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ABSTRACT. Let R be the convex subset of IRn defined byq simultaneous linear matrix in-
equalities (LMI)A(j)

0 +
∑n

i=1 xiA
(j)
i � 0, j = 1, 2, . . . , q. Given a strictly positive vector

ω = (ω1, ω2, · · · , ωq), theweighted analytic centerxac(ω) is the minimizerargmin(φω(x)) of
the strictly convex functionφω(x) =

∑q
j=1 ωj log det[A(j)(x)]−1 overR. We give a necessary

and sufficient condition for a point ofR to be a weighted analytic center. We study theargmin
function in this instance and show that it is a continuously differentiable open function.

In the special case of linear constraints, all interior points are weighted analytic centers. We
show that the regionW = {xac(ω) | ω > 0} ⊆ R of weighted analytic centers for LMI’s is
not convex and does not generally equalR. These results imply that the techniques in linear
programming of following paths of analytic centers may require special consideration when ex-
tended to semidefinite programming. We show that the regionW and its boundary are described
by real algebraic varieties, and provide slices of a non-trivial real algebraic variety to show that
W isn’t convex. Stiemke’s Theorem of the alternative provides a practical test of whether a point
is in W. Weighted analytic centers are used to improve the location of standing points for the
Stand and Hit method of identifying necessary LMI constraints in semidefinite programming.
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1. I NTRODUCTION

The study of Linear Matrix Inequalities (LMI’s) in Semidefinite Programming (SDP), is im-
portant since, as was shown in [26], many classes of optimization problems can be formulated
as SDP problems. Interest in weighted analytic centers for feasible regions defined by LMI’s
arises from the success of interior point methods in solving SDP problems, e.g., Renegar [20].
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2 IRWIN S. PRESSMAN AND SHAFIU JIBRIN

In [16], Mizuno, Todd and Ye studied surfaces of analytic centers in linear programming and
proved that these form manifolds.

Luo uses weighted analytic centers in a cutting plane method [14] for solving general convex
problems defined by a separation oracle. The method of centers for path following is described
by Nesterov and Nemirovsky in [17], and Sturm and Zhang [24] use weighted analytic centers to
study the central path for semidefinite programming. We extend the notion of weighted analytic
center for linear programming ([1], [14], [19]) to semidefinite constraints.

LetA = [aij] andB = [bij] bem ×m real symmetric matrices.A is calledpositive definite
(positive semidefinite) if all its eigenvalues are strictly positive (nonnegative). IfA is positive
definite (positive semidefinite), we writeA � 0 (A � 0). The symbol� is theLöwner partial
order for real symmetric matrices, i.e.,A � B if and only ifA−B is positive semidefinite.

Consider the following system ofq linear matrix inequalityLMI constraints:

A(j)(x) := A
(j)
0 +

n∑
i=1

xiA
(j)
i � 0, j = 1, 2, . . . , q(1.1)

whereA(j)
i , 0 ≤ i ≤ n, are allmj ×mj symmetric matrices andx ∈ IRn. Let

R =
{
x | A(j)(x) � 0, j = 1, 2, . . . , q

}
(1.2)

denote thefeasible region.

Assumption 1.1.We make the following set of assumptions throughout:

• all the constraints hold in an open set , i.e.,R 6= ∅ (this is a Slater condition);
• at every point ofR, n of the gradients of these constraints are linearly independent;
• q > n, i.e., the number of constraints exceeds the dimension of the space;
• R is bounded (unless stated otherwise).

Definition 1.1. A strictly positive vectorω = (ω1, ω2, · · · , ωq) is called a weight vector.

Fix a weight vectorω > 0. Defineφω(x) : IRn −→ IR by

φω(x) =


q∑

j=1

ωj log det[(A(j)(x))−1] if x ∈ R

∞ otherwise.

(1.3)

Note that setting thekth weight to zero is equivalent to removing thekth constraint.

Definition 1.2. Theweighted analytic centerof R is given by

xac(ω) = argmin {φω(x) | x ∈ R} .
Let e = [1, 1, · · · , 1] be a vector ofq ones. Theanalytic centerof R is xac = xac(e). If each

constraintA(j)(x) � 0 is a linear inequality(a(j))Tx− b(j) > 0, then

xac(ω) = argmax{
q∑

j=1

ωj log[(a(j))Tx− b(j)] | x ∈ R}.

This shows that Definition 1.2 is consistent with the usual definition of weighted analytic centers
for linear inequalities [1].

We investigate necessary and sufficient conditions for a point ofR to be a weighted analytic
center. We use Stiemke’s Theorem [23] of the alternative as a decision tool to decide whether or
not a point ofR is a weighted analytic center. We prove thatφω(x) is a strictly convex function,
and that for a givenω, the weighted analytic center is unique and is inR. We give examples
showing that a particular pointx ∈ R can be the weighted analytic center for more than one
weight vector.
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A WEIGHTED ANALYTIC CENTER FORL INEAR MATRIX INEQUALITIES 3

We give a new proof that, in the special case of linear constraints, all interior points are
weighted analytic centers. We then show that, in general, the region

W = {xac(ω) | ω > 0} ⊆ R
of weighted analytic centers for LMI’s does not equalR and is not convex.

This lack of convexity is clearly seen in Figures 3.3 and 3.4 that show successive horizontal
slices of a given regionR. This is interesting because there are many analytic center based
path following algorithms in the literature ([17], [24]) for problems with linear constraints. It is
useful to know that the region of weighted analytic centersW is not always convex in the case
of LMI constraints. Further we establish thatW is a contractible open subset ofR, and is the
projection of a real algebraic variety. We show that the boundary ofW can be described using
other real algebraic varieties. We also show how weighted analytic centers can improve the
location of standing points for the semidefinite stand and hit method (SSH) [12] for identifying
necessary constraints in semidefinite programming.

For square matrices{Ai}q
i=1 denote the block-diagonal matrix havingA1, A2, · · · , Aq as its

block-diagonal elements, in the given order, bydiag[A1, A2, · · · , Aq]. Define the inner product
A • B of matricesA andB by A • B =

∑
i

∑
j aijbij = Tr(ATB). Fejer’s theorem [[8], p.

459] states thatA • B ≥ 0 whenA � 0 andB � 0. TheFrobenius normof A is denoted by
‖ A ‖F , where‖ A ‖F = [A • A]

1
2 . We introduce some notation:

A<i> = diag[A
(1)
i , A

(2)
i , · · · , A(q)

i ] for i = 0, 1, 2, . . . , n.

B(x) =
n∑

i=1

xiA<i> for x ∈ IRn.

A(x) = A<0> +B(x) for x ∈ IRn.

Âω(x) = diag[ω1(A
(1)(x))−1, · · · , ωq(A

(q)(x))−1].

SetN =
∑q

j=1mj. Note thatA(x) isN ×N andÂω(x) � 0 for all x ∈ R.

