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Abstract

Let R be the convex subset of R“ defined by ¢ simultaneous linear matrix in-
equalities (LMI) A" + 3", z;4 )} j=1,2,...,q. Given a strictly positive
Vector w = (wy,wy, -+ ,wy), the welghted analytic center Zqc(w) IS the minimizer
argmin (¢,,(x)) of the strictly convex function ¢,(x) = Y-1_ w; log det[AY) ()]
over R. We give a necessary and sufficient condition for a point of R to be a
weighted analytic center. We study the argmin function in this instance and
show that it is a continuously differentiable open function.

In the special case of linear constraints, all interior points are weighted ana-
lytic centers. We show that the region W = {z,.(w) | w > 0} C R of weighted
analytic centers for LMI's is not convex and does not generally equal R. These
results imply that the techniques in linear programming of following paths of an-
alytic centers may require special consideration when extended to semidefinite
programming. We show that the region ' and its boundary are described by
real algebraic varieties, and provide slices of a non-trivial real algebraic variety
to show that W isn't convex. Stiemke’s Theorem of the alternative provides a
practical test of whether a point is in W. Weighted analytic centers are used to
improve the location of standing points for the Stand and Hit method of identi-
fying necessary LMI constraints in semidefinite programming.

2000 Mathematics Subject Classification: 90C25, 49Q99, 46C05, 14P25.
Key words: Weighted Analytic Center, Semidefinite Programming, LMI, Convexity,
Real Algebraic Variety.

The authors wish to thank Richard J. Caron and Lieven Vandenberghe for their gen-
erous advice.

A Weighted Analytic Center for
Linear Matrix Inequalities

Irwin S. Pressman and
Shafiu Jibrin

Title Page

Contents
“«  »
« | >
Go Back

Close
Quit
Page 2 of 46

J. Ineq. Pure and Appl. Math. 2(3) Art. 29, 2001
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:irwin_pressman@carleton.ca
mailto:Shafiu.Jibrin@nau.edu
http://jipam.vu.edu.au/
http://www.ams.org/msc/

1 INtroduction. . . ...t 4
2 The Weighted AnalyticCenter........................ 8
3 The RegionV of Weighted Analytic Centers............ 13
3.1 Theorems of the alternative and the boundanpof 13
3.2 Algebraic varieties and the region of weighted ana-
Iyticcenters. ...t e e 24
3.3 Repellingpaths . ...... ... 33
4  The Weighted Analytic Center and Redundancy Detection37
5 CONCIUSION . . oo e e 42
References

A Weighted Analytic Center for
Linear Matrix Inequalities

Irwin S. Pressman and
Shafiu Jibrin

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 3 of 46

J. Ineq. Pure and Appl. Math. 2(3) Art. 29, 2001
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:irwin_pressman@carleton.ca
mailto:Shafiu.Jibrin@nau.edu
http://jipam.vu.edu.au/

The study of Linear Matrix Inequalities (LMI’s) in Semidefinite Programming
(SDP), is important since, as was shownii][ many classes of optimization
problems can be formulated as SDP problems. Interest in weighted analytic
centers for feasible regions defined by LMI’s arises from the success of interior
point methods in solving SDP problems, e.g., Renegék. [In [16], Mizuno,
Todd and Ye studied surfaces of analytic centers in linear programming and _ _
. A Weighted Analytic Center for
proved that these form manifolds. Linear Matrix Inequalities
Luo uses weighted analytic centers in a cutting plane methdddr solv- _
. . . Irwin S. Pressman and
ing general convex problems defined by a separation oracle. The method of Shafiu Jibrin
centers for path following is described by Nesterov and Nemirovsky. i [
and Sturm and Zhang’{] use weighted analytic centers to study the central
path for semidefinite programming. We extend the notion of weighted analytic
center for linear programming ([, [14], [19]) to semidefinite constraints. Contents
Let A = [a;;] and B = [b;;] bem x m real symmetric matricesA is called

Title Page

- - o o e . . 44 44
positive definit€positive semidefinijaf all its eigenvalues are strictly positive
(nonnegative). IfA is positive definite (positive semidefinite), we write>- 0 < >
(A = 0). The symbok- is theLéwner partial orderfor real symmetric matrices, Go Back
i.e.,A = Bifandonly if A — B is positive semidefinite.

Consider the following system qflinear matrix inequality_MI constraints: Cliggr

0\ () Quit
©) — AU Y -

(1.1) AV () = A} +;xﬂ4i =0, j=1,2,...,q E———
whereAgj), 0 <i <n, are allm; x m; symmetric matrices and € R". Let 3. 1neq. Pure and Appl. Math. 2(3) Art. 29, 2001
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denote thdeasible region
Assumption 1.1. We make the following set of assumptions throughout:

e all the constraints hold in an open set , i.&,# ) (this is a Slater condi-
tion);

e at every point ofR, n of the gradients of these constraints are linearly
independent;

A Weighted Analytic Center for

. . . . Linear Matrix Inequalities
e g > n,i.e., the number of constraints exceeds the dimension of the space;

Irwin S. Pressman and

e R is bounded (unless stated otherwise). Shafiu Jibrin
Definition 1.1. A strictly positive vectorw = (wj,ws,---,w,) is called a _
weight vector. Title Page
. . . Contents
Fix a weight vectow > 0. Define¢,(z) : R — R by
<44 >»
q
wjlogdet[(AW)(z))™] ifz e R 4 >
. Go Back
00 otherwise.
Close
Not_e that setting thé'" weight to zero is equivalent to removing th& con- Quit
straint.
Page 5 of 46

Definition 1.2. Theweighted analytic centesf R is given by

J. Ineq. Pure and Appl. Math. 2(3) Art. 29, 2001
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Lete =[1,1,---,1] be avector off ones Theanalytic centeof R is z,. =
Tq.(e). If each constraint¥) (z) = 0 is a linear inequalitfa?))"z — ) > 0,
then

q
Tae(w) = argmaa:{z w;log[(@N Tz — b9 | z € R}.
7=1

This shows that Definitiof.2is consistent with the usual definition of weighted
analytlc; cent_ers for linear mequahtlerﬂ_{ . N . Y-

We investigate necessary and sufficient conditions for a poif® &6 be a Linear Matrix Inequalities
weighted analytic center. We use Stiemke’s Theorerh¢f the alternative as a R ——
decision tool to decide whether or not a poinfdfs a weighted analytic center. Shafiu Jibrin
We prove thatp,(z) is a strictly convex function, and that for a given the
weighted analytic center is unique and isRn We give examples showing that

