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ABSTRACT. This paper is devoted to the investigation of sinc interpolation properties corre-
sponding to a sequence of functions having the sinc function as a basis, the interpolation is taken
over the dyadic partition of the interval[0, 2π]. In particular, a new class of functions for which
the interpolation converge is introduced. The convergence of our interpolation processes is stud-
ied and answered in quite a comprehensive way. In fact, the paper aims to provide a guideline
towards a large number of problems of interest in applied sciences.
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1. I NTRODUCTION

The sinc approximation method is a very promising method for function approximation, for
approximation of derivatives, for approximate definite and indefinite integration, for solving
initial value problems, for approximation and inversion of Fourier and Laplace transforms. The
sinc method is an attractive alternative for numerical solutions to those problems which have
no closed form. The theory of sinc series on the whole real line is developed in [8]. There are
several reasons to approximate by sinc functions. Firstly, they are easily implemented and give
good accuracy for problems with singularities; approximations by sinc function are typified by
errors of the formO(exp(−c/h)) wherec > 0 is a constant andh is a step size. Secondly,
approximation by sinc functions handles singularities in the problem. The effect of any such
singularities will appear in some form in any scheme of numerical solution, and it is well known
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that polynomial methods do not perform well near singularities. Finally, these kinds of approx-
imation yield both an effective and rapidly convergent scheme for solving the problem, and so
circumvents the instability problems that one typically encounters in some difference methods.
Numerical processes of interpolation on the real line, with the help of adroitly selected confor-
mal maps is adapted to handle these same processes on finite intervals, or in general on other
subsets of the real line. For more details see, [3, 4, 5]. Also, it is worthy to mention the work by
Stenger [9], where he presents practically useful constructive linear methods of approximation
of analytic functions by polynomials, sinc functions and rational functions. In [6], the author
proves some convergence results on finite intervals, using the linear combination of the basis

functionsBn,k = S(k, h) ◦ sin h−1
(
cos h−1

(
1
|x|

))
wherek = −n, . . . , n, h = log n/n, and

S(k, h) is the sinc translated function, to be defined later.
Although there is no unique choice for the conformal map, and so one will not guarantee an

exponential decay of the convergence rate using the sinc method. It should be pointed out that
it might be possible that the selection of the conformal mapping does not lead to a symmetric
discrete system. While a symmetric approximation system is not necessary for a good approx-
imation, it is computationally efficient and analytically advantageous for solving the discrete
system. As a final note on selection availability of the conformal mapping. In problems where
two (or more) maps are applicable, the use of either of the maps leads to a smaller size of the
discrete system, for example, in the case of the domain(0,∞) there are available the selections
ln(x) and ln(sinh(x)). The mapln(x) often leads to a smaller discrete system that does the
mapln(sinh(x)) for equivalent accuracy. To avoid these difficulties and as an alternative for the
extension (using conformal maps) made by Stenger [8], this paper is devoted to the investiga-
tion of sinc interpolation on the interval[0, 2π] (see, [7]). The paper is organized as follows. In
Section 2 we define our interpolation processesSn(f ; x), where the nodes are taken to be the
diadic partition of the interval[0, 2π]. We then study some basic properties of the interpolating
function Sn(f ; x). In Section 3 we take up the functional properties ofSn(f ; x). Section 4
deals with new classes of functions for which the interpolation processes converges. In the last
section of this chapter, we give the most important convergence results in this paper.

2. THE I NTERPOLATION PROCESSES

Let E1 = {0, π, 2π}, andE2 = {0, π/2, π, 3π/2, 2π}. In general let

(2.1) En =

{
2kπ

2n
, 0 ≤ k ≤ 2n

}
.

In the following Lemma we state, without proof, some properties of the partitionEn

Lemma 2.1. For the setsEn the following holds true
(1) The sequence{En} is an increasing sequence, i.e,E1 ⊂ E2 ⊂ . . . .
(2) E = ∪∞n=1En is dense subset of[0, 2π].

Definition 2.1. Let f : [0, 2π] → R be any function. For each natural numbern we define,

(2.2) Sn(f, x) =
∑

xk∈En

f(xk)Ln,k(x),

where

(2.3) Ln,k(x) =

 sin[2(n−1)(x− xk)]

2(n−1)(x− xk)
, x 6= xk

1, x = xk

andxk = 2kπ
2n for 0 ≤ k ≤ 2n.
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In the following sequence of lemmas we will give the basic properties ofSn(f, x) as an
interpolating function.

Lemma 2.2. For any natural numbersn, k andj where0 ≤ k, j ≤ 2n we have

Ln,k(xj) = δj,k.