2. THE WEIGHTED ANALYTIC CENTER

In Lemma 2.3 of this section we show thatφω(x) is strictly convex. This guarantees the
existence and uniqueness of the weighted analytic center. This result is already well known
when a single LMI is considered ([17], [3]). Albeit our theorem extends their result, the proof
is not a direct consequence. We require the following assumption throughout which is equiv-
alent to saying thatB(x) = 0 ⇔ x = 0. Assumption 2.1 does not imply that the matrices
{A(j)

1 , A
(j)
2 , . . . , A

(j)
n } are linearly independent for somej.

Assumption 2.1.The matrices{A<1>, A<2>, . . . , A<n>} are linearly independent.

The barrier functionφω(x) is a linear combination of convex functions, so it is convex. We
give a brief independent proof of this below and show thatφω(x) is strictly convex. Gradient
and Hessian are linear operators on the space of continuously differentiable functions [17, 3],
and we describe their action onφω(x).

Lemma 2.1. For φω(x) defined as in (1.3)

∇iφω(x) =

q∑
j=1

ωj∇i log det[(A(j)(x))−1] = −
q∑

j=1

ωj(A
(j)(x))−1 • A(j)

i = −Âω(x) • A<i>

Hij(x) =

q∑
k=1

ωk∇2
ij log det[(A(k)(x))−1] =

q∑
k=1

ωk[(A
(k)(x))−1A

(k)
i ] • [(A(k)(x))−1A

(k)
j ].
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4 IRWIN S. PRESSMAN AND SHAFIU JIBRIN

We can describe the gradient acting on a single constraint as:

∇ log(det(A(j)(x))−1) = [−(A(j)(x))−1 • A(j)
1 , . . . ,−(A(j)(x))−1 • A(j)

n ]T(2.1)

We can rewrite the Hessian as a linear combination of Hessians of each constraint:

(2.2) H(x) = [Hij(x)] =

q∑
k=1

ωkH
(k)(x) =

q∑
k=1

ωk∇A(k)(x) •
[
∇A(k)(x)

]T
Let adj(B) denote the adjugate matrix of matrixB. We have, for each constraint,

∇ log(det(A(j)(x))−1) = −
[
adj(A(k)(x))

det(A(k)(x))
• A(j)

1 , . . . ,
adj(A(k)(x))

det(A(k))(x)
• A(j)

n

]T

(2.3)

Corollary 2.2. Each term of∇ log(det(A(j)(x))−1) is a quotient of polynomials and the de-
nominators are strictly positive inR. ∇ log(det(A(j)(x))−1) is analytic inR.

Proof. Each coefficient ofA(k)(x) has the formb0 + b1x1 + . . . + bnxn because of the defi-
nition of the constraints. Hence every term of the adjugate and determinant are polynomials
in x1, . . . , xn. The denominators are all determinants of positive definite matrices, so they are
strictly positive inR. Since∇ log(det(A(j)(x))−1) is a vector of quotients of polynomials with
strictly positive denominators inR, all higher derivatives exist also. Hence it is analytic. �

Lemma 2.3. φω(x) is strictly convex overR

Proof. Let Â√
ω(x) = diag[

√
ω1A

(1)(x)−1, · · · ,√ωqA
(q)(x)−1]. Fors ∈ IRn, using the Hessian

matrixH(x) = diag
[
H(1)(x), . . . , H(q)(x)

]
, convexity ofφω(x) follows from

sTH(x)s =
n∑

i=1

n∑
j=1

sisjÂ√
ω(x)A<i> • Â√

ω(x)A<j>

= Â√
ω(x)

n∑
i=1

siA<i> • Â√
ω(x)

n∑
j=1

sjA<j>

= ‖ Â√
ω(x)B(s) ‖2

F≥ 0.

SinceÂ√
ω(x) � 0 in R, then sTH(x)s = 0 ⇔ B(s) =

∑n
i=1 siA<i> = 0 ⇔ s = 0 by

Assumption 2.1. Hence,φω(x) is strictly convex. �

Unlike the instance of linear inequalities, not all feasible points can be expressed as a weighted
analytic center (cf. Theorem 3.3). Necessary and sufficient conditions for this are given in the
next proposition.

Proposition 2.4. x∗ ∈ R is a weighted analytic center⇔ there existsω > 0 such that∑q
j=1 ωj∇A(j)(x∗) = 0, or equivalently,

∑q
j=1 ωjA

(j)(x∗)−1 • A(j)
i = 0, i = 1, 2, . . . , n.

Proof. By Lemma 2.3,φω(x) is strictly convex, hence the gradient is zero at the absolute minu-
mum [15]. Thus for1 ≤ i ≤ n,∇iφω(x∗) = 0 ⇔ x∗ is a weighted analytic center. �

The following proposition shows that the barrier functionφω(x) is bounded if and only if the
feasible regionR is bounded.

Proposition 2.5. The following are equivalent:

[ a ] R is unbounded
[ b ] there is a directions 6= 0 such that, B(s) � 0, i.e.,

∑n
i=1 siA

(j)
i � 0, 1 ≤ j ≤ q

[ c ] φω(x) is unbounded below.
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A WEIGHTED ANALYTIC CENTER FORL INEAR MATRIX INEQUALITIES 5

Proof. [ a ] ⇒ [ b ] Suppose thatR is unbounded andx0 ∈ R. By the convexity ofR, for some
directions 6= 0 the rayRσ = {x0 + σs | σ > 0} is feasible. Therefore, we have

A(x0 + σs) = A(x0) + σB(s) � 0 ∀σ ≥ 0.

This meansB(s) • Y + 1
σ
A(x0) • Y ≥ 0 for all σ > 0 andY � 0. HenceB(s) • Y ≥ 0 for all

Y � 0. By Fejer’s Theorem [8],B(s) � 0 andB(s) 6= 0 by Assumption 2.1.
[ b ] ⇒ [ c ] Givenx0 ∈ R and a nonzero directions for whichB(s) � 0, thenA(x0+σs) � 0

for all σ ≥ 0. ThereforeA(j)(x0) � 0 and
∑n

i=1 siA
(j)
i � 0, 1 ≤ j ≤ q. By [8, Corollary 7.6.5]

we can find a nonsingular matrixCj such thatCjA
(j)(x0)C

T
j = I, Cj(

∑n
i=1 siA

(j)
i )CT

j =
diag[(aj)1, (aj)2, . . . , (aj)mj

], with (aj)k ≥ 0, 1 ≤ k ≤ mj. By Assumption 2.1at leastone
(aj)k > 0. Therefore,

A(j)(x0 + σs) = C−1
j (I + σ diag[(aj)1, (aj)2, . . . , (aj)mj

])CT−1
j

φω(x0 + σs) =

q∑
j=1

ωj log det[A(j)(x0 + σs)−1]

=

q∑
j=1

2 log det(Cj)−
q∑

j=1

mj∑
k=1

log(1 + σ(aj)k) → −∞ asσ →∞.