Title Page
a particular point: € R can be the weighted analytic center for more than one J
weight vector. Contents
We give a new proof that, in the special case of linear constraints, all interior PP >
points are weighted analytic centers. We then show that, in general, the region % N
W={z4(w)|w>0}CR Go Back
of weighted analytic centers for LMI's does not eqabnd is not convex. Close
This lack of convexity is clearly seen in Figuréand4 that show successive Quit

horizontal slices of a given regidR. This is interesting because there are many

analytic center based path following algorithms in the literature] ([ 24]) for Page 6 of 46
problems with linear constraints. It is useful to know that the region of weighted
analytic center3V is not always convex in the case of LMI constraints. Further * '”;‘:-t;:j;;;;‘::ffl;_Z;‘S:;f’ At 29, 2001
we establish that) is a contractible open subset®f and is the projection of a
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real algebraic variety. We show that the boundary\otan be described using
other real algebraic varieties. We also show how weighted analytic centers can
improve the location of standing points for the semidefinite stand and hit method
(SSH) [L7] for identifying necessary constraints in semidefinite programming.
For square matrice§A;}7 , denote the block-diagonal matrix having

Ay, Ay, -+ A, as its block-diagonal elements, in the given order, by
diag[A;, A,,--- , A,]. Define the inner product e B of matricesA and B
byAeB =3, Z]. aijb;; = Tr(A” B). Fejer's theorem f], p. 459] states that
Ae B >0whenA > 0andB > 0. TheFrobenius nornof A is denoted by
| A |7, where|| A ||p=[Ae A]2. We introduce some notation:

A= = diag[AEl), AgQ), e ,qu)] fori=0,1,2,... n.

B(z) = inA<i> forx e R".

=1

A(r) = A_os + B(x) forz € R"™.

Aur) = diaglor(AP()™" - Lwy(AD ()]

SetN = Y7  m;. Note thatA(z) is N x N andA,(z) - 0 forall = € R.
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In Lemmaz2.4 of this section we show that,(x) is strictly convex. This guar-
antees the existence and uniqueness of the weighted analytic center. This re-
sult is already well known when a single LMI is considered [ [3]). Al-

beit our theorem extends their result, the proof is not a direct consequence.
We require the following assumption throughout which is equivalent to say-
ing thatB(x) = 0 & x = 0. Assumption2.1 does not imply that the matrices

A Weighted Analytic Center for

(AP AP AP} are linearly independent for sonjie Linear Matrix Inequalities
g\ssgmption 2.1.The matrice A, Ao, ..., Ao~ } are linearly indepen- nin & Fressman and
ent.
The barrier functionp,,(z) is a linear combination of convex functions, so Title Page
it is convex. We give a brief independent proof of this below and show that
. . . . . Contents
¢.(x) is strictly convex. Gradient and Hessian are linear operators on the space
of continuously differentiable functions 1, 2], and we describe their action on <44 44
P (). < | 2
Lemma 2.2. For ¢, (x) defined as inX.3) Go Back
q Close
Vio,(x) = w:V,; log det[(AYV) (z))~?
0. () Z g det[(40(z)) ™) out
Page 8 of 46
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Hyj(z) = Zwkv log det[(A® (z)) ™)

=S rl(AB (@) AP o (AW ) AP

We can describe the gradient acting on a single constraint as:

A Weighted Analytic Center for

(2.1) \Y log(det(A(j) (a:))_l) Linear Matrix Inequalities
= [—(A(j) (x))_l ° Agj), ey —(A(j)(:v))_l o Aslj)]T Irwin S. Pressman and
Shafiu Jibrin

We can rewrite the Hessian as a linear combination of Hessians of each con-
straint:

Title Page
(2 2) H( ZwkH(k ZwkvA [VA(IC)CL‘)}T Contents
44 44
Let adj(B) denote the adjugate matrix of matrix. We have, for each con- < >
straint,
Go Back
(2.3) Vlog(det(A(j)(x))_l) Close
Ak Ak T .
- [adj (W) | o) i AD@) | Quit
det(A®)(z)) det(AF) (x) Page 9 of 46

Corollary 2.3. Each term ofV log(det(AY)(z))~!) is a quotient of polynomi-

H : +i 1 -1\ . Ineq. Pure an . Math. rt. 29,
als and the denominators are strictly positive V log(det(AY)(z))71) is e, P e AP e 20 202001
analytic in'R..
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Proof. Each coefficient ofA*)(x) has the formb, + bz, + ..
cause of the definition of the constraints. Hence every term of the adjugate
and determinant are polynomialsin, . . .
minants of positive definite matrices, so they are strictly positivR inSince

1) is a vector of quotients of polynomials with strictly pos-
itive denominators irR, all higher derivatives exist also. Hence it is ana-

V log(det (AW (z))~

lytic.

Lemma 2.4. ¢,,(z) is strictly convex overR

Proof. Let A 5 (z) = diag[,/w1AD (z)~!
using the Hessian matrik (z) = diag [H"(z),...

¢, () follows from

sTH(x)s

SinceA /5 (z) = 0in R,then sTH(z)s =0 < B(s) =

, Tn. The denominators are all deter-

, V@ AW (2)71]. Fors € R",
, H?(z)], convexity of

Z Z SiSjA\/a(x)A<i> ° A\/;(x)A<j>

i=1 j=1

ZS A<Z> [ ] A\f

I A z(2)B(s) [|5> 0.

ZSJA<]>

Z?:l sidci>=0 &

s = 0 by Assumptior2.1. Hence g, (x) is strictly convex.

Unlike the instance of linear inequalities, not all feasible points can be ex-
pressed as a weighted analytic center (cf. Thedse€in Necessary and suffi-

cient conditions for this are given in the next proposition.

. + b,x, be-
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Proposition 2.5. z* € R is a weighted analytic centex> there existso > 0
such thaiy"!_, w; VAU (z*) = 0, or equivalentlyy"?_, w; AV (%)~ 0 AY) =
0, :=1,2,...,n.

Proof. By LemmaZ2.4, ¢, (x) is strictly convex, hence the gradient is zero at

the absolute minumumlf]. Thus forl < i < n, V;¢,(2z*) = 0 & z*is a
weighted analytic center. O

The following proposition shows that the barrier functionx) is bounded
if and only if the feasible regiof® is bounded.

Proposition 2.6. The following are equivalent:
[a] R is unbounded

[b] there is a directions # 0 such that B(s) = 0, i.e., 3.1, 5,AY = 0,1 <
J=q

[c] ¢.(x)is unbounded below.

Proof. [a] = [b] Suppose thaR is unbounded and, € R. By the convexity

of R, for some directiors # 0 the rayR, = {x¢ + os | ¢ > 0} is feasible.
Therefore, we have

A(xg+0s) = A(xg) +0B(s) = 0Vo > 0.

This meansB(s) e Y + 2 A(zg) ¢ Y > 0 forallo > 0andY = 0. Hence
B(s)eY > 0forallY = 0. By Fejer's Theoremd], B(s) = 0 andB(s) # 0
by Assumptior2.1.
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[b] = [c¢] Givenz, € R and a nonzero direction for which B(s) * 0,
thenA(zy + os) = 0 for all ¢ > 0. ThereforeAV) (zy) = 0 and} ", siAEj) -
0,1 < j <gq.By|[3, Corollary 7.6.5] we can find a nonsingular mat€ix such
thatC; AV (z0)CT = I, C;(31, s:i4; ]))CT diag((a;)1, (a;)2, - - - (a;)m,],
with (a;), > 0,1 < k < m;. By Assumption2.1 at leastone (a;); > 0.
Therefore,

AV (x4 05) = C-*I(I + o diagl(a;)1, (aj)2, ..., (aj)mj])CT_l

J

w(To + 05) Z w; log det[AY) (2o + 05) 7]

—ZQIOgdet ZZlog 1+ o(aj);) — —oo0 aso — oo.

