’z — b9) > 0 (1 < j < q), i.e.,
R={z: ()2 b >0, 1<i<q}, thenW =R,

Proof. We know that'v C R. By Propositiorj 24, a point, is a weighted analytic center if
and only if there exist weights such that

a a(»j)wj .
(3.3) Z (@) 29 — 50 =0, (1<i<n).

Jj=1

Let 2* = 2}, be the analytic center of the linear system. By definitipn,] (3.3) holds atith
w=e,lie.,

g o)
(3.4) 3 <(a(j))f;* - b(j)> =0, (1<i<n).

J=1

We haver* is a point ofR and therefore(a”))Tz* — () > 0. Given a pointr, of R, set
(00T — p0)
J (a(]))ng* — b
for 1 < j < gq. These values anfl (3.4) give

a a(j)wj q P .
(3.5 Z (@0 2o — bU) - 2 (@) Tz — o) =0, forl <i<n.

Jj=1 Jj=

Hence,r,.(w) = xo. O

The next example shows that it is not generally true that every poifit ia a weighted
analytic center. We give a precise description of the bound&Xi®g) of W and 9(R) of R.
The second constraint is deliberately chosen to be redundant. It is a simple matter to determine
the feasible region for each constraint, i.e, for the third it is the set of points for which
—1and zo > —2.

Example 3.1. We have regiork given byn = 2 variables and = 5 LMI constraints:

AW (z) = _ _? _;:|—|—£U1{_(1) 8]+x2[8 _(1] ]EO
A(Q)(x) = _ 8 g}—kxl[_é 8}—1—@{8 _(1) ]>_-0
A(?’)(a:)— _ég}+x1[ég}+@{8?]zo

vy = [ 35 2] en [0 8] en]} 2 ]m0
o - [ 2] on [ ]3]
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All entries of M (x4, z5) are quotients of polynomials iry, x».

—2+ 29 1 1 4 8
9—5l'2—2171+l‘1l'2 —5+l’1 1+ZL‘1 —19+25L‘1—5ZL‘2 13+4J]1+51’2
—b 4z 1 1 —10 10
9—bx9—2x1+ 2109 2429 2415 —-194221—529 13+4x1+ 52

1IN

-2 -1 0 1 2 3 4 5

Figure 3.1: The regionV of weighted analytic centers bounded by the 5 constraints.

Figure[3.1 shows the feasible region for Exanjple 3.1, where the shaded regnThe
analytic center is located at = 1.3291554838, x5 = 0.4529930537. We demonstrate thaiot
every point is a weighted analytic centerg., forz* = (4, —1.5)7 2* ¢ W. We first compute

the matrix
—1.0000 0.2000

—1.4000
M(z*) = [

—1.1429 0.3721 ]

—0.4000 —0.2857 2.0000  2.8571 0.4651

We note thaf—1 1] M (z*) = [1.0000 0.7143 1.8000 4.0000 0.0930] > 0, so the system
sTM(z*) > 0,sTM(a*) # 0is feasible. By Corollary 3]2z* is not a weighted analytic center.
The point(1,0.5) is a weighted analytic center. We evaluate

—0.3000 —0.2500 0.5000 —0.2051 0.4103
M(1,0.5) = .
—0.8000 —0.6667 0.4000 0.5128 0.5128

The null space of/(1,0.5) is spanned by th& column vectors of the matri¥:
[—0.8333 1.2088 0.3297 T

1.0000
0.0000
0.0000

| 0.0000

J. Inequal. Pure and Appl. Math2(3) Art. 29, 2001
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We form2 linear combinations of these columns and transpose to get weight vectors

wi = ([1,1,1]N)" =1[0.7051, 1, 0.5128, 1, 1]
wy, = ([2,1,1.5]N)T = [0.0366, 2, 0.2015, 1, 1.5000].

Any convex combinationil — ¢) x w; +t X wy, 0 < ¢ < 1, is another weight vector corre-
sponding ta(z, x2) = (1,0.5). The underlying mechanism is described in Theorem 3.7.

To gain a better understanding of the regléh a mesh with grid sizé.05 was formed over
the feasible region. By (3.2), a mesh pairitis in )V if and only if there is a weight vector
w > 0 so that forM = M(z*), Mw = 0 holds. In this case, there is an optimal solution of the
Linear Programming problem, wheid = M (z*).

q
(3.6) Max > w;
j=1
(3.7) subjectto Mw =0
q
(3.8) > wi=1
j=1
w > 0.