[ c ] ⇒ [ a ] φω is bounded below on every bounded region since it is strictly convex by Lemma
2.3. Hence, ifφω(x) is unbounded, thenR is unbounded. �

3. THE REGION W OF WEIGHTED ANALYTIC CENTERS

3.1. Theorems of the alternative and the boundary ofW. In this section we investigate
properties of the region of weighted analytic centersW and its boundary. Denote the boundary
of a setS by ∂(S). We recall the standard definition of derivative of a function of several
variables [21, p. 216] and apply it toφω(x). We define the matrixM(x) :

Definition 3.1.

M(x) =

[
−dφω(x)

dx

]T

=

 A(1)(x)−1 • A(1)
1 · · · A(q)(x)−1 • A(q)

1

· · · · · · · · ·
A(1)(x)−1 • A(1)

n · · · A(q)(x)−1 • A(q)
n

(3.1)

The jth column ofM(x) is −∇ log det[A(j)(x)−1]. These columns are the components of
the gradient of the barrier term inφω(x) for each constraint, i.e., see (2.1).M(x) is an analytic
function onR by Corollary 2.2. For a unit vectors, sTM(x) gives thedirectional derivativein
directions of Aj(x) for each constraintAj(x) � 0. At each pointx ∈ R, for a weight vector
ω > 0, M(x)ω = −∇φω(x). The region of weighted analytic centers is

(3.2) W = {x : x ∈ R and there existsω > 0 such thatM(x)ω = 0}

We recall Stiemke’s Theorem of the alternative to obtain another characterization of the region
of weighted analytic centersW.

Theorem 3.1. (Stiemke’s Theorem[23, 15]) LetM be an× q matrix and letω ∈ IRq and s ∈
IRn. Exactly one of the following two systems has a solution:

System1 : sTM ≥ 0, sTM 6= 0, s ∈ IRn

System2 : Mω = 0, ω > 0, ω ∈ IRq.

Corollary 3.2. W =
{
x : x ∈ R such thatsTM(x) ≥ 0, sTM(x) 6= 0 is infeasible

}
J. Inequal. Pure and Appl. Math., 2(3) Art. 29, 2001 http://jipam.vu.edu.au/
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6 IRWIN S. PRESSMAN AND SHAFIU JIBRIN

The Corollary shows that if there exists a directions in whichsTM(x) ≥ 0 andsTM(x) 6= 0,
thenx isn’t a weighted analytic center. The set of weight vectors for any givenx in R is the
intersection of the null space ofM(x) with the positive orthant in IRq.

In general,W does not have a simple description. However, in the case of linear constraints,
all interior points are weighted analytic centers andW = R.
Theorem 3.3. If R is defined by the linear system(a(j))Tx − b(j) > 0 (1 ≤ j ≤ q), i.e.,
R =

{
x : (a(j))Tx− b(j) > 0, 1 ≤ i ≤ q

}
, thenW = R.

Proof. We know thatW ⊆ R. By Proposition 2.4, a pointx0 is a weighted analytic center if
and only if there exist weightsω such that

q∑
j=1

(
a

(j)
i ωj

(a(j))Tx0 − b(j)

)
= 0, (1 ≤ i ≤ n).(3.3)

Let x∗ = x∗ac be the analytic center of the linear system. By definition, (3.3) holds atx∗ with
ω = e, i.e.,

q∑
j=1

(
a

(j)
i

(a(j))Tx∗ − b(j)

)
= 0, (1 ≤ i ≤ n).(3.4)

We havex∗ is a point ofR and therefore,(a(j))Tx∗ − b(j) > 0. Given a pointx0 of R, set

ωj =
(a(j))Tx0 − b(j)

(a(j))Tx∗ − b(j)

for 1 ≤ j ≤ q. These values and (3.4) give
q∑

j=1

(
a

(j)
i ωj

(a(j))Tx0 − b(j)

)
=

q∑
j=1

(
a

(j)
i

(a(j))Tx∗ − b(j)

)
= 0, for 1 ≤ i ≤ n.(3.5)

Hence,xac(ω) = x0. �

The next example shows that it is not generally true that every point inR is a weighted
analytic center. We give a precise description of the boundaries∂(W) ofW and ∂(R) ofR.
The second constraint is deliberately chosen to be redundant. It is a simple matter to determine
the feasible region for each constraint, i.e, for the third it is the set of points for whichx1 ≥
−1 and x2 ≥ −2.

Example 3.1.We have regionR given byn = 2 variables andq = 5 LMI constraints:

A(1)(x) =

[
5 −1

−1 2

]
+ x1

[
−1 0

0 0

]
+ x2

[
0 0
0 −1

]
� 0

A(2)(x) =

[
5 0
0 2

]
+ x1

[
−1 0

0 0

]
+ x2

[
0 0
0 −1

]
� 0

A(3)(x) =

[
1 0
0 2

]
+ x1

[
1 0
0 0

]
+ x2

[
0 0
0 1

]
� 0

A(4)(x) =

[
3.8 0

0 3.8

]
+ x1

[
−0.4 0

0 −0.4

]
+ x2

[
1 0
0 1

]
� 0

A(5)(x) =

[
2.6 0

0 2.6

]
+ x1

[
0.8 0

0 0.8

]
+ x2

[
1 0
0 1

]
� 0.
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All entries ofM(x1, x2) are quotients of polynomials inx1, x2.
−2 + x2

9− 5x2 − 2x1 + x1x2

1

−5 + x1

1

1 + x1

4

−19 + 2x1 − 5x2

8

13 + 4x1 + 5x2

−5 + x1

9− 5x2 − 2x1 + x1x2

1

−2 + x2

1

2 + x2

−10

−19 + 2x1 − 5x2

10

13 + 4x1 + 5x2



−2 −1 0 1 2 3 4 5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.1: The regionW of weighted analytic centers bounded by the 5 constraints.

Figure 3.1 shows the feasible region for Example 3.1, where the shaded region isW. The
analytic center is located atx1 = 1.3291554838, x2 = 0.4529930537. We demonstrate thatnot
every point is a weighted analytic center, e.g., forx∗ = (4,−1.5)T , x∗ 6∈ W. We first compute
the matrix

M(x∗) =

[
−1.4000 −1.0000 0.2000 −1.1429 0.3721

−0.4000 −0.2857 2.0000 2.8571 0.4651

]
We note that[−1 1]M(x∗) = [1.0000 0.7143 1.8000 4.0000 0.0930] > 0, so the system

sTM(x∗) ≥ 0, sTM(x∗) 6= 0 is feasible. By Corollary 3.2 ,x∗ is not a weighted analytic center.
The point(1, 0.5) is a weighted analytic center. We evaluate

M(1, 0.5) =

[
−0.3000 −0.2500 0.5000 −0.2051 0.4103

−0.8000 −0.6667 0.4000 0.5128 0.5128

]
.