7=1 k=1

[c] = [a] ¢, is bounded below on every bounded region since it is strictly
convex by Lemma&.4. Hence, if¢,(z) is unbounded, the® is unbounded.
]
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In this section we investigate properties of the region of weighted analytic cen-
ters)V and its boundary. Denote the boundary of asby 0(S). We recall the
standard definition of derivative of a function of several variablgs p. 216]

and apply it top,,(z). We define the matrid/(z) :

A Weighted Analytic Center for

Definition 3.1. Linear Matrix Inequalities
(3.1) Irwin S. Pressman and
- . - ressm
M {—d%(m)r AD@) e A AD(2) e AP i
xT) = _— —= .« .. P o e
dz AD () T e AD .. A@(z)1e AW Title Page
] ' Contents
The 5™ column of M (x) is —V log det[AU)(x)~!]. These columns are the
components of the gradient of the barrier termpif(x) for each constraint, b dd
i.e., see 2.1). M(x) is an analytic function orR by Corollary2.3. For a < >

unit vectors, s” M (z) gives thedirectional derivativein directions of A7(z)

for each constraind’(z) *= 0. At each pointz € R, for a weight vector Clo ey
w >0, M(z)w =—V¢,(x). The region of weighted analytic centers is Close
(3.2) W ={z: z e Randthere existe > 0 such that\/(z)w =0} Quit

Page 13 of 46
We recall Stiemke’s Theorem of the alternative to obtain another characteriza-

tion of the region of weighted analytic centéfs. 3. Ineq. Pure and Appl. Math. 2(3) At 29, 2001
http://jipam.vu.edu.au
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Theorem 3.1. (Stiemke’s Theorenvp, 15)) Let M be an x ¢ matrix and let
w € R%and s € R". Exactly one of the following two systems has a solution:

System1: s"M > 0,s"M #0,s€R"
System2: Mw = 0, w>0,w e R%

Corollary 3.2. W = {z:z € Rsuchthats” M(z) >0, s"M(z) #0 is
infeasibleg

The Corollary shows that if there exists a directiom which s”M (z) > Al Qgi'ﬁfqﬁg;‘;‘;’sf”
0 andsTM(z) # 0, thenz isn’'t a weighted analytic center. The set of weight
vectors for any giverr in R is the intersection of the null space f (=) with nin & Fressman and
the positive orthant in R
In general, v does not have a simple description. However, in the case of
linear constraints, all interior points are weighted analytic centerddind R. Title Page
Theorem 3.3.1f R is defined by the linear systef@’)) 'z —b) > 0 (1 < j < Contents
q),i.e,R={z:(aV)z -0 >0, 1<i<q}, thenW =R. pp >
Proof. We know thatyy C R. By Proposition2.5, a pointz, is a weighted < >
analytic center if and only if there exist weightssuch that
. ) Go Back
(3.3) Z( B .>:o (1<i<n). Close
‘ (a(]))TxO yAG)) ’ - -
7=l Quit

Let 2* = 2, be the analytic center of the linear system. By definitich3)(
holds atz* with w = e, i.e.,

q (9)
a; . J. Ineq. Pure and Appl. Math. 2(3) Art. 29, 2001
1
(3.4) g ( ) =0, (1 <1< TL) http:/jipam.vu.edu.au

Page 14 of 46



http://jipam.vu.edu.au/
mailto:irwin_pressman@carleton.ca
mailto:Shafiu.Jibrin@nau.edu
http://jipam.vu.edu.au/

We havez* is a point of R and therefore(a?))"z* — ) > 0. Given a point
o Of R, set

(a9 zy — )
(a(j))Tg;* yAG)
for 1 < j < q. These values an®@(4) give

I a(j)wj d al?
(3.5) > @)z —00) |~ 2\ @0y =50

Jj=1 J
(3.6) = 0, forl <i<n.

w]':

Hence,r,.(w) = xo. O

The next example shows that it is not generally true that every poiRt in
is a weighted analytic center. We give a precise description of the boundaries
OW)of Wand 0(R) of R. The second constraint is deliberately chosen to be
redundant. Itis a simple matter to determine the feasible region for each con-

straint, i.e, for the third it is the set of points for whieh > —1 and z, > —2.

Example3.1 We have regioriR given byn = 2 variables and; = 5 LMI
constraints:

5 —1 -1 0 0 0
1) _
A (x) {_1 2}—!—361[ 00}4—1’2{0 _1}ZO

5 0 -1 0 0 0
@ () —
A¥(z) {02}%—3:1{ OO}%—:@[O _1}t0
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10 10 00
(3) _
AN (x) = 02}+x1{00}+x2{01}i0
38 0 —-0.4 0 10
A(4)(ZL') = 0 38}—1—%1[ 0 _04}+x2{0 1 }EO
26 0 0.8 0 10
(5) _
AN (x) = 0 26}—!—1’1[ 0 O.8}+$2{0 1 }EO.

All entries of M (1, x2) are quotients of polynomials iy, .

—2+2x2 1 1 4 8

9—5x0—2x1+T122 —5+x1 14+z1 —1942x1—5x2 13+4x1+5 22
—541x7 1 1 —10 10
9—b5xo—2x1+T122 —2+x9 2419 —194+22x1—5x2 13+4x1+5x2

Figure 3.1 shows the feasible region for Examgel, where the shaded
region isW. The analytic center is located at = 1.3291554838, x5 =
0.4529930537. We demonstrate thaiot every point is a weighted analytic cen-
ter, e.g., forz* = (4, —1.5)7, x* ¢ WW. We first compute the matrix

—1.4000 —1.0000 0.2000 —1.1429 0.3721
M(z*) =
—0.4000

—0.2857 2.0000  2.8571 0.4651

We note thaf{—1 1] M (z*) = [1.0000 0.7143 1.8000 4.0000 0.0930] >
0, so the system” M (z*) > 0, sT M (x*) # 0 is feasible. By Corollang.2, z*
is not a weighted analytic center.
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Figure 1: The regionV of weighted analytic centers bounded by the 5 con-
straints.

The point(1,0.5) is a weighted analytic center. We evaluate

—0.3000 —0.2500 0.5000 —0.2051 0.4103
M(1,0.5) = .