If the LPP has a solution, the optimal objective value must.b# the problem is infeasible,
thenzx isn’t a weighted analytic center, i.er; ¢ V. We can determine the region of weighted
analytic centers by solving the LPP at each mesh point.

Lemma 3.4. The optimal objective value of LP (8.6) equals> z* € W.O

The diagonal part of the boundary of the shaded region in Figuie 3.1 in the interior of the
feasible regiorR has the appearance of a straight line. By scaling with positive véoeki-
plication by a positive definite diagonal matrix on the rightye convert)M (z) to

—2+l’2 —2+I2 2+Z)§'2 4 8

To make the ** and5™ columns dependant, eliminatdrom 8k = —2+z, and10k = =5+,

to getz, = %xl — 2. This means thé*! and5* columns are linearly dependent along the line
L = {(x1,z3) : bxs — 421 + 10 = 0}, which is the diagonal in Figu@.l. The ling has
normals = [5, —4]7. Multiply M (z) by the normal vectos” to get:

10+5ZE2—4ZE1 10—}-5.1’2-41’1 6—}-51’2-4?51 60

0
9—5ZL’2—2ZL’1(1+ZE2) (—5+ZE1) (—2+[E2) (1+l’1) (2+J]2) (—19+2]I1—5JI2>

The first2 entries are also zero on the lide Hencel is a line(this is a real algebraic variety!)
on which the directional derivative in direction= [5, —4]” for the first2 constraints is zero.

Substituters = 2 z; — 21in s” M (x) and obtain:

5 60
1'1(1+.CE1) 9—|—2£C1

sT Mygry = | 0 0

which is non-negative and not zero 0n< z; < 3.881966. By Corollary[3.2, the line segment
is not inW, so the line£ demarks the boundary.
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Consider the pointl, —2) on the lineC. Evaluate

6 1 1 4 38
6\ | 59 4 2 11 11
M<1’ 5)_ 2 5 5 10 10

50 16 4 11 11

Columnsl, 2,5 are parallel and(t) = %[t, 2—2t,0,0,1+t] is anon-zero solution af/w = 0
forall0 <t < 1. Itis easy to check that there is no solution using columns 3 and 4, except with
negative weights! It isn't generally easy to determine the boundary of every region of weighted
analytic centers.

To understand more of the regid#, consider the augmented matrix obtained from the con-

straints|[(3.J7) and (3].8):

—2+ 29 1 1 4 8
9—5x9—2x1+2129 —DH4+x7 1427 —-1942x1—529 13+4x1+ 52,
-5+ 1 1 —10 10
9—5Hay—2x14+ 2109 2429 2425 —194+221—52x9 13+421+ 529
1 1 1 1 1 1

The general solution of the augmented system is the vectar)=

Wy U
W (=12-529—2x1)(=5+x1)(=2+x2) U (=54z1)(=2+z2)y Un(30—6 z1)(—24x2)
=2 B B(9—5x2—2x14x1 T2) B(13+4z14+522)
W — (=20+52242x1)(2+x2)(1+21) u(20—5m2—221)(2+x2)(1+x1) . Ux(12+6x2)(1+x1)
=3 ¢} B(9—bxo—2x1+x1 22) B(134+4x14+5x2)
W (44+322—221)(=194+221-5x2) u(7473 wo+2x1)(=194221 —5x3) Ua(719+2 x1—5x2)
=4 ,3 ﬁ(9751272$1+x1 {tg) 5(13+4x1+5 xg)
[ W5 L v i

notational convenience:

o = 8x 4+ 2xwy — Tday — 1502 + 5919 + 92

170 67 258
= — ) (4ny — 5y — — ) = 22
<2a:1 + 39 11 ) ( 1 — OTs 11) o1’

B = (=236 + lday — T7zy + 162125 + 4] + 1523)
= (21’1 + 51’2 + 56) (21’1 + 3.772 — 49) + 2508,

v = 4a? + 163129 + 1631 + 1525 — 7215 — 224
= (221 + 5o + 56) (221 + 312 — 48) + 2464,

X = (=175 + 27x; + 20z5),

We note that the denominators are never zero in the shaded nédgiokt every pointz =
(x1,22) € W we have a non-trivial solution and an open neighborhood where there is a set of
weight vectors with the same pointfor the optimal solution oy, (x). For example, when
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x1 =1, zo = 1, any point(u,v) > 0 in the interior of the triangle constrained by the lines
19 245 n 8 -0
— = U+
66 198 121

13 13 96

IV E LTI
S 03 us0
12 736" 11"

givesrise to an(u, v) for which ¢, (x) has optimal value at; = 1, x, = 1. Thisis generalized
in Theorem 3.7.