The null space ofM(1, 0.5) is spanned by the3 column vectors of the matrixN :

N =



−0.8333 1.2088 0.3297

1.0000 0.0000 0.0000

0.0000 1.1355 −0.6227

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000


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8 IRWIN S. PRESSMAN AND SHAFIU JIBRIN

We form2 linear combinations of these columns and transpose to get weight vectors

ω1 = ([1, 1, 1]N)T = [0.7051, 1, 0.5128, 1, 1]

ω2 = ([2, 1, 1.5]N)T = [0.0366, 2, 0.2015, 1, 1.5000].

Any convex combination(1 − t) × ω1 + t × ω2, 0 ≤ t ≤ 1, is another weight vector corre-
sponding to(x1, x2) = (1, 0.5). The underlying mechanism is described in Theorem 3.7.

To gain a better understanding of the regionW, a mesh with grid size0.05 was formed over
the feasible region. By (3.2), a mesh pointx∗ is in W if and only if there is a weight vector
ω > 0 so that forM = M(x∗), Mω = 0 holds. In this case, there is an optimal solution of the
Linear Programming problem, whereM = M(x∗).

Max
q∑

j=1

ωj(3.6)

subject to Mω = 0(3.7)
q∑

j=1

ωj = 1(3.8)

ω > 0.

If the LPP has a solution, the optimal objective value must be1. If the problem is infeasible,
thenx isn’t a weighted analytic center, i.e.,x /∈ W. We can determine the region of weighted
analytic centers by solving the LPP at each mesh point.

Lemma 3.4. The optimal objective value of LP (3.6) equals1 ⇔ x∗ ∈ W .2

The diagonal part of the boundary of the shaded region in Figure 3.1 in the interior of the
feasible regionR has the appearance of a straight line. By scaling with positive values(multi-
plication by a positive definite diagonal matrix on the right)- we convertM(x) to[

−2 + x2 −2 + x2 2 + x2 4 8

−5 + x1 −5 + x1 1 + x1 −10 10

]

To make the1st and5th columns dependant, eliminatek from 8k = −2+x2 and10k = −5+x1

to getx2 = 4
5
x1 − 2. This means the1st and5th columns are linearly dependent along the line

L = {(x1, x2) : 5x2 − 4x1 + 10 = 0}, which is the diagonal in Figure 3.1. The lineL has
normals = [5,−4]T . Multiply M(x) by the normal vectorsT to get:[

10 + 5x2 − 4x1

9− 5x2 − 2x1(1 + x2)

10 + 5x2 − 4x1

(−5 + x1) (−2 + x2)

6 + 5x2 − 4x1

(1 + x1) (2 + x2)

60

(−19 + 2x1 − 5x2)
0

]
.

The first2 entries are also zero on the lineL. HenceL is a line(this is a real algebraic variety!)
on which the directional derivative in directions = [5,−4]T for the first2 constraints is zero.
Substitutex2 = 4

5
x1 − 2 in sTM(x) and obtain:

sT Mbdry =

[
0 0

5

x1 (1 + x1)

60

9 + 2x1

0

]
which is non-negative and not zero on0 < x1 < 3.881966. By Corollary 3.2, the line segment
is not inW, so the lineL demarks the boundary.
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Consider the point(1, −6
5
) on the lineL. Evaluate

M

(
1, −6

5

)
=

 −
16

59
−1

4

1

2
− 4

11

8

11

−20

59
− 5

16

5

4

10

11

10

11

 .
Columns1, 2, 5 are parallel andω(t) = 1

3
[t, 2−2t, 0, 0, 1+ t] is a non-zero solution ofMω = 0

for all 0 ≤ t ≤ 1. It is easy to check that there is no solution using columns 3 and 4, except with
negative weights! It isn’t generally easy to determine the boundary of every region of weighted
analytic centers.

To understand more of the regionW, consider the augmented matrix obtained from the con-
straints (3.7) and (3.8):

−2 + x2

9− 5x2 − 2x1 + x1x2

1

−5 + x1

1

1 + x1

4

−19 + 2x1 − 5x2

8

13 + 4x1 + 5x2

0

−5 + x1

9− 5x2 − 2x1 + x1x2

1

−2 + x2

1

2 + x2

−10

−19 + 2x1 − 5x2

10

13 + 4x1 + 5x2

0

1 1 1 1 1 1


The general solution of the augmented system is the vectorω(u, v)=

ω1

ω2

ω3

ω4

ω5


=



u

(−12−5 x2−2 x1)(−5+x1)(−2+x2)
β

− u (−5+x1)(−2+x2)γ
β(9−5 x2−2 x1+x1 x2)

− v η(30−6 x1)(−2+x2)
β(13+4 x1+5 x2)

(−20+5 x2+2 x1)(2+x2)(1+x1)
β

− u (20−5 x2−2 x1)(2+x2)(1+x1)
β(9−5 x2−2 x1+x1 x2)

− v χ(12+6 x2)(1+x1)
β(13+4 x1+5 x2)

(4+3 x2−2 x1)(−19+2 x1−5 x2)
β

− u (−4−3 x2+2 x1)(−19+2 x1−5 x2)
β(9−5 x2−2 x1+x1 x2)

− vα(−19+2 x1−5 x2)
β(13+4 x1+5 x2)

v


with ω1, ω2, ω3, ω4, ω5 ≥ 0 and where we have made the following set of substitutions for
notational convenience:

α = 8x2
1 + 2x1x2 − 74x1 − 15x2

2 + 59x2 + 92

=

(
2x1 + 3x2 −

170

11

)(
4x1 − 5x2 −

67

11

)
− 258

121
,

β =
(
−236 + 14x1 − 77x2 + 16x1x2 + 4x2

1 + 15x2
2

)
= (2x1 + 5x2 + 56) (2x1 + 3x2 − 49) + 2508,

γ = 4x2
1 + 16x1x2 + 16x1 + 15x2

2 − 72x2 − 224

= (2x1 + 5x2 + 56) (2x1 + 3x2 − 48) + 2464,

χ = (−175 + 27x1 + 20x2) ,

η = (−13 + 7x1 − 10x2) .

We note that the denominators are never zero in the shaded regionW. At every pointx =
(x1, x2) ∈ W we have a non-trivial solution and an open neighborhood where there is a set of
weight vectors with the same pointx for the optimal solution ofφω(x). For example, when
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x1 = 1, x2 = 1, any point(u, v) > 0 in the interior of the triangle constrained by the lines

19

66
− 245

198
u+

8

121
v > 0

13

44
+

13

132
u− 96

121
v > 0

5

12
+

5

36
u− 3

11
v > 0

gives rise to anω(u, v) for whichφω(x) has optimal value atx1 = 1, x2 = 1. This is generalized
in Theorem 3.7.