—0.8000 —0.6667 0.4000  0.5128 0.5128

The null space of/(1,0.5) is spanned by th& column vectors of the matrix

A Weighted Analytic Center for
Linear Matrix Inequalities

Irwin S. Pressman and
Shafiu Jibrin

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 17 of 46

J. Ineq. Pure and Appl. Math. 2(3) Art. 29, 2001
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:irwin_pressman@carleton.ca
mailto:Shafiu.Jibrin@nau.edu
http://jipam.vu.edu.au/

[—0.8333 1.2088  0.3297 7

1.0000  0.0000  0.0000

N = | 0.0000 1.1355 —0.6227

0.0000  1.0000  0.0000

A Weighted Analytic Center for

L 0.0000  0.0000 1.0000 A Linear Matrix Inequalities
We form 2 linear combinations of these columns and transpose to get weight Irwin S. Pressman and
vectors Shafiu Jibrin
wy = ([1,1,1]N)" =1[0.7051, 1, 0.5128, 1, 1] Title Page
Contents
wy = ([2,1,1.5]N)T =1[0.0366, 2, 0.2015, 1, 1.5000].
44 44
Any convex combinationl —¢) X w; +t X ws, 0 <t < 1, is another weight < >
vector corresponding tor,, x2) = (1,0.5). The underlying mechanism is de-
scribed in Theorem 3.7. Go Back
To gain a better understanding of the regioh a mesh with grid siz€.05 Close
was formed over the feasible region. B3.%), a mesh point* is in W if and Quit

only if there is a weight vectar > 0 so that forA/ = M (z*), Mw = 0 holds.
In this case, there is an optimal solution of the Linear Programming problem, Page 18 of 46
whereM = M (z*).
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q
(3.7) Max > w;
j=1

(3.8) subjectto Mw =0
q
(3.9) D wi=1
j=1 A Weighted Analytic Center for
w>0. Linear Matrix Inequalities
Irwin S. Pressman and
If the LPP has a solution, the optimal objective value must.déthe problem Shafiu Jibrin
is infeasible, then: isn’'t a weighted analytic center, i.ex ¢ W. We can
determine the region of weighted analytic centers by solving the LPP at each Title Page
mesh point.
Contents
Lemma 3.4. The optimal objective value of LB.() equalsl < z* €¢ W. [ « b
The diagonal part of the boundary of the shaded region in Figuran the < >
interior of the feasible regioR has the appearance of a straight line. By scaling
with positive valuegmultiplication by a positive definite diagonal matrix on the Go Back
right) - we convertM (z) to Close
24wy —2+4m 241 4 8 Quit

541, 54z 14z —10 10 Page 19 of 46

To make thel* and5™ columns dependant, eliminatefrom 8k = —2 + > '”;‘:-t;_j;;;;‘mﬂ e 20 . 29,2001
and10k = —5-+x, to getz, = 221 — 2. This means thé* and5"" columns are
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linearly dependent along the ling = {(z1, x5) : 522 — 427 + 10 = 0}, which
is the diagonal in Figur&.1. The line£ has normak = [5, —4]T. Multiply
M (z) by the normal vectos to get:

104+5z0—4 21 10+5x0—4 21 6+5x20—4 11 60 0
9751272x1(1+zz) (75+x1)(72+x2) (1+I1)(2+CE2) (719+2x175x2) N

The first2 entries are also zero on the lide Hencel is a line(this is a real
algebraic variety!)on which the directional derivative in directien= [5, —4]"
for the first2 constraints is zero. Substitute = %:cl —2in s"M(z) and
obtain:

5 60
ST Mbdry = |:O 0 :|

$1(1+Z’1) 9+21’1
which is non-negative and not zero On< x; < 3.881966. By Corollary 3.2,
the line segment is not iNV, so the linel demarks the boundary.

Consider the pointl, —2) on the lineC. Evaluate

16 1 1 4 8

6\ | 59 4 2 11 11

M(l’ _5)_ 20 5 5 10 10
59 16 4 11 11

Columnsl, 2,5 are parallel andv(t) = %[t, 2 —2t,0,0,1 4 t] is a non-zero
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solution of Mw = 0 forall 0 < t < 1. Itis easy to check that there is no
solution using columns 3 and 4, except with negative weights! It isn’t generally

easy to determine the boundary of every region of weighted analytic centers. ;7o pue and Aol Vot 2 Art 29, 2001
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To understand more of the regio¥, consider the augmented matrix ob-
tained from the constraint8.@) and (3.9):

—24x2 1 1 4 8 0
9—b5xo—2x1+T122 —b5+x1 1421 —19422x1—5x2 13+4x1+5 29
—5+x1 1 1 —10 10 0
9—b5x2—2x1+T122 —24x9 2+4x2 —1942x1—5x2 13+4x1+5x2
1 1 1 1 1 1
A Weighted Analytic Center for
The general solution of the augmented system is the vector Linear Matrix Inequalities
Irwin S. Pressman and
Wy Shafiu Jibrin
Wa
w(u,v) = | wy | = Title Page
w
- Contents
Ws
] ) «“ 33
u
< >
(—12—520—2x1)(—5+z1)(—2+4x2) —u (=54z1)(=2+z2)y Un(30—62¢1)(—2+x2)
3 B9—bz2—2a1 ta1 22) B(13+4z11522) Go Back
(=20+5294+2 1) (2+22)(1+21) U(20_5 ro—2x1)(2+w2)(1+21) X(12+6 z2)(1+z1) Close
B B(9—-5z2—2x1+x1 x2) B(13+4 x1+5z2) ;
Quit
(44+322—221)(=19+221-5x2) U (—4—3zo+221)(—194+221—5x2) _ch(—19+2 z1—5x2)
B 5(9—5 xo—2x1+71 (Eg) 5(134-4 xr1+5 272) Page 21 of 46
L. v -
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stitutions for notational convenience:

a = 8]+ 23wy — Tday — 1525 + 5915 + 92

170 67 258
= (21]1 + 31’2 — H) <4ZL‘1 — 51‘2 — ﬁ) — m,

B = (—236+ 142y — TTxy + 162172 + 427 + 1573)

v = 423+ 16z135 + 1631 + 1525 — 7239 — 224

X = (=175+ 27z + 20z5),

We note that the denominators are never zero in the shaded régioht
every pointz = (z1,22) € W we have a non-trivial solution and an open
neighborhood where there is a set of weight vectors with the same jpant
the optimal solution of,(x). For example, whem; = 1, x; = 1, any point
(u,v) > 0in the interior of the triangle constrained by the lines

19 245 8

44 132 121

5+5 —3 >0
12 736" 11"
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gives rise to aw(u, v) for which ¢, (z) has optimal value at; = 1, z, = 1.
This is generalized in Theorem 3.7.
In the table below we give the location @fgmin(¢,(x)) when somev;, =
0. Note that the optimal value can be in the interion®f Constraints 1 and
3 (for instance) bound a region containiRg but the constraint§3, 4,5} give
an unbounded region. This is useful in understanding repelling paths in section
3.3. We list six cases with a zero value for at least ope

w x‘l’pt :cgpt
0,1,1,1,1]  2.370 1.147

[1,0,1,1,0]  0.988 0.614
[1,0,1,0,1]  2.684 0.346
[1,0,0,1,1]  0.324 0.784
[1,0,1,0,0]  1.767  —0.155

[0,0,1,1,1] 00 00

In the next section we generalize these observations and shoWtisathe
projective image of a reallgebraic variety
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We define matrice®(z), DY) (x), P(x) and polynomials’ ;(x)

D(z) = Hdet[A(j)(x)]

DY(z) = D(z)A9(x (Hdet )adj(A(j)(x))

Py() = D) e A7
(B10) Pl) = [Py@).