In the table below we give the location af gmin(¢,(x)) when somev; = 0. Note that
the optimal value can be in the interior ®. Constraints 1 and 3 (for instance) bound a
region containingk, but the constraint$3, 4,5} give an unbounded region. This is useful in
understanding repelling paths in section 3.3. We list six cases with a zero value for at least one
Wi -

w P "
0,1,1,1,1] 2370 1.147
[1,0,1,1,0] 0.988 0.614
1,0,1,0,1]  2.684 0.346
1,0,0,1,1 0324 0.784
1,0,1,0,0) 1767  —0.155
0,0,1,1,1] 00 00

In the next section we generalize these observations and showtlsathe projective image
of a realalgebraic variety

3.2. Algebraic varieties and the region of weighted analytic centersWe define matrices
D(z), DY (x), P(z) and polynomials?; ;(z)

D(z) = Hdet[A(j)(x)]

DY(z) = D(x)AV(z)™! = (H det(A(j)(fc))) adj(A (x))

Pi(x) = DY(z)eAY
(3.9) P(z) = [Py()].

Note thatDU)(x) = 0 andD(x) > 0 forall x € R since all theAY)(z) matrices are
positive definite there. The idea of using the product of the determinants is analogous to the
method of Sonnevand [22] of taking the products of the distances from a set of linear constraints
in order to find the analytic center of a polyhedron. We note that) is an x g matrix
of polynomialsin =, whereM (z) is given by [3.1). P(z) has rankn since it has: linearly
independent columns at every point®fby Assumptionj 1J1. The optimal value problem can
be restated as a problem in polynomials.
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Theorem3.5.  (a) Vipu(z) =0for1 <i<n<«e 37  w;P;(z)=0.

(b) The solution set 0§ >7_, w; P ;(x) = 0, 1 < i < n, is a real algebraic variety in
T = (T1,%,- ,Ty) ANdw = (w1, w2, - ,w,).

(c) W C the projection of) into R" given by(z,w) — =

Proof. Since both( A% (z))~! = 0andD(x) > 0in R, by Corollary [2.),
Au(w) <z>—0<:>zdt A @) —O@ij i

The last equivalence is obtained by multiplying the right-hand side by the préatugt Every
entry of DU)(x) is a polynomial inz, so the solution set

(3.10) V= {(:E,w) : zq:ijm(x) =0,1<;< n}

is a real algebraic variety inandw.
From Proposition 24 ,

:{x€R|Zwﬂ AJ =0, 1 <i<n, forsomeuw,:--, q)>0}

whereTR is the feasible region of the system of LMI's. Thus, the regitns a subset of the
projection ofV. O

We now have a systetfiw = 0 of n equations iry variableso,, . . ., wy:

(3.11) > Pylr)w; =0, 1<i<n.
j=1
Notation: Let A" = {w € R?: %, w; = 1, w; > 0} denote the standard opég — 1 )-
simplex. Denote the normalized vectorby w = ToT € ATt C RY.
We apply the implicit function theoreni [21, Theorem 9.28] to the vector-valued function
F =[F,F,,...,F,]

F(r,w): W x AT — R" where F(z,w) = V(¢y(z))
whose domain is a subset of'R. Gradient is with respect to only.

Theorem 3.6. There is a unique continuously differentiable functionA?~! — R"™ such that
Y(w) = argmin(¢,(z)) which satisfies\/ (¢(w))w = 0. The derivative of)(w) is ¢'(w) =
—J(Y(w),w) ' M((w)), whereJ is the Jacobian of".