Proof. If j = k thenLn,k(xj) = 1 by the definition ofLn,k(x). Now if j 6= k, we have

Ln,k(xj) =
sin[2n−1(xj − xk)]

2n−1(xj − xk)

=
sin
[
2n−1

(
2jπ
2n − 2kπ

2n

)]
2n−1(xj − xk)

=
sin[(j − k)π]

2n−1(xj − xk)

= 0.

This completes the proof. �

Lemma 2.3.Sn(f, x) interpolatesf onEn for any functionf defined on[0, 2π]. i.e.,Sn(f, xk) =
f(xk) for all xk ∈ En.

Proof.

Sn(f, xk) =
2n∑

j=0

f(xj)Ln,j(xk)

= f(xk)Ln,k(xk) +
∑

xj 6=xk

f(xj)Ln,j(xk)

= f(xk).

Sincexk is an arbitrary element ofEn, the result follows. �

We have shown thatSn(f, x) interpolatesf on the setEn, the following lemma is a general-
ization:

Lemma 2.4. For any real valued functionf on [0, 2π], if limn→∞ Sn(f, x) = g(x) theng(x) =
f(x) for all x ∈ E.

Proof. Let x be arbitrary element ofE. SinceE is the union of the setsE ′
ns there must be

n0 such thatx ∈ En for all n ≥ n0. Now for n ≥ n0 we haveSn(f, x) = f(x) therefore
limn→∞ Sn(f, x) = f(x), thusg(x) = f(x). Sincex is an arbitrary element ofE the result
follows. �

Lemma 2.5. Sn(f, x) = Sm(f, x) for all x in Ek, wherek = min(n, m).

Proof. Let n andm be any two natural numbers, andk = min(m, n). Let x` ∈ Ek for some`,
thenx` ∈ En becausek ≤ n. But Sn interpolatesf on En, so thatSn(f, x`) = f(x`). By the
same argument, we can show thatSm(f, x`) = f(x`). �

The following sequence of lemmas give some result on the derivative of the basis of the
interpolation, from which one can approximate the solution for some differential equations.

Lemma 2.6. For any natural numbersn andk with 0 ≤ k ≤ 2n we have

(2.4) L′n,k(xk) = 0.
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Proof. Forx = xk, we have

L′n,k(xk) = lim
x→xk

Ln,k(x)− Ln,k(xk)

x− xk

= lim
x→xk

sin[2n−1(x− xk)]− 2n−1(x− xk)

2n−1(x− xk)2

= lim
x→xk

2n−1 cos[2n−1(x− xk)]− 2n−1

22n−1(x− xk)

= lim
x→xk

−2n−12n−1 sin[2n−1(x− xk)]

22n−1(1)

= 0

and the lemma is proved. �

Lemma 2.7. For any natural numbersn andk with 0 ≤ k ≤ 2n we have

(2.5) L′n,k(xj) =
2n × (−1)j−k

2π(j − k)
.

Proof.

L′n,k(xj) = lim
x→xj

Ln,k(x)− Ln,k(xj)

x− xk

= lim
x→xj

sin[2n−1(x− xk)]

2n−1(x− xk)(x− xj)

= lim
x→xj

2n−1 cos[2n−1(x− xj)]

2n−1
lim

x→xj

1

x− xk

=
(−1)j−k

xj − xk

=
2n × (−1)j−k

2π(j − k)
.

Now the proof is complete. �

For the second derivative, we have

Lemma 2.8. For any natural numbersn andk with 0 ≤ k ≤ 2n we have

(2.6) L′′n,k(xk) =
−22n−2

3
.

Proof.

L′′n,k(xk) = lim
x→xk

L′n,k(x)− L′n,k(xk)

x− xk

= lim
x→xk

2n−1(x− xk) cos[2n−1(x− xk)]− sin[2n−1(x− xk)]

2n−1(x− xk)3

= lim
x→xj

−2n−12n−1(x− xk) sin[2n−1(x− xk)]

3.2n−1(x− xk)2

=
−2n−1.2n−1

3
=
−22n−2

3
.

�
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The following is a connection between our interpolation and the Lagrange interpolation.

Lemma 2.9. Let f be a real-valued function on[0, 2π] and letHn denote the Lagrange inter-
polation function onEn, thenSn(f, x) = Sn(Hn, x).

Proof. We recall thatHn(xk) = f(xk) for all xk ∈ En. Now,

Sn(f, x) =
∑

xk∈En

f(xk)Ln,k(x)

=
∑

xk∈En

Hn(xk)Ln,k(x)

= Sn(Hn, x).

�

In fact the previous lemma is a particular case of the following lemma.