In the table below we give the location ofargmin(φω(x)) when someωi = 0. Note that
the optimal value can be in the interior ofW. Constraints 1 and 3 (for instance) bound a
region containingR, but the constraints{3, 4, 5} give an unbounded region. This is useful in
understanding repelling paths in section 3.3. We list six cases with a zero value for at least one
ωi:

ω xopt
1 xopt

2

[0, 1, 1, 1, 1] 2.370 1.147

[1, 0, 1, 1, 0] 0.988 0.614

[1, 0, 1, 0, 1] 2.684 0.346

[1, 0, 0, 1, 1] 0.324 0.784

[1, 0, 1, 0, 0] 1.767 −0.155

[0, 0, 1, 1, 1] ∞ ∞
In the next section we generalize these observations and show thatW is the projective image

of a realalgebraic variety.

3.2. Algebraic varieties and the region of weighted analytic centers.We define matrices
D(x), D(j)(x), P (x) and polynomialsPi,j(x)

D(x) =
n∏

j=1

det[A(j)(x)]

D(j)(x) = D(x)A(j)(x)−1 =

(∏
j 6=i

det(A(j)(x))

)
adj(A(j)(x))

Pi,j(x) = D(j)(x) • A(j)
i

P (x) = [Pi,j(x)] .(3.9)

Note thatD(j)(x) � 0 andD(x) > 0 for all x ∈ R since all theA(j)(x) matrices are
positive definite there. The idea of using the product of the determinants is analogous to the
method of Sonnevand [22] of taking the products of the distances from a set of linear constraints
in order to find the analytic center of a polyhedron. We note thatP (x) is a n × q matrix
of polynomialsin x, whereM(x) is given by (3.1).P (x) has rankn since it hasn linearly
independent columns at every point ofR by Assumption 1.1. The optimal value problem can
be restated as a problem in polynomials.
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Theorem 3.5. (a) ∇iφω(x) = 0 for 1 ≤ i ≤ n⇔
∑q

j=1 ωjPi,j(x) = 0.

(b) The solution set of
∑q

j=1 ωjPi,j(x) = 0, 1 ≤ i ≤ n, is a real algebraic varietyV in
x = (x1, x2, · · · , xn) andω = (ω1, ω2, · · · , ωq).

(c) W ⊆ the projection ofV into IRn given by(x, ω) → x

Proof. Since both(A(j)(x))−1 � 0 andD(x) > 0 in R, by Corollary (2.2),

Âω(x) • A<i> = 0 ⇔
q∑

j=1

ωj

det[A(j)(x)]
adj[A(j)(x)] • A(j)

i = 0 ⇔
q∑

j=1

ωjPi,j(x) = 0.

The last equivalence is obtained by multiplying the right-hand side by the productD(x). Every
entry ofD(j)(x) is a polynomial inx, so the solution set

(3.10) V =

{
(x,ω) :

q∑
j=1

ωjPi,j(x) = 0, 1 ≤ j ≤ n

}

is a real algebraic variety inx andω.
From Proposition 2.4 ,

W =

{
x ∈ R |

q∑
j=1

ωjD
(j)(x) • A(j)

i = 0, 1 ≤ i ≤ n, for some(ω1, · · · , ωq) > 0

}

whereR is the feasible region of the system of LMI’s. Thus, the regionW is a subset of the
projection ofV . �

We now have a systemPω = 0 of n equations inq variablesω1, . . . , ωq:

(3.11)
q∑

j=1

Pi,j(x)ωj = 0, 1 ≤ i ≤ n.

Notation: Let4q−1 = {ω ∈ IRq :
∑q

j=1 ωj = 1, ωj > 0} denote the standard open( q − 1 )-
simplex. Denote the normalized vectorω byω = ω

‖ω‖ ∈ 4q−1 ⊂ IRq.
We apply the implicit function theorem [21, Theorem 9.28] to the vector-valued function

F = [F1, F2, . . . , Fn]

F (x, ω) : W ×4q−1 → IRn where F (x, ω) = ∇(φω(x))

whose domain is a subset of IRn+q. Gradient is with respect tox only.

Theorem 3.6.There is a unique continuously differentiable functionψ : 4q−1 → IRn such that
ψ(ω) = argmin(φω(x)) which satisfiesM(ψ(ω))ω = 0. The derivative ofψ(ω) is ψ′(ω) =
−J(ψ(ω),ω)−1M(ψ(ω)), whereJ is the Jacobian ofF .

Proof. We confirm that the conditions of the implicit function theorem are satisfied:

(i) the functionsA(i)(x)−1 • A(j)
i = adj(A(i)(x))

|A(i)(x)| • A(j)
i are continuous, and

(ii) the partial derivatives∂F i

∂xj
and ∂F i

∂ωj
are continuous in a neighborhood of(x̂,ω) ∈ IRn+k.

J. Inequal. Pure and Appl. Math., 2(3) Art. 29, 2001 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


12 IRWIN S. PRESSMAN AND SHAFIU JIBRIN

We must show that then×nmatrixJ = [DjF i] =
[

∂F i

∂xj

]
with respect tox1, . . . , xn is invertible

in W. By Lemma 2.1 we have the continuous partial derivatives

∂F i

∂xj

=
∂(−

∑q
k=1 ωk(A

(k)(x))−1 • A(k)
i )

∂xj

= −
q∑

k=1

ωk[(A
(k)(x))−1A

(k)
i ] • [(A(k)(x))−1A

(k)
j ].

However, by Lemma 2.1 and (2.2), the Jacobian matrixJ =
∑q

k=1 ωkH
(k)(x) is a linear com-

bination of the Hessians of theA(k)(x). Since each of the Hessians is positive definite at all
x ∈ W, andωk > 0, it follows thatJ is positive definite inW andJ is invertible.

By the implicit function theorem, there is a unique continuously differentiable functionψ :
4q−1 → IRn such thatψ(ω̂) = x̂ andM(ψ(ω))ω = 0. This is precisely the condition for̂x
to be the absolute minimum ofφω(x), soψ(ω) = argmin(φω(x)) is unique. The derivative is
given byψ′(ω) = −J(ψ(ω),ω)−1M(ψ(ω)) [21, Theorem 9.28]. �

We next examine the mappingψ and use it to obtain some properties ofW.

Theorem 3.7.ψ : 4q−1 → W is a continuous open onto mapping.W is a connected open
contractible subset ofR. The preimagesψ−1(x) are convex and are homeomorphic to either
4q−(n+1) or 4q−n.

Proof. Every pointx̂ ∈ W is a weighted analytic center for somêω > 0, so ψ is an onto
mapping. SinceW is the continuous image of the contractible set4q−1, it is connected and
contractible too. Sinceψ is continuously differentiable, by [21, Theorem 9.25]ψ is an open
function, andW is an open set.

If ψ(ω1) = ψ(ω2) = x̂, thenM(x̂)ω1 = M(x̂)ω2 = 0. Clearly(1− t)×ω1 + t×ω2 > 0
for 0 ≤ t ≤ 1, andM(x̂)((1− t)× ω1 + t× ω2) = 0. Thus,ψ((1− t)× ω1 + t× ω2) = x̂,
since the condition for optimality is satisfied.