Proof. We confirm that the conditions of the implicit function theorem are satisfied:

(i) the functionsA® (z)~1 e AY) = % o AY) are continuous, and

(i) the partial derivative?;% andgTF;‘ are continuous in a neighborhood(df w) € R".
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We must show that the x n matrix J = [D, F;| = [%] with respect tacy, . . ., =, is invertible
J
in W. By Lemmg 2.1l we have the continuous partial derivatives

OF; B a(_2i=1£k(14(k)(37))_1OAEk))

= —Zwk )T1AY) 0 (AP (2))71AW).

However, by Lemma 2]1 anfl (2.2), the Jacobian mafrix >7_, w, H*)(z) is a linear com-
bination of the Hessians of th&*)(x). Since each of the Hessians is positive definite at all
xr € W, andw,, > 0, it follows that.J is positive definite inV and.J is invertible.

By the implicit function theorem, there is a unique continuously differentiable funetion
A1 — R" such that)(w) = 7 and M (¢)(w))w = 0. This is precisely the condition fo
to be the absolute minimum @f,(z), S0y (w) = argmin(¢,(x)) is unique. The derivative is
given by (w) = —J (¢ (w),w) ' M (¢ (w)) [21, Theorem 9.28]. O

We next examine the mappingand use it to obtain some properties/tt

Theorem 3.7.% : A% ! — W is a continuous open onto mappingV is a connected open
contractible subset oR. The preimages ~!(z) are convex and are homeomorphic to either
AT+ or AT

Proof. Every pointz € W is a weighted analytic center for sorie > 0, so v IS an onto
mapping. SincéV is the continuous image of the contractible get!, it is connected and
contractible too. Since is continuously differentiable, by [21, Theorem 9.25]s an open
function, and/V is an open set.

If p(w') = Y(w?) = &, thenM (2)w' = M(i)w® = 0. Clearly(1 —t) x w' +t x w* >0
for0 <t <1,andM(2)((1 —t) x w' +t x w?) =0. Thus,y((1 — t) X w! +t x w?) = 1,
since the condition for optimality is satisfied.

Selecta poiniro ¥ (w,y). The pair{zy, w,} satisfies the system ¢f + 1) linear equations
in g unknownsé (z) = {. (3.8)} which we write asbw = [0,...,0, 1]7. By Assumption
[1.7,E has rankz n If rank(E)= n+ 1 we can solve fow to get the general solution, the affine
space of vectors,(z) + Span{vi(z), ..., v4—@ms+1)(x)}. The solution set i§w : ¥(w) = zo}.
This is the non-empty intersection of @ (n+1)) affine space{v0+zq*(”“) pivj i pj € R}
with the standard open simplex?—*, and is homeomorphic t&. (4 "+1>)

In the case that rank(E n we get an affine space of dimension one higher. The intersection
of the affine space withh\?~* is homeomorphic ta@\(?~™), These are the only 2 cases. [

We note thatM (z) and P(z) are not defined o@(R) sincelog(det(AYW (z)~1)) is not
defined on the boundary of the feasible region whergtheonstraint is active. We next study
O(W) — d(R). We use the matrix’(x) (3.9) and borrow the results obtained fai(x) here.

Theorem 3.8.1f 25 € (W), the boundary ofV, then for somé there is a directiors for which
the directional derivative ofi(*)(z) is zero. The bounda()V) is contained in the union of the
real algebraic varieties determined by the zero directional derivatWe®g (det(AV) (x))) =

sV log (det(AV(z))) = 515 x DW(x) o (AW (s) — AM(0)) =0, 1 <j<q.

Proof. Let 253 € O(W) — 8(R) be a boundary point. By Stiemke’s Theorém|3.1 there is a
directions such that” P(x3) > 0, and s” P(z3) # 0.

If sTP(xg) > 0, thenby continuity s”P(z) > 0 is true for allz in a neighborhoodV
of 25 becauses” P(z) is a linear combination of polynomials in However, if this were the
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case, then for some, > 0, y = ¥(w,) € WN N, and we would have = s (P(y)w,) =
(s" P(y))w, > 0 which is acontradiction Hence weneverhaves” P(x3) > 0.

This means that for at least okethe directional derivative ofi*)(z) in directions is zero,
at every point of the boundary, i.e.,

V.log (det(A® () =0 Y D®(z) 054" = D® o (A®)(s) — A®)(0)) = 0.
=1

This is a polynomial equation which defines a real algebraic variety By Stiemke’s Theo-
rem, these varieties are disjoint frami. O

An algebraic variety is generally nonconvex. We give an example wheisn't convex. We
use Lemma 314 to test grid points along slices or cross-sections of a 3-dimensionalRegion
We construct a convex region bounded by 4 semidefinite constraints designed so that the sphere
centered at the origin of radius 1.01 contains the intersection of their feasible regions. They are
all of the typeAVW)(z) = I + BY)(x), wherel is the5 x 5 identity matrix.