Lemma 2.10. Let f and g be two real-valued functions defined on[0, 2π] such thatg(xk) =
f(xk) for all xk ∈ En for some natural numbern, thenSn(f, x) = Sn(g, x) for all x ∈ [0, 2π].

3. THE FUNCTIONAL PROPERTIES OF Sn

Notice thatSn can be considered as an operator on the space of all real-valued functions on
[0, 2π]. So that, it is convenient to study the functional properties ofSn as an operator on the
dual space of[0, 2π]. Note thatSn(f, x) is a linear operator on the space of all functions defined
on [0, 2π].

Lemma 3.1. For each natural numbern, the operatorSn is a bounded linear operator.

Proof. In order to show the boundedness ofSn, we find a real numbercn such that‖Sn(f)‖ ≤
cn‖f‖. This is an immediate result. �

Corollary 3.2. For each natural numbern, Sn is a continuous linear operator.

We have shown thatSn is a continuous function on[0, 2π] and is a continuous linear operator
on the dual space of[0, 2π]. Therefore,Sn is a continuous maping in both its components, i.e.,
if we consider

Sn : X × [0, 2π] −→ R,

thenSn is continuous onX × [0, 2π], whereX is the dual space of[0, 2π].
The following few results give us some fixed points forSn.

Lemma 3.3. For any natural numbersn andk where0 ≤ k ≤ 2n we have

(3.1) Sn(Ln,k, x) = Ln,k(x).

Proof.

Sn(Ln,k, x) =
∑

xj∈En

Ln,k(xj)Ln,j(x)

= Ln,k(xk)Ln,k(x) +
∑

xj 6=xk

Ln,k(xj)Ln,j(x)

= Ln,k(x).

�

Lemma 3.4.For any natural numbern and for any functionf on[0, 2π] we haveSn(Sn(f), x) =
Sn(f, x).
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Proof.

Sn(Sn(f), x) =
∑

xk∈En

Sn(f, xk)Ln,k(x)

=
∑

xk∈En

∑
xj∈En

f(xj)Ln,j(xk)Ln,k(x)

=
∑

xk∈En

∑
xj∈En

f(xk)δk,jLn,k(x)

=
∑

xk∈En

f(xk)Ln,k(x) = Sn(f, x).

�

ThusSn as a linear operator on the class of all real valued functions defined on[0, 2π] has at
least2n + 2 fixed points.

Talking about fixed points of a linear operator leads to talking about the contraction which is
considered in the following corollary.

Theorem 3.5.For any functionf on [0, 2π], the operatorSn(f, x) is not a contraction.

Proof. We firstly recall that the space of all real valued functions on[0, 2π] is a complete metric
space with respect to the metric

(3.2) d(f, g) = sup{f(x)− g(x) : x ∈ [0, 2π]}.

Now, if we assume on the contrary thatSn(f, x) is a contraction, thenSn will satisfy the re-
quirments of the “Banach fixed point theorem”, and, hence,Sn has a unique fixed point. The
last statement is a contradiction becauseSn has at least2n + 2 fixed points. Thus, we conclude
thatSn is not a contraction. �

SinceSn is not a contraction, one may ask about the relation betweend(Sn(f), Sn(g)) and
d(f, g). The following theorem answers this question.

Theorem 3.6.Letf andg be any two functions on[0, 2π]. For each natural numbern, we have

(3.3) d(Sn(f), Sn(g)) ≤ (2n + 1)d(f, g).

Proof.

d(Sn(f), Sn(g)) = sup
[0,2π]

|Sn(f, x)− Sn(g, x)|

= sup
[0,2π]

|Sn(f − g)|

= sup
[0,2π]

|
2n∑

k=0

[f(xk − g(xk)] Ln,k(x)|

≤ sup
[0,2π]

2n∑
k=0

|f(xk)− g(xk)||Ln,k(x)|

≤ sup
[0,2π]

2n∑
k=0

|f(xk)− g(xk)|
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≤ sup
[0,2π]

2n∑
k=0

|f(x)− g(x)| = (2n + 1)d(f, g).

�

4. SPECIAL CLASSES OF FUNCTIONS

Since the nodes of the interpolation are of the form2kπ
2n , one can think about the limit;

limn→∞
∑2n

k=0

∣∣f (2kπ
2n

)∣∣. In fact this idea introduces the following definition.

Definition 4.1. Let U [0, 2π] be the class of all real valued-functionsf on [0, 2π] and for which

lim
n→∞

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣ < ∞.

Lemma 4.1. The condition in the last lemma is equivalent to the condition∑
xk∈E

|f(xk)| < ∞.