Note thatDU)(x) = 0 andD(x) > 0 forall x € R since all theAVY)(z)
matrices are positive definite there. The idea of using the product of the deter-
minants is analogous to the method of Sonnevanfldf taking the products of
the distances from a set of linear constraints in order to find the analytic center
of a polyhedron. We note th&t(x) is an x ¢ matrix of polynomialsn x, where
M (z) is given by @.1). P(x) has rankn since it hasn linearly independent
columns at every point oR by Assumptionl.l The optimal value problem
can be restated as a problem in polynomials.

Theorem 3.5. (&) Vid,(z) =0for1 <i<n<& Y0 w;P (x) =0.

(b) The solution set of 37_, w; P j(z) = 0, 1 < i < n, is a real algebraic
varietyVin z = (21,22, -+ ,2,) andw = (wy,ws, -+ ,wy).

A Weighted Analytic Center for
Linear Matrix Inequalities

Irwin S. Pressman and
Shafiu Jibrin

Title Page

Contents

44 44
< | 2
Go Back
Close
Quit
Page 24 of 46

J. Ineq. Pure and Appl. Math. 2(3) Art. 29, 2001
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:irwin_pressman@carleton.ca
mailto:Shafiu.Jibrin@nau.edu
http://jipam.vu.edu.au/

(c) W C the projection of) into R™ given by(z,w) — x.
Proof. Since both AY)(z))~' = 0andD(x) > 0in R, by Corollary @.3),

q
. W o '
As(z) e A =0 & E 1 Wé)(l’)]adj [A(J)($)] ° AZ(J) —0
]:

= E Wj L7 5 = U. ] ]
- A Weighted Analytic Center for
Linear Matrix Inequalities

The last equivalence is obtained by multiplying the right-hand side by the prod-

Irwin S. Pressman and

uct D(z). Every entry of DY) (z) is a polynomial inz, so the solution set Shafiu Jibrin

(3.11) = { T,w) ij () =0,1<j5< n} Title Page

Contents

is a real algebraic variety mandw.

From Propositior2.5, « dd
< >

W = {x eER | Zw DY (z) e AV =0, 1 < i< n, for some(wy, - - ,w,) > 0} Go Back

7=1
Close

whereR is the feasible region of the system of LMI’'s. Thus, the regibrns a
subset of the projection af. ] Quit

We now have a systeiw = 0 of n equations iny variableso,, . . ., w,: Page 25 of 46
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Notation: Let A" = {w € R?: 39, w; = 1, w; > 0} denote the standard

open( g —1)- simplex. Denote the normalized vecteor by w = ﬁ €
N1 C R

We apply the implicit function theorenvi, Theorem 9.28] to the vector-
valued functionF’ = [Fy, Fs, ..., F,]

F(z,w): W x A" — R" where F(x,w) = V(¢,(7))
whose domain is a subset of'R. Gradient is with respect to only.

Theorem 3.6.There is a unique continuously differentiable functionA?~! —
R" such thaty(w) = argmin(¢.(x)) which satisfies\/ (¢)(w))w = 0. The

derivative ofy)(w) is ¢/ (w) = —J (¢ (w),w) *M(¢(w)), whereJ is the Jaco-
bian of F'.

Proof. We confirm that the conditions of the implicit function theorem are sat-
isfied:
(i) the functionsA® (z)~ e AY) = %ﬁ;’)) o AY) are continuous, and

(ii) the partial derivative@(g—; andg—f; are continuous in a neighborhood of

(2,w) € R™™.
We must show that the x n matrix J = [D;F;| = %} with respect to
J
x1,...,2, IS invertible inWW. By LemmaZ2.2 we have the continuous partial
derivatives

OF;  0(—> 1 wi(A®(z)) " e Agk))
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= 3w AP @) AP (AP () A
k=1

However, by Lemma&.2and @.2), the Jacobian matriX = >_7_, w, H®(z) is

a linear combination of the Hessians of th&)(z). Since each of the Hessians
is positive definite at alt € W, andw, > 0, it follows that.J is positive definite
in WWand/J is invertible.

By the implicit function theorem, there is a unique continuously differen-
tiable functionyy : A?"! — R™ such that)(w) = # and M (¢ (w))w = 0.
This is precisely the condition fat to be the absolute minimum af,(z),

S0 Y (w) = argmin(¢,(x)) is unique. The derivative is given by (w) =
—J(¥(w),w)" M (¥ (w)) [21, Theorem 9.28]. [

We next examine the mappingand use it to obtain some propertiesit

Theorem 3.7.¢ : A! — W is a continuous open onto mappinyV is a
connected open contractible subset/f The preimages)—'(x) are convex
and are homeomorphic to eithéx?~(*+1) or A7,

Proof. Every pointz € WV is a weighted analytic center for somye> 0, so ¢ is
an onto mapping. Sindd’ is the continuous image of the contractible A&t !,
it is connected and contractible too. Singés continuously differentiable, by
[21, Theorem 9.25]) is an open function, an®/ is an open set.

If Y(w!) = Y(w?) = 2, thenM (2)w! = M(2)w? = 0. Clearly(1 — ) x
w'+txw?>0for0<t<1,andM(2)((1 —t) x w! +¢ x w?) = 0. Thus,
P((1 —t) x w! + ¢t x w?) = 7, since the condition for optimality is satisfied.
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Select a pointy = 1(w,). The pair{xg, w,} satisfies the system ¢f + 1)
linear equations in; unknowns&(z) = {(3.8),(3.9)} which we write as
Ew = [0,...,0,1]T. By Assumptionl.1, E has rank> n. If rank(E)=n + 1
we can solve forw to get the general solution, the affine space of vectors
vo(x) + Span{vi(x), ..., v4—@m+1)(z)}. The solution set ifw : Y(w) = zo}.
This is the non-empty intersection of (@ — (n + 1)) affine space{v, +
>S90V pjv; + p; € R} with the standard open simplex¢—!, and is homeo-
morphic toA@—(+1),

In the case that rank(E} n we get an affine space of dimension one higher.
The intersection of the affine space withk?~' is homeomorphic ta\ @),
These are the only 2 cases. O

We note thafl/ (x) and P(z) are not defined ofi(R) sincelog(det( AW (x)~1))
is not defined on the boundary of the feasible region wherg'theonstraint is
active. We next studg(W) — 9(R ). We use the matri¥’(x) (3.10 and borrow
the results obtained fa¥/(x) here.