Example 3.2.
1.00 0.00 0.00 0.00 0.00 ] [ 045 —0.38 —0.01 0.05 —0.20 ]
0.00 1.00 0.00 0.00 0.00 —~0.38 047 —0.30 —0.07 0.13
AP (z)=1 000 000 1.00 0.00 0.00 |+z | —0.01 —0.30 059 0.13 021
0.00 0.00 0.00 1.00 0.00 0.05 —0.07 013 024  0.32
0.00 0.00 0.00 0.00 1.00 | | —0.20 013 021 032 0.0 |
0.04 004 —023 —0.12 —0.12 ] [ 011  0.03 —035 —0.14 —0.24
0.04 002 —017 —0.07 —0.12 0.03 —0.01 —0.13 —0.07 —0.10
4z | —0.23 —0.17 1.03 049 065 | +as| —0.35 —0.13 1.04 041  0.75
—0.12 —0.07 049 022  0.33 —0.14 —0.07 041 012 029
-0.12 -0.12  0.65 033 037 | | —0.24 —0.10 075 029  0.52 |
1.00 0.00 0.00 0.00 0.00 ] [ —0.84 —1.12 096 063  0.03 ]
0.00 1.00 0.00 0.00 0.00 ~1.12 -1.85 113 100 021
AP ()= 000 000 1.00 0.00 000 |+ | 096 113 —144 —083 0.11
0.00 0.00 0.00 1.00 0.00 0.63 1.00 —0.88 —0.73 —0.04
0.00 0.00 0.00 0.00 1.00 | | 003 021 011 -0.04 —0.10 |
0.16 —0.04 —053 —021 0.15 ] [ —0.11 -0.24 —0.10 —0.10 —0.03 ]
—0.04 -024 -025 -0.10 0.15 —0.24 —020 029 0.13 —0.05
4z | —053 —0.25 111 044 —0.18 | +a3| —0.10 029 073 044 —0.07
—0.21 —0.10 044 0.17 -0.07 —0.10 0.13 044 026 —0.03
015 0.15 —0.18 —0.07 —0.01 | | —0.03 —0.05 —0.07 —0.03 0.5 |
1.00 0.00 0.00 0.00 0.00 ] [ 0.04 004 —023 —012 —0.12 ]
0.00 1.00 0.00 0.00 0.00 0.04 002 —017 —0.07 —0.12
A®(z)=1 000 000 1.00 0.00 0.00 | +z1 | —0.23 —0.17 1.03 049  0.65
0.00 0.00 0.00 1.00 0.00 ~0.12 —0.07 049 022  0.33
0.00 0.00 0.00 0.00 1.00 | | —0.12 —0.12 065 033 037 |
—0.74 —0.10 0.74  0.30 —0.79 0.22 0.06 —0.69 —028 —0.47
—0.10 039 026 —0.24 —1.08 0.06 —0.01 —0.26 —0.14 —0.21
4+xy| 074 026 —2.26 —2.66 —1.24 | 43| —0.69 —026 208 083  1.50
0.30 —0.24 —2.66 —0.36 —0.95 —0.28 —0.14 083 025 0.57
—0.79 —1.08 —1.24 —0.95 —0.21 —0.47 —021 1.50 057  1.00
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1.00 0.00 0.00 0.00 0.00 —242 —045 098 —1.69 -2.07

0.00 1.00 0.00 0.00 0.00 045 015 035 —095 —0.96

A®(z)=1 0.0 0.00 1.00 000 000 |+z | 098 035 —029 025 045
0.00 0.00 0.00 1.00 0.00 ~1.69 -0.95 025 050 0.07

0.00 0.00 0.00 0.00 1.00 —2.07 —0.96 045 007 —0.40

~1.31 -0.03 056 012 -2.08 0.39 0.63 1.05 099 0.75

—0.03 0.88 —0.14 —0.78 —2.62 063 049 0.70 0.87 1.02

+azo | 056 —0.14 —0.39 —3.36 010 | +x3| 1.05 070 0.08 082 0.69
012 -0.78 —3.36 0.6 —0.59 0.99 0.87 0.82 —0.03 0.94

—208 -262 010 —059 1.05 075 1.02 0.69 094 0.04

The constraintsi()(z), 1 < j < 4 define a convex regioR C R®. We check every point
in the grid of the cross-sections & taken on planes with constant height Recall that by
Lemmd 3.4 a grid point* is a weighted analytic center if and only if faf = M (z*), LP (3.8)
has optimal valué.