Select a pointx0 = ψ(ω0). The pair{x0,ω0} satisfies the system of(n+ 1) linear equations
in q unknownsE(x) = {(3.7), (3.8)} which we write asEω = [0, . . . , 0, 1]T . By Assumption
1.1,E has rank≥ n. If rank(E)= n+1 we can solve forω to get the general solution, the affine
space of vectorsv0(x) + Span{v1(x), . . . , vq−(n+1)(x)}. The solution set is{ω : ψ(ω) = x0}.
This is the non-empty intersection of a(q−(n+1)) affine space,{v0+

∑q−(n+1)
j=1 ρjvj : ρj ∈ IR}

with the standard open simplex4q−1, and is homeomorphic to4(q−(n+1)).
In the case that rank(E)= n we get an affine space of dimension one higher. The intersection

of the affine space with4q−1 is homeomorphic to4(q−n). These are the only 2 cases. �

We note thatM(x) and P (x) are not defined on∂(R) since log(det(A(j)(x)−1)) is not
defined on the boundary of the feasible region where thejth constraint is active. We next study
∂(W)− ∂(R). We use the matrixP (x) (3.9) and borrow the results obtained forM(x) here.

Theorem 3.8.If xβ ∈ ∂(W), the boundary ofW, then for somek there is a directions for which
the directional derivative ofA(k)(x) is zero. The boundary∂(W) is contained in the union of the
real algebraic varieties determined by the zero directional derivatives∇s log (det(A(j)(x))) =
sT∇ log (det(A(j)(x))) = 1

D(x)
×D(k)(x) • (A(k)(s)− A(k)(0)) = 0, 1 ≤ j ≤ q.

Proof. Let xβ ∈ ∂(W) − ∂(R) be a boundary point. By Stiemke’s Theorem 3.1 there is a
directions such thatsTP (xβ) ≥ 0, and sTP (xβ) 6= 0.

If sTP (xβ) > 0, then by continuity sTP (x) > 0 is true for allx in a neighborhoodN
of xβ becausesTP (x) is a linear combination of polynomials inx. However, if this were the
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case, then for someωy > 0, y = ψ(ωy) ∈ W ∩ N , and we would have0 = sT (P (y)ωy) =
(sTP (y))ωy > 0 which is acontradiction. Hence weneverhavesTP (xβ) > 0.

This means that for at least onek, the directional derivative ofA(k)(x) in directions is zero,
at every point of the boundary, i.e.,

∇s log (det(A(k)(x))) = 0 ⇔
n∑

i=1

D(k)(x) • siA
(k)
i = D(k) • (A(k)(s)− A(k)(0)) = 0.

This is a polynomial equation which defines a real algebraic variety inx. By Stiemke’s Theo-
rem, these varieties are disjoint fromW. �

An algebraic variety is generally nonconvex. We give an example whereW isn’t convex. We
use Lemma 3.4 to test grid points along slices or cross-sections of a 3-dimensional regionR.
We construct a convex region bounded by 4 semidefinite constraints designed so that the sphere
centered at the origin of radius 1.01 contains the intersection of their feasible regions. They are
all of the typeA(j)(x) = I +B(j)(x), whereI is the5× 5 identity matrix.

Example 3.2.

A(1)(x) =


1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 1.00

 + x1


0.45 −0.38 −0.01 0.05 −0.20

−0.38 0.47 −0.30 −0.07 0.13
−0.01 −0.30 0.59 0.13 0.21

0.05 −0.07 0.13 0.24 0.32
−0.20 0.13 0.21 0.32 0.60



+x2


0.04 0.04 −0.23 −0.12 −0.12
0.04 0.02 −0.17 −0.07 −0.12

−0.23 −0.17 1.03 0.49 0.65
−0.12 −0.07 0.49 0.22 0.33
−0.12 −0.12 0.65 0.33 0.37

 + x3


0.11 0.03 −0.35 −0.14 −0.24
0.03 −0.01 −0.13 −0.07 −0.10

−0.35 −0.13 1.04 0.41 0.75
−0.14 −0.07 0.41 0.12 0.29
−0.24 −0.10 0.75 0.29 0.52



A(2)(x) =


1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 1.00

 + x1


−0.84 −1.12 0.96 0.63 0.03
−1.12 −1.85 1.13 1.00 0.21

0.96 1.13 −1.44 −0.88 0.11
0.63 1.00 −0.88 −0.73 −0.04
0.03 0.21 0.11 −0.04 −0.10



+x2


0.16 −0.04 −0.53 −0.21 0.15

−0.04 −0.24 −0.25 −0.10 0.15
−0.53 −0.25 1.11 0.44 −0.18
−0.21 −0.10 0.44 0.17 −0.07

0.15 0.15 −0.18 −0.07 −0.01

 + x3


−0.11 −0.24 −0.10 −0.10 −0.03
−0.24 −0.20 0.29 0.13 −0.05
−0.10 0.29 0.73 0.44 −0.07
−0.10 0.13 0.44 0.26 −0.03
−0.03 −0.05 −0.07 −0.03 0.05



A(3)(x) =


1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 1.00

 + x1


0.04 0.04 −0.23 −0.12 −0.12
0.04 0.02 −0.17 −0.07 −0.12

−0.23 −0.17 1.03 0.49 0.65
−0.12 −0.07 0.49 0.22 0.33
−0.12 −0.12 0.65 0.33 0.37



+x2


−0.74 −0.10 0.74 0.30 −0.79
−0.10 0.39 0.26 −0.24 −1.08

0.74 0.26 −2.26 −2.66 −1.24
0.30 −0.24 −2.66 −0.36 −0.95

−0.79 −1.08 −1.24 −0.95 −0.21

 + x3


0.22 0.06 −0.69 −0.28 −0.47
0.06 −0.01 −0.26 −0.14 −0.21

−0.69 −0.26 2.08 0.83 1.50
−0.28 −0.14 0.83 0.25 0.57
−0.47 −0.21 1.50 0.57 1.00


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A(4)(x) =


1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 1.00

 + x1


−2.42 −0.45 0.98 −1.69 −2.07
−0.45 0.15 0.35 −0.95 −0.96

0.98 0.35 −0.29 0.25 0.45
−1.69 −0.95 0.25 0.50 0.07
−2.07 −0.96 0.45 0.07 −0.40



+x2


−1.31 −0.03 0.56 0.12 −2.08
−0.03 0.88 −0.14 −0.78 −2.62

0.56 −0.14 −0.39 −3.36 0.10
0.12 −0.78 −3.36 0.16 −0.59

−2.08 −2.62 0.10 −0.59 1.05

 + x3


0.39 0.63 1.05 0.99 0.75
0.63 0.49 0.70 0.87 1.02
1.05 0.70 0.08 0.82 0.69
0.99 0.87 0.82 −0.03 0.94
0.75 1.02 0.69 0.94 0.04

 .