Theorem 3.8.1f z3 € 9(W), the boundary o#V, then for someé: there is a
direction s for which the directional derivative of¥)(z) is zero. The boundary
d(W) is contained in the union of the real algebraic varieties determined by the
zero directional derivative¥ , log (det(AY)(z))) = sTV log (det(AY) (7)) =

by X DW(x) o (AW (s) — AW(0)) =0, 1 <j < q.

Proof. Letzz € (W) —0(R) be a boundary point. By Stiemke’s Theorém
there is a directios such that” P(z5) > 0, and s” P(xg) # 0.

If s"P(z3) > 0, thenby continuity s”P(x) > 0 is true for allz in a
neighborhoodV of x5 because’ P(z) is a linear combination of polynomials
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in z. However, if this were the case, then for somg > 0, y = ¢(w,) €
W N N, and we would have = s™ (P(y)w,)
contradiction Hence weneverhaves” P(z3) > 0.

This means that for at least ore the directional derivative ofi®®)(z) in
directions is zero, at every point of the boundary, i.e.,

V,log (det(A®)(x))) =0

This is a polynomial equation which defines a real algebraic variety iBy

(s"P(y))w, > 0 which is a

& > DW(z)esA" = DM e (AW (s) — A®(0)) = 0.
i=1

A Weighted Analytic Center for
Linear Matrix Inequalities

Irwin S. Pressman and

Shafiu Jibrin
Stiemke’s Theorem, these varieties are disjoint fidin
An algebraic variety is generally nonconvex. We give an example where Title Page
W isn't convex. We use Lemma.4 to test grid points along slices or cross- Contents
sections of a 3-dimensional regi@. We construct a convex region bounded
by 4 semidefinite constraints designed so that the sphere centered at the origin 4 4
of radius 1.01 contains the intersection of their feasible regions. They are all of < >
the typeAY) (z) = I + BY(z), wherel is the5 x 5 identity matrix.
Example3.2 Go Back
1.00 0.00 0.00 0.00 0.00 0.45 —-0.38 —0.01 0.05 —0.20 Close
0.00 1.00 0.00 0.00 0.00 —0.38 0.47 —-0.30 —0.07 0.13
AMD(z)=| 000 000 1.00 000 000 | +=z; | —0.01 —030 059 013 021 Quit
0.00 0.00 0.00 1.00 0.00 0.05 —0.07 0.13 0.24 0.32
0.00 0.00 0.00 0.00 1.00 —-020 013 021 032  0.60 Page 29 of 46
0.04 0.04 -0.23 -0.12 -0.12 0.11 0.03 —-0.35 -0.14 -0.24
0.04 0.02 -0.17 —-0.07 —-0.12 0.03 -0.01 -0.13 -0.07 -—-0.10
+xo | —0.23 —0.17 1.03 0.49 065 | +x3 | —0.35 —0.13 1.04 0.41 0.75 J.lIneq. Pureiand Appl. Math. 2(3) Art. 29, 2001
-0.12 —0.07 049 022  0.33 —0.14 —0.07 041 012  0.29 http://jipam.vu.edu.au
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1.00 0.00 0.00 0.00 0.00 r—0.84 —1.12 096  0.63  0.03 T
0.00 1.00 0.00 0.00 0.00 ~1.12 -1.85 1.3 1.00 0.1
A@ ()= 000 000 1.00 0.00 0.00 |4z 096 113 —1.44 —0.88  0.11
0.00 0.00 0.00 1.00 0.00 0.63 100 —0.88 —0.73 —0.04
0.00 0.00 0.00 0.00 1.00 | L 003 021 011 -0.04 -0.10 J
0.16 —0.04 -053 -021  0.15 T r—0.11 -024 -—0.10 —0.10 —0.03 T
—0.04 -0.24 -0.25 —0.10 0.15 —0.24 -0.20 029  0.13 —0.05
+zo | —053 —0.25 111 044 —0.18 | +az3| —010 029 0.73 044 —0.07
—0.21 -0.10 0.44  0.17 —0.07 —0.10 0.13 044 026 —0.03 A Weighted Analytic Center for
0.15 0.15 -0.18 —0.07 —0.01 | L —0.03 —0.05 —0.07 —0.03  0.05 | Linear Matrix Inequalities
Irwin S. Pressman and
1.00 0.00 0.00 0.00 0.00 004 004 -023 -012 -0.12 Sl el
0.00 1.00 0.00 0.00 0.00 0.04 002 -0.17 —0.07 —0.12
A®)(z)=| 000 000 1.00 000 0.00 | +z; | —0.23 —0.17 1.03 049  0.65
0.00 0.00 0.00 1.00 0.00 —0.12 —-0.07 049 0.22  0.33 .
0.00 0.00 0.00 0.00 1.00 —0.12 —0.12 065 0.33  0.37 Title Page
—0.74 —0.10 0.74  0.30 —0.79 022 006 -069 —028 —0.47
—0.10 0.39 0.26 —0.24 —1.08 0.06 —0.01 —026 -0.14 -0.21 Contents
+22 074 026 —226 -266 —124 | +x3| —0.69 —026 208 083  1.50
030 —0.24 —2.66 —0.36 —0.95 028 —0.14 083 025 057 <44 44
—0.79 —1.08 —1.24 —0.95 -0.21 —0.47 -021 150 057  1.00
4 >
1.00 0.00 0.00 0.00 0.00 —242 —045 0.98 —1.69 —2.07 Go Back
0.00 1.00 0.00 0.00 0.00 —045 015 0.35 —0.95 —0.96 Close
A@W(z)=| 0.00 000 1.00 0.00 0.00 |+ 098 035 —029 025 045
0.00 0.00 0.00 1.00 0.00 -1.69 -0.95 0.25 0.50  0.07 .
0.00 0.00 0.00 0.00 1.00 —2.07 —0.96 0.45  0.07 —0.40 Quit
—1.31 —-0.03 056 0.12 —2.08 0.39 0.63 1.05 099 0.75 Page 30 of 46
—0.03 088 —0.14 -—0.78 —2.62 0.63 049 0.70  0.87 1.02
o 056 —0.14 —0.39 —3.36 010 | +x3| 1.05 0.70 0.08  0.82 0.69
0.12 —0.78 —3.36 0.16 —0.59 0.99 0.87 0.82 —0.03 0.94 o AT e A e
—2.08 -262 010 -0.59  1.05 075 1.02 0.69 0.94 0.04
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The constraintsi)(z), 1 < j < 4 define a convex regioR C R®. We
check every point in the grid of the cross-sectionsRofaken on planes with
constant height:s. Recall that by Lemm&.4 a grid pointz* is a weighted
analytic center if and only if fon/ = M (z*), LP (3.7) has optimal valué.

The analytic center oR was computed by the MATLAB functiofminunc
to be at

[—0.11091949382933, 0.06861587677354, 0.43344995850369].

The top of the regiofR occurs betweens; = 1 andx; = 1.01, as the constraint
AW (z) = 0is infeasible whem; = 1.01.