The analytic center R was computed by the MATLAB functiofminuncto be at

[—0.11091949382933, 0.06861587677354, 0.43344995850369] .

The top of the regiorR occurs between; = 1 andz; = 1.01, as the constraind® (z) = 0 is
infeasible wherx; = 1.01.

We now show a progression of five slices moving down from the toR oWith the same
magpnification and centers. These slicefoin R? show its intersection withy. In each slice
we have—.075 < z; < +.075 in 61 steps 0f0025 and—.015 < x5 < +.015 in 61 steps of
.0005 . The slices demonstrate the lack of convexity®f The feasible regiofR is shaded,
and the set of weighted analytic centers frg¥hon each slice is shaded dark.

40

10 20 30 40 50 60 A . 10 20 30 40 50 60 B .

Figure 3.2: A) Slice ofR at heightz; = 1. B) Slice ofR at heightz; = .9975

It is clear that from the diagrams that there is a lack of convexity inzthdirection. We
confirm this by choosing three poinks = [—0.060, 0.004, 0.975], P, = [0, 0.004, 0.975] and
P3 =[—.030, 0.004, 0.975]. The pointPs is the midpoint ofP, and P,. We have,

1.8463 —4.7567  0.3450  198.7089
M(P) = | 05834 05157 —0.1612 2.0731
0.5857 —0.0173  0.6764 —227.7666
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10 20 30 40 50 60 A_ 10 20 30 40 50 60 B_

Figure 3.3: A)Slice ofR at heightzs = .995. B)Slice ofR at heightzs = .9925

60|

50

40

30

20

10

10 20 30 40 50 60

Figure 3.4: Slice ofR at heightzs = .99

[ 1.8028 —5.3775  0.3399  16.5750 |
M(P,)) = | 05774  0.5641 —0.1460 9.0872
| 0.5795 —0.0776  0.6670 —51.7798 |

[ 17616 —6.2081  0.3349 —3.7207 ]
M(P;)= | 05716  0.6283 —0.1312 —5.5310
| 05735 —0.1596  0.6579 —43.9561

At P, by solving LPP[(3.6) withV/ = M(z*), we find weightsv; = [0.0494, 0.1758,
0.7724, 0.0024] so that we have a weighted analytic centePat For P, we have the weights
wy = [0.1929, 0.0853, 0.7089, 0.0128] which makesP, = z,.(ws2). At their midpoint, P,
we have,[0.1028, 1.4601, 0.2814]M(P3) = [1.1915, 0.2487, 0.0095, 0.4033]. Thus, by
Corollary[3.2 there is no feasible set of weight vectonnaking P; a weighted analytic center.
Hence we see thaw is not convex.
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3.3. Repelling paths. In the case of linear constraints repelling forces directed away from the
planes and inversely proportional to distance are described ([26, p. 71]). Repelling paths traced
by a particle in the interior oR under the influence of the force field generated by a subset of
the constraints are discussediin [6]. We consider repelling path determined by LMI constraints.

Definition 3.2. Let o¥) be a positive weight vector in Rwith the £ component and all
other components 1. The repelling path associated witik'theMI constraint is the trajectory
of s (a) = z,.(a®) asa — oo ora — 0.

The central pathin semidefinite programming ([17], [26]) is an example of a repelling path
and it is well-known that these are smooth. The following theorem shows that the limit of a
repelling path associated with thé&" constraint, asr — oo, is an interior point of the region
determined by thé&'" constraint. The limit asx — 0 is an interior point of the region deter-
mined by the other constraints. The following theorem shows that the repelling path limit as
a — oo is in the interior of the feasible region of thé" repelling constraint. The limit as
a — 0is in the interior of the feasible region of the other constraints.