The constraintsA(j)(x), 1 ≤ j ≤ 4 define a convex regionR ⊆ IR3. We check every point
in the grid of the cross-sections ofR taken on planes with constant heightx3. Recall that by
Lemma 3.4 a grid pointx∗ is a weighted analytic center if and only if forM = M(x∗), LP (3.6)
has optimal value1.

The analytic center ofR was computed by the MATLAB functionfminuncto be at

[−0.11091949382933, 0.06861587677354, 0.43344995850369].

The top of the regionR occurs betweenx3 = 1 andx3 = 1.01, as the constraintA(4)(x) � 0 is
infeasible whenx3 = 1.01.

We now show a progression of five slices moving down from the top ofR, with the same
magnification and centers. These slices ofR in IR3 show its intersection withW. In each slice
we have−.075 ≤ x1 ≤ +.075 in 61 steps of.0025 and−.015 ≤ x2 ≤ +.015 in 61 steps of
.0005 . The slices demonstrate the lack of convexity ofW. The feasible regionR is shaded,
and the set of weighted analytic centers fromW on each slice is shaded dark.
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Figure 3.2: A) Slice ofR at heightx3 = 1. B) Slice ofR at heightx3 = .9975

It is clear that from the diagrams that there is a lack of convexity in thex1 direction. We
confirm this by choosing three pointsP1 = [−0.060, 0.004, 0.975], P2 = [0, 0.004, 0.975] and
P3 = [−.030, 0.004, 0.975]. The pointP3 is the midpoint ofP1 andP2. We have,

M(P1) =

 1.8463 −4.7567 0.3450 198.7089
0.5834 0.5157 −0.1612 2.0731
0.5857 −0.0173 0.6764 −227.7666


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Figure 3.3: A)Slice ofR at heightx3 = .995. B)Slice ofR at heightx3 = .9925
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Figure 3.4: Slice ofR at heightx3 = .99

M(P2) =

 1.8028 −5.3775 0.3399 16.5750
0.5774 0.5641 −0.1460 9.0872
0.5795 −0.0776 0.6670 −51.7798



M(P3) =

 1.7616 −6.2081 0.3349 −3.7207
0.5716 0.6283 −0.1312 −5.5310
0.5735 −0.1596 0.6579 −43.9561


At P1, by solving LPP (3.6) withM = M(x∗), we find weightsω1 = [0.0494, 0.1758,

0.7724, 0.0024] so that we have a weighted analytic center atP1. ForP2 we have the weights
ω2 = [0.1929, 0.0853, 0.7089, 0.0128] which makesP2 = xac(ω2). At their midpoint,P3,
we have,[0.1028, 1.4601, 0.2814]M(P3) = [1.1915, 0.2487, 0.0095, 0.4033]. Thus, by
Corollary 3.2 there is no feasible set of weight vectorsω makingP3 a weighted analytic center.
Hence we see thatW is not convex.
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3.3. Repelling paths. In the case of linear constraints repelling forces directed away from the
planes and inversely proportional to distance are described ([26, p. 71]). Repelling paths traced
by a particle in the interior ofR under the influence of the force field generated by a subset of
the constraints are discussed in [6]. We consider repelling path determined by LMI constraints.
Definition 3.2. Let α(k) be a positive weight vector in IRq with the kth componentα and all
other components 1. The repelling path associated with thekth LMI constraint is the trajectory
of s(k)(α) = xac(α

(k)) asα→∞ or α→ 0.
Thecentral pathin semidefinite programming ([17], [26]) is an example of a repelling path

and it is well-known that these are smooth. The following theorem shows that the limit of a
repelling path associated with thekth constraint, asα → ∞, is an interior point of the region
determined by thekth constraint. The limit asα → 0 is an interior point of the region deter-
mined by the other constraints. The following theorem shows that the repelling path limit as
α → ∞ is in the interior of the feasible region of thekth repelling constraint. The limit as
α→ 0 is in the interior of the feasible region of the other constraints.
Theorem 3.9. If s(k)(α) → x∞ asα→∞, thenA(k)(x∞) � 0. Furthermore, ifs(k)(α) → x∞
asα→ 0, thenA(j)(x∞) � 0 for all j 6= k.

Proof. For x̂ ∈ R, A(j)(x̂) � 0 for all j. By Definition 1.3,s(k)(α) = xac(α
(k)) is the

minimizer of the barrier function

φα(k)(x) = α log det[A(k)(x)]−1 +

q∑
j=1,j 6=k

log det[A(j)(x)]−1,(3.12)

andφα(k)(s(k)(α)) ≤ φα(k)(x̂). By using (3.12) and dividing both sides of the inequality byα
we get

log det[A(k)(s(k)(α))]−1 +
1

α

q∑
j=1,j 6=k

log det[A(j)(s(k)(α))]−1

≤ log det[A(k)(x̂)]−1 +
1

α

q∑
j=1,j 6=k

log det[A(j)(x̂)]−1

The term1
α

∑q
j=1,j 6=k log det[A(j)(x̂)]−1 converges to zero asα→∞. If x∞ is on the boundary

of A(k)(x) � 0, then log det[A(k)(s(k)(α))]−1 → ∞ asα → ∞. Hence, ifx∞ were on the
boundary ofA(k)(x) � 0, then 1

α

∑q
j=1,j 6=k log det[A(j)(s(k)(α))]−1 → −∞ asα → ∞. This

is not possible, since
∑q

j=1,j 6=k log det[A(j)(s(k)(α))]−1 > 0 overRk. The proof of the case
α→ 0 is similar. �

Figure 3.5 gives the repelling paths determined by each constraint of Example 3.1. Each
constraint was given weights from 0.0001 to 1000 while the other constraints were each given
fixed weight 1. The paths intersect at the analytic center and two of them (1,2) overlap. It
shows that limit of a repelling path is not necessarily a boundary point of the feasible region. In
Section 5 we discuss how limits of repelling paths can be used with the stand-and-hit algorithm
to determine necessary LMI constraints.

4. THE WEIGHTED ANALYTIC CENTER AND REDUNDANCY DETECTION

Weighted analytic centers are used in the cutting plane method by Luo [14] for solving
general convex problems defined by a separation oracle. Ramaswany and Mitchell [19] have
also used them for studying multiple cuts. The method of centers for path following is described
in [17]. Sturm and Zhang [24] use analytic centers to study the central path in semidefinite
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Figure 3.5: Repelling Paths of Example 3.1

programming. We present another application of weighted analytic centers to the probabilistic
Stand-and-Hit method [12] for identifying necessary constraints in semidefinite programming.
Fork = 1, 2, . . . , q, define the regionsRk (R ⊂ Rk) by

Rk = {x | A(j)(x) � 0, j ∈ {1, 2, . . . , k − 1, k + 1, . . . , q}}.