We now show a progression of five slices moving down from the toR ,of
with the same magnification and centers. These sliceR af R® show its
intersection with/V. In each slice we have .075 < z; < +.075 in 61 steps of
.0025 and—.015 < x5 < +.015 in 61 steps of0005 . The slices demonstrate
the lack of convexity of/V. The feasible regiorR is shaded, and the set of
weighted analytic centers fromV on each slice is shaded dark.

It is clear that from the diagrams that there is a lack of convexity in:tho-
rection. We confirm this by choosing three poifis= [—0.060, 0.004, 0.975],
P, = [0, 0.004, 0.975] and P; = [—.030, 0.004, 0.975]. The pointP; is the
midpoint of P, and P,. We have,

1.8463 —4.7567  0.3450  198.7089
M(P)) =] 0.5834  0.5157 —0.1612 2.0731
0.5857 —0.0173  0.6764 —227.7666
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A Weighted Analytic Center for

A * ® * “ * = B. Linear Matrix Inequalities
Figure 2: A) Slice ofR at heightr; = 1. B) Slice of R at heightr; = .9975 'fwiﬂsshapﬁrjzsimn <
Title Page
1.8028 —5.3775  0.3399  16.5750 Contents
M(P,) = | 0.5774  0.5641 —0.1460 9.0872
| 0.5795 —0.0776  0.6670 —51.7798 | 4« 44
< 2
[ 1.7616 —6.2081  0.3349 —3.7207 | Go Back
M(Ps)= | 0.5716  0.6283 —0.1312 —5.5310 Close
0.5735 —0.1596  0.6579 —43.9561 _
L - Quit
At Py, by solving LPP 8.7) with M = M (z*), we find weightsw;, = Page 32 of 46
[0.0494, 0.1758, 0.7724, 0.0024] so that we have a weighted analytic center at
P,. For P, we have the WEighTKSQ = [01929, 00853, 07089, 00128] which J. Ineq. Pure and Appl. Math. 2(3) Art. 29, 2001

makesP; = x,.(w>). Attheir midpoint,P;, we have[0.1028, 1.4601, 0.2814] M () MR
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A Weighted Analytic Center for

o * 3“ “© * © A “’ ® * “© * = B. Linear Matrix Inequalities
Figure 3: A)Slice ofR at heightr; = .995. B)Slice of R at heightr; = .9925 'meSSHaPﬁVESJSim” and
= [1.1915, 0.2487, 0.0095, 0.4033]. Thus, by Corollary3.2 there is no feasi- Tite P
ble set of weight vectore making P; a weighted analytic center. Hence we see e Fage
that)V is not convex. Contents

<44 >»
< >
In the case of linear constraints repelling forces directed away from the planes Go Back
and inversely proportional to distance are describéd, (p. 71]). Repelling o
ose

paths traced by a patrticle in the interior Bfunder the influence of the force
field generated by a subset of the constraints are discussef W¢ consider Quit

repelling path determined by LMI constraints. Page 33 of 46

Definition 3.2. Let «*) be a positive weight vector in ‘Rwith the k** compo-

nenta and all other components 1. The repelling path associated with‘the B i e DT
. . . Jlipam.vu. .

LMI constraint is the trajectory of ¥ (a) = z,.(a®) asa — oo ora — 0. PrpAmE e A
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Figure 4: Slice ofR at heightr; = .99
Title Page
The central pathin semidefinite programming1[], [2€]) is an example of Contents
a repelling path and it is well-known that these are smooth. The following theo- « b

rem shows that the limit of a repelling path associated wittktheonstraint, as
a — 00, is an interior point of the region determined by #i& constraint. The < >
limit as o — 0 is an interior point of the region determined by the other con-

. . . . Go Back
straints. The following theorem shows that the repelling path limit as oo
is in the interior of the feasible region of th&" repelling constraint. The limit Close
asa — 0 is in the interior of the feasible region of the other constraints. Quit
Theorem 3.9.If s*)(a) — 2, asa — oo, thenA® (z,,) = 0. Furthermore, Page 34 of 46

if s (a) — zo asa — 0, thenAVY) (z,.) = 0 for all j # k.

J. Ineq. Pure and Appl. Math. 2(3) Art. 29, 2001

Proof. Forz € R, AU)() = 0 forall j. By Definition1.3, s () = z,.(a®) http://jipam vu.edu.au
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is the minimizer of the barrier function

(3.13) ¢, (x) = arlog det[A®) ()] + > logdet[AY) (z)]7",

and¢,u (s (a)) < ¢,m(2). By using @.13 and dividing both sides of the
inequality bya we get

q
1ogdet[A<k>(s<k>(a))r1+1 > logdet[AD)(sW)(a))] !
(6%
J=1j#k

q
< log det[A®)(7)] ! 4L > logdet[AD (&))"
«

J=Lj#k

The term2 3%, . log det[AY)(2)]~! converges to zero as — oo. If z is
on the boundary ofi®®)(z) > 0, thenlog det[A®) (s (a))] 7! — co asa — oo.

Hence, ifz., were on the boundary of®)(z) > 0, then

130 jarlog det[AV) (s®) ()] "1 — —oo @asa — oco. This is not possible,
since )7, ., logdet[AD(sM(a))]" > 0 over Ry. The proof of the case
a — 0is similar. H

Figure5 gives the repelling paths determined by each constraint of Example
3.1 Each constraint was given weights from 0.0001 to 1000 while the other
constraints were each given fixed weight 1. The paths intersect at the analytic
center and two of them (1,2) overlap. It shows that limit of a repelling path is

not necessarily a boundary point of the feasible region. In Sebtwa discuss
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Title Page
Figure 5: Repelling Paths of Examiel Contents
44 44
how limits of repelling paths can be used with the stand-and-hit algorithm to < >
determine necessary LMI constraints.
Go Back
Close
Quit
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Weighted analytic centers are used in the cutting plane method by Luo
[14] for solving general convex problems defined by a separation oracle. Ra-
maswany and Mitchell 9] have also used them for studying multiple cuts.
The method of centers for path following is described!ir]] Sturm and Zhang
[24] use analytic centers to study the central path in semidefinite programming. A Weighted Analytic Center for
We present another application of weighted analytic centers to the probabilistic "o M2 Inequalites
Stand-and-Hit method.[] for identifying necessary constraints in semidefinite Irwin S. Pressman and

programming. Fok = 1,2, ..., ¢, define the region®,, (R C R;) by Shaiiu Jibrin
Rk = {.Z' | A(j)(x) = 07 ] € {172a-"7k_ 1>k+ 1a7q}} TitIePage
Definition 4.1. A (x) = 0is called redundant with respect to the §ét?) (z) = Contents
0}i_, if R = Ry, and is called necessaryif # R;. <« b
A LMI constraint is callednhecessaryf its removal changes the feasible re- < >
gion of the problem, otherwise it is calleddundant The semidefinite redun- o Back
0 bac

dancy problenis to decide whether or not thg" constraintA®™(x) = 0 is
redundant with respect to the det? () = 0}_,. Close
The significance of this for the linear case is discussed]iafd for SDP’s

in [17]. This is important as the running times of SDP algorithms grows non- out

linearly with the number of constraint§q]. The Semidefinite Stand-and-Hit Page 37 of 46
(SSH) method 1, 17] starts by selecting a poirit € R called thestanding

point We generate a sequence of search vedtarssfrom a uniform distribu- - Ineq. Pufe and Appl. Math. 2(3) Art. 26, 2001

http://jipam.vu.edu.au

tion over the surface of the unit hypersphéte! = {x € R" | || = ||.= 1}.
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EachsZ determines a feasible line segménit+ os; |0 < o < o;} such that if
det[AV)(Z + 0ys;)] = 0 for indexj and A®) (& + o;s;) > 0 for k # 7, then the
4" constraint is necessary.