Theorem 3.9.1f s (a) — 7., asa — oo, thenA® (z.) = 0. Furthermore, ifs*) (o) — 2,
asa — 0, thenAY) (z.) = 0 for all j # k.

Proof. For & € R, AYW(z) = 0 for all j. By Definition[1.3,5*)(a) = z,.(a®) is the
minimizer of the barrier function

(3.12) Goio () = alog det[Al T+ Z log det[AY) (x)] 7!

Jj=L,j#k
and o, (5™ (@) < ¢um (). By using [3.1R) and dividing both sides of the inequalitycby
we get

logdet[A(k)(s(k)(oz))}leé Z log det[AY) (s®) ()]

< log det[A®(z Z log det[AY) (1))~
] Lj#k
The term2 Y77, ., log det[AW) (:?;)]‘1 converges to zero as— oo. If ., is on the boundary
of AW(z) = 0, thenlog det[A® (s*)(a))]"! — oo asa — oo. Hence, ifz,, were on the
boundary ofA®)(x) = 0, then >1_ L log det[AD) (s ()7} — —o0 asa — oo. This
is not possible, sinc_7_, ., logdet[A )(s®(a))]"' > 0 overR;. The proof of the case
a — 0is similar. O

Figure[3.5 gives the repelling paths determined by each constraint of Example 3.1. Each
constraint was given weights from 0.0001 to 1000 while the other constraints were each given
fixed weight 1. The paths intersect at the analytic center and two of them (1,2) overlap. It
shows that limit of a repelling path is not necessarily a boundary point of the feasible region. In
Sectior] b we discuss how limits of repelling paths can be used with the stand-and-hit algorithm
to determine necessary LMI constraints.

4., THE WEIGHTED ANALYTIC CENTER AND REDUNDANCY DETECTION

Weighted analytic centers are used in the cutting plane method byl[Luo [14] for solving
general convex problems defined by a separation oracle. Ramaswany and Mitchell [19] have
also used them for studying multiple cuts. The method of centers for path following is described
in [17]. Sturm and Zhand [24] use analytic centers to study the central path in semidefinite
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Figure 3.5: Repelling Paths of Example 3.1

programming. We present another application of weighted analytic centers to the probabilistic
Stand-and-Hit method [12] for identifying necessary constraints in semidefinite programming.
Fork =1,2,...,q, define the region®&;, (R C Ry) by

Ri={z|AY(z) =0, je{1,2,....k—1,k+1,....q}}.

Definition 4.1. A®(x) - 0 is called redundant with respect to the $et’)(z) = 0}%_, if
R = Ry, and is called necessaryi # R,

A LMI constraint is callechecessaryf its removal changes the feasible region of the problem,
otherwise it is callededundant The semidefinite redundancy problamto decide whether or
not thek” constraintA™(x) - 0 is redundant with respect to the get")(z) = 0}4_,.

The significance of this for the linear case is discussed!in [5] and for SDR’sin [12]. This is
important as the running times of SDP algorithms grows nonlinearly with the number of con-
straints[26]. The Semidefinite Stand-and-Hit (SSH) method [11, 12] starts by selecting a point
% € R called thestanding point We generate a sequence of search vedtgisfrom a uniform
distribution over the surface of the unit hypersphgfe! = {z € R" | || = |= 1}. Eachs;
determines a feasible line segméiit+ os; |0 < o < ,} such that ifdet|AY) (3 + 0;5;)] = 0
for index;j andA® (2 + ;s;) = 0 for k # j, then thej** constraint is necessary.

The SSH algorithm:
Initialization : Denote the index set of identified constraintsByand set7 = ().
Choose a standing pointof R. CalculateAJ'(fc)*l/2 for1 <j <gq.
Repeat

Search Direction From N(0,1) choose entriesu to generate a random point
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s = u/||ul|> uniformly on the unit hypersphen@ﬂ*1

Hitting Step: CalculateB; (s, ) = Zs AN AU (2) 72,

0 =1/ N By (s, )) ando? = —1/),,.(B ( z))for1 <j<gq.
Calculater, = m1n{0+ | 1<j<gq}ando_ = min{o” G | 1<j<gq}
Forl <k <gq,if 0+ =0, ore® = o_ andk ¢ J,setJ =J U{k}.
Until a stopping rule holds.
Sincez is fixed, we only computelj(:%)*% once throughout the detection process. After the
termination of the SSH algorithm, all LMI's in the sgtare declared necessary.