Definition 4.1. A(k)(x) � 0 is called redundant with respect to the set{A(j)(x) � 0}q
j=1 if

R = Rk, and is called necessary ifR 6= Rk.

A LMI constraint is callednecessaryif its removal changes the feasible region of the problem,
otherwise it is calledredundant. Thesemidefinite redundancy problemis to decide whether or
not thekth constraintA(k)(x) � 0 is redundant with respect to the set{A(j)(x) � 0}q

j=1.
The significance of this for the linear case is discussed in [5] and for SDP’s in [12]. This is

important as the running times of SDP algorithms grows nonlinearly with the number of con-
straints [26]. The Semidefinite Stand-and-Hit (SSH) method [11, 12] starts by selecting a point
x̂ ∈ R called thestanding point. We generate a sequence of search vectors{si} from a uniform
distribution over the surface of the unit hypersphereSn−1 = {x ∈ IRn | ‖ x ‖2= 1}. Eachsi

determines a feasible line segment{x̂ + σsi | 0 ≤ σ ≤ σi} such that ifdet[A(j)(x̂ + σisi)] = 0
for indexj andA(k)(x̂+ σisi) � 0 for k 6= j, then thejth constraint is necessary.

The SSH algorithm:
Initialization : Denote the index set of identified constraints byJ and setJ = ∅.
Choose a standing pointx̂ of R. CalculateAj(x̂)

−1/2
for 1 ≤ j ≤ q.

Repeat
Search Direction: From N(0,1) choosen entriesu to generate a random point
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s = u/‖u‖2 uniformly on the unit hypersphereSn−1

Hitting Step: CalculateBj(s, x̂) = −A(j)(x̂)
− 1

2 (
n∑

i=1

siA
(j)
i )A(j)(x̂)

− 1
2 ,

σ
(j)
+ = 1/λ+

max(Bj(s, x̂)) andσ(j)
− = −1/λ−min(Bj(s, x̂)) for 1 ≤ j ≤ q.

Calculateσ+ = min{σ(j)
+ | 1 ≤ j ≤ q} and σ− = min{σ(j)

− | 1 ≤ j ≤ q}.
For1 ≤ k ≤ q, if σ(k)

+ = σ+ or σ(k)
− = σ− andk 6∈ J , setJ = J ∪ {k}.

Until a stopping rule holds.

Sincex̂ is fixed, we only computeAj(x̂)
− 1

2 once throughout the detection process. After the
termination of the SSH algorithm, all LMI’s in the setJ are declared necessary.

Let pj(x̂) be the probability that constraintj is detected in an iteration of the SSH algorithm
from the standing point̂x. It has been shown [7] that the expected number of iterations required
to detect all necessary constraints is minimized ifx̂ can be found so that the detection probabil-
itiespj(x̂) of all the constraints are equal. In general, such a pointx̂ does not exist, even for the
linear case. We pursue the more modest goal of trying to find a pointx̂ that will minimize the
standard deviation of the probabilities.

The strategy proposed in [10] is to initially choosex̂ as the analytic center. We run the SSH
algorithm fromx̂ and for each constraint, determine the number of times the constraint is de-
tected, i.e., itshit frequency. The hit frequencies are directly related to the probabilitiespj(x̂).
We use these frequencies to determine a new weighted analytic center, and repeat the SSH al-
gorithm. We continue with such repetitions, each from a newly calculated weighted analytic
center, until a stopping criteria has been satisfied. The detection probability is directly propor-
tional to theangle of sightof the constraint from the standing point. We next apply our SSH
strategy.

Example 4.1.Consider Example 3.1. The analytic center of this problem isxac = (1.3292, 0.4530).
After 50 iterations of SSH atxac, the number of hits of constraints (1,2,3,4,5) were (50,0,48,0,2)
respectively. Figure 4.1 shows howxac = (1.3292, 0.4530) moves toxac(ω) = (1.7308,−0.1470)
under the influence of the weight vectorω = (50, 1, 48, 1, 2). The undetected constraints, i.e.,
(2) and (4) are given weights 1 so that the feasible regionR remains unchanged. The weighted
centerxac(ω) moved closer to undetected constraint (4).

Example 4.2. We consider a problem withq = 101 constraints andn = 5 variables. The
analytic center was found using the Damped Newton’s Method of [17]. From the analytic
center, we generated 1000 search directions to get the following nonzero hit frequencies

(493, 308, 29, 526, 23, 22, 642, 376, 498, 965, 150, 2026, 71, 13871).

Note that only14 constraints were detected. The standard deviation is3620.

Using the weights equal to the frequencies for the detected constraints, and weights of one
for the undetected constraints, we determined the corresponding weighted analytic center, and
used it as the next standing point. From this point, we found the new frequencies of

(6363, 3194, 8, 1328, 1, 4, 872, 92, 145, 3052, 279, 4384, 3, 275),

which correspond to the same detected constraints. The standard deviation is reduced to2026.
We see that from the new point, the detection probabilities (frequencies) are more "balanced",
and we have a better point for the SSH method.

Limits of repelling paths can be used with SSH to determine necessary constraints. The
idea is to assign weightα to one constraint and weight 1 to the others. The corresponding
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Figure 4.1:

This figure shows howxac = (1.3292, 0.4530) moves toxac(ω) = (1.7308,−0.1470) under
the influence of the weight vectorω = (50, 1, 48, 1, 2).

weighted analytic center can be used as a standing point for SSH to detect constraints close to
the boundary. Repeating this procedure over each constraint providesusefulstanding points
in some cases. For example, in Figure 3.5, there are 8 repelling limits; 4 are interior points
and 4 are boundary points. The boundary points identify constraints 1 and 5. The limits in the
interior aregoodstanding points for identifying the remaining constraints. This is still under
investigation.

5. CONCLUSION

We extended the notion of weighted analytic center from linear constraints to semidefinite
programming and have shown that the region of weighted analytic centersW ⊂ R. We have
studied the geometry and topology ofW, both theoretically and through comprehensive ex-
amples. We have proven thatW = R in the case of linear constraints, but in the semidefinite
situationR 6⊂ W, i.e., there exist feasible pointŝx inRwhich are not weighted analytic centers.

We have shown both analytically and by graphical means thatW is an open contractible
subset of IRn , but is not convex. We have given cross-sections ofW, by making extensive use
of Stiemke’s Theorem of the alternative while solving small linear programming problems at
each point of a grid. In the course of this, we have provided a graphical representation of a non-
trivial 3-dimensional real algebraic variety. We have demonstrated how one can use the varieties
to describeW and its boundary. We have also shown by an example, a potential application of
weighted analytic centers to improve the standing point of the Stand-and-Hit method (SSH) for
identifying necessary constraints in semidefinite programming.

We have also studied theargmin function extensively and have proven it to be continuously
differentiable and open for the functions used here.
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