The SSH algorithm:
Initialization : Denote the index set of identified constraintsfyand set7 =
0.

. A iraN—1/2 .
Choose a standing poititof R. CalculateA? () Pfor1 < j<q. A Weighted Analytic Center for
Linear Matrix Inequalities

Repeat

Search Direction From N(0,1) choose entriesu to generate a random Irwin S. Pressman and
pOiﬂt Shafiu Jibrin

s = u/||ul|» uniformly on the unit hyperspherg—!
. ; o1 .

Hitting Step: Calculate Bj(s, &) = —AD(2) 2(3", s, AY) AW (2) 2, Title Page

o9 = 1/M\, (B;(s,#)) ando) = —1/A-. (B;(s,2)) for1 < j < q. Contents

Calculater, = min {a+) | 1< < q} ando_ = mln{a | 1< < q}. PP >

Forlgkgq,lfo—+ :a+ora(_):afandkgj,setj:ju{k}. < >
Until a stopping rule holds.

Go Back

Sincez is fixed, we only computelj(:%)_% once throughout the detection pro- Close
cess. After the termination of the SSH algorithm, all LMI’s in the Setire Quit

declared necessary.

Let p;(#) be the probability that constraiiiis detected in an iteration of the Page 38 of 46
SSH algorithm from the standing poiit It has been shown/] that the ex-
pected number of iterations required to detect all necessary constraints is min-* '”;‘:-t;:j;;;;‘mﬁ;_Z;‘S:azf’ At 29, 2001
imized if 2 can be found so that the detection probabilitiegt) of all the
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constraints are equal. In general, such a poiatoes not exist, even for the
linear case. We pursue the more modest goal of trying to find a paiat will
minimize the standard deviation of the probabilities.

The strategy proposed in (] is to initially choosez as the analytic cen-
ter. We run the SSH algorithm from and for each constraint, determine the
number of times the constraint is detected, i.e.hitdrequency The hit fre-
quencies are directly related to the probabilifigls:). We use these frequencies
to determine a new weighted analytic center, and repeat the SSH algorithm. We A weighted Analytic Center for
continue with such repetitions, each from a newly calculated weighted analytic ~ -inear Matrix Inequalities
center, until a stopping criteria has been satisfied. The detection probability is Irwin S. Pressman and

directly proportional to thengle of sightof the constraint from the standing Shafiu Jibrin
point. We next apply our SSH strategy.

Title Page
Example4.1 Consider Example&.1. The analytic center of this problem is Contents
Zqe = (1.3292,0.4530). After 50 iterations of SSH at,., the number of hits
of constraints (1,2,3,4,5) were (50,0,48,0,2) respectively. Figuwigows how « dd
Zqe = (1.3292,0.4530) moves tor,.(w) = (1.7308, —0.1470) under the influ- < >
ence of the weight vectar = (50, 1,48, 1, 2). The undetected constraints, i.e.,
(2) and (4) are given weights 1 so that the feasible reglarmains unchanged. Go Back
The weighted center,.(w) moved closer to undetected constraint (4). Close
Example4.2 We consider a problem with = 101 constraints anch = 5 Quit
variables. The analytic center was found using the Damped Newton’s Method Page 39 of 46

of [17]. From the analytic center, we generated 1000 search directions to get
the following nonzero hit frequencies

J. Ineq. Pure and Appl. Math. 2(3) Art. 29, 2001
http://jipam.vu.edu.au

(493, 308, 29, 526, 23, 22, 642, 376, 498, 965, 150, 2026, 71, 13871).
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Figure 6:
This figure shows how,. = (1.3292,0.4530) moves to
Zae(w) = (1.7308, —0.1470) under the influence of the weight vector
w = (50,1,48,1,2).
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Note that onlyl4 constraints were detected. The standard deviati6628.

Using the weights equal to the frequencies for the detected constraints, and
weights of one for the undetected constraints, we determined the corresponding
weighted analytic center, and used it as the next standing point. From this point,
we found the new frequencies of

(6363, 3194, 8,1328, 1,4, 872,92, 145, 3052, 279, 4384, 3, 275),
A Weighted Analytic Center for
which correspond to the same detected constraints. The standard deviation is LnearMatix Inequalities
reduced t@026. We see that from the new point, the detection probabilities (fre- Irwin S. Pressman and
quencies) are more "balanced", and we have a better point for the SSH method. Shafiu Jibrin
Limits of repelling paths can be used with SSH to determine necessary con-
straints. The idea is to assign weighto one constraint and weight 1 to the Title Page

others. The corresponding weighted analytic center can be used as a standing

point for SSH to detect constraints close to the boundary. Repeating this pro- contents

cedure over each constraint providesfulstanding points in some cases. For 4 44

example, in Figur&, there are 8 repelling limits; 4 are interior points and 4 are < >

boundary points. The boundary points identify constraints 1 and 5. The limits in

the interior aregoodstanding points for identifying the remaining constraints. Go Back

This is still under investigation. Close
Quit
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We extended the notion of weighted analytic center from linear constraints to
semidefinite programming and have shown that the region of weighted analytic
centers)V C R. We have studied the geometry and topology/8f both
theoretically and through comprehensive examples. We have proventhat

R in the case of linear constraints, but in the semidefinite situgtiog W,

i.e., there exist feasible pointsin R which are not weighted analytic centers.

A Weighted Analytic Center for

We have shown both analytically and by graphical meansitha an open Linear Matrix Inequalities
contractlblg subset of R, but is not convex. We have given cross-sections of -
W, by making extensive use of Stiemke’s Theorem of the alternative while solv- Shafiu Jibrin

ing small linear programming problems at each point of a grid. In the course of
this, we have provided a graphical representation of a non-tfivitsnensional

real algebraic variety. We have demonstrated how one can use the varieties to LS
describe)V and its boundary. We have also shown by an example, a potential Contents
application of weighted analytic centers to improve the standing point of the P SY
Stand-and-Hit method (SSH) for identifying necessary constraints in semidefi- N

nite programming.
We have also studied tregminfunction extensively and have proven it to Go Back

be continuously differentiable and open for the functions used here. Close

Quit
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