Let p,;(2) be the probability that constraititis detected in an iteration of the SSH algorithm
from the standing point. It has been shown|[7] that the expected number of iterations required
to detect all necessary constraints is minimizetiéan be found so that the detection probabil-
itiesp, () of all the constraints are equal. In general, such a poites not exist, even for the
linear case. We pursue the more modest goal of trying to find a pdhmt will minimize the
standard deviation of the probabilities.

The strategy proposed in [10] is to initially choasas the analytic center. We run the SSH
algorithm fromz and for each constraint, determine the number of times the constraint is de-
tected, i.e., itdit frequency The hit frequencies are directly related to the probabilitigs).

We use these frequencies to determine a new weighted analytic center, and repeat the SSH al-
gorithm. We continue with such repetitions, each from a newly calculated weighted analytic
center, until a stopping criteria has been satisfied. The detection probability is directly propor-
tional to theangle of sightof the constraint from the standing point. We next apply our SSH
strategy.

Example 4.1.Consider Example 3.1. The analytic center of this problemds= (1.3292, 0.4530).
After 50 iterations of SSH at,., the number of hits of constraints (1,2,3,4,5) were (50,0,48,0,2)
respectively. Figurie 411 shows hawy. = (1.3292, 0.4530) moves taz,.(w) = (1.7308, —0.1470)
under the influence of the weight vector= (50, 1,48, 1,2). The undetected constraints, i.e.,
(2) and (4) are given weights 1 so that the feasible reaemains unchanged. The weighted
centerz,.(w) moved closer to undetected constraint (4).

Example 4.2. We consider a problem with = 101 constraints anch = 5 variables. The
analytic center was found using the Damped Newton’s Method of [17]. From the analytic
center, we generated 1000 search directions to get the following nonzero hit frequencies

(493, 308, 29, 526, 23, 22, 642, 376, 498, 965, 150, 2026, 71, 13871).

Note that onlyl4 constraints were detected. The standard deviatiB628.

Using the weights equal to the frequencies for the detected constraints, and weights of one
for the undetected constraints, we determined the corresponding weighted analytic center, and
used it as the next standing point. From this point, we found the new frequencies of

(6363,3194,8,1328,1,4,872,92, 145, 3052, 279, 4384, 3, 275),

which correspond to the same detected constraints. The standard deviation is redu@éd to
We see that from the new point, the detection probabilities (frequencies) are more "balanced”,
and we have a better point for the SSH method.

Limits of repelling paths can be used with SSH to determine necessary constraints. The
idea is to assign weight to one constraint and weight 1 to the others. The corresponding
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Figure 4.1:

This figure shows how,. = (1.3292,0.4530) moves tar,.(w) = (1.7308, —0.1470) under
the influence of the weight vectar= (50, 1,48, 1, 2).

weighted analytic center can be used as a standing point for SSH to detect constraints close to
the boundary. Repeating this procedure over each constraint prawseéédstanding points

in some cases. For example, in Figlre] 3.5, there are 8 repelling limits; 4 are interior points
and 4 are boundary points. The boundary points identify constraints 1 and 5. The limits in the
interior aregoodstanding points for identifying the remaining constraints. This is still under
investigation.

5. CONCLUSION

We extended the notion of weighted analytic center from linear constraints to semidefinite
programming and have shown that the region of weighted analytic centersR. We have
studied the geometry and topology Wf, both theoretically and through comprehensive ex-
amples. We have proven thet = R in the case of linear constraints, but in the semidefinite
situationR ¢ W, i.e., there exist feasible pointdn R which are not weighted analytic centers.

We have shown both analytically and by graphical meansittias an open contractible
subset of R, but is not convex. We have given cross-sectiong\yfby making extensive use
of Stiemke’s Theorem of the alternative while solving small linear programming problems at
each point of a grid. In the course of this, we have provided a graphical representation of a non-
trivial 3-dimensional real algebraic variety. We have demonstrated how one can use the varieties
to describé/V and its boundary. We have also shown by an example, a potential application of
weighted analytic centers to improve the standing point of the Stand-and-Hit method (SSH) for
identifying necessary constraints in semidefinite programming.

We have also studied treegminfunction extensively and have proven it to be continuously
differentiable and open for the functions used here.
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