Proof. We show that

lim
n→∞

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣ =
∑
xk∈E

|f(xk)|

in order to prove the lemma. For, numerate the countable setE as following:
The elements ofE1 arex0, x1 andx2.
The elements ofE2 − E1 arex3, x4.
The elements ofE3 − E2 arex5, ..., x9.
In general, the elements ofEn+1 − En arex2n+1, ..., x2n+1 . Now,∑

xk∈E

|f(xk)| = lim
n→∞

2n∑
k=0

|f(xk)| = lim
n→∞

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣
the last equation is valid because of our choice of the numeration. �

The reader must realize that any rearrangement of the above sums is not important because
we are dealing with absolute sums.

Example 4.1.Here we give an example of a function that belongs to the classU [0, 2π], i.e, we
show thatU [0, 2π] 6= ∅. For, letf : [0, 2π] −→ R be defined by

f(x) =

{ 1
k2 , x = xk,

1, x 6= xk.

Here we consider some numeration for the countable setE. It is clear that

lim
n→∞

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣ =
∑
xk∈E

|f(xk)| =
∞∑

k=1

1

k2
=

π2

6
.

Therefore,f ∈ U [0, 2π]

Example 4.2. In this example we show that the classU [0, 2π] doesn’t contain any polynomial
of the formf(x) = axm. For, consider

an =
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣ =
2n∑

k=0

∣∣∣∣a(2kπ)m

2nm

∣∣∣∣ = |a|2
mπm

2nm

2n∑
k=0

km.
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Although the exact formula for the last sum needs more complicated computations, we know
that this sum will be a polynomial in2n of degreem + 1. Thus,an = |a| (2π)m

2nm × g(m + 1),
whereg(m + 1) is the indicated polynomial. Now it is clear that,limn→∞ an = ∞. Therefore
f 6= U [0, 2π].

Lemma 4.2. If f is any real valued function on[0, 2π] such that|f | is integrable in the sense of
Reimann andf ∈ U [0, 2π] then

∫ 2π

0
|f(x)|dx = 0.

Proof. For each natural numbern, En =
{

2kπ
2n , 0 ≤ k ≤ 2n

}
is a partition for[0, 2π]. The

subintervals of this partition are[
0,

2π

2n

]
,

[
2π

2n
,
4π

2n

]
, . . . ,

[
2(2n − 1)π

2n
, 2π

]
.

Now consider the Riemann sum off over this partition,Rn(f) = 2π
2n

∑2n

k=1 |f(x∗k)| wherex∗k is
any point of thek− th interval of the partition. Since|f | is integrable (in the sense of Riemann)
we can takex∗k to bexk = 2kπ and, hence,

Rn(|f |) =
2π

2n

2n∑
k=1

|f(xk)| =
2π

2n

2n∑
k=1

∣∣∣∣f (2kπ

2n

)∣∣∣∣ .
Now write the integral off as the limit of a Riemann sum to get∫ 2π

0

|f(x)|dx = lim
n→∞

Rn(|f |) = lim
n→∞

2π

2n

2n∑
k=1

∣∣∣∣f (2kπ

2n

)∣∣∣∣ .
But sincef ∈ U [0, 2π] we havelimn→∞

∑2n

k=1

∣∣f (2kπ
2n

)∣∣ is finite. Thus,∫ 2π

0

|f(x)|dx = lim
n→∞

2π

2n
× (finite value) = 0.

�

Lemma 4.3. If f ∈ U [0, 2π] and|f | is integrable in the sense of Riemann, then[0, 2π] does not
contain any intervalI such thatf(x) 6= 0 for all x ∈ I.

Proof. Assume that there is an intervalI ⊂ [0, 2π] such thatf(x) 6= 0 for all x ∈ I, then∫ 2π

0

|f(x)|dx =

∫
I

|f(x)dx +

∫
[0,2π]−I

|f(x)|dx

≥
∫

I

|f(x)|dx

> 0

but this contradicts the last lemma, and the lemma is proved. �

Lemma 4.4. The only continuous function inU [0, 2π] is the zero function.

Proof. Let f be a non-zero continuous function on[0, 2π], then there is at least onex ∈ [0, 2π]
such thatf(x) 6= 0. Sincef is continuous atx, there must be an intervalI containingx for
whichf(x) 6= 0 for all x ∈ I. But m(I) > 0 and this contradicts the last lemma. �
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SOME CONVERGENCERESULTS ONSINC INTERPOLATION 9

5. SOME CONVERGENCE RESULTS

Lemma 5.1. For any natural numbersn andk with 0 ≤ k ≤ 2n, we have

(5.1) Ln,k(x) =
1

2n

∫ 2n−1

−2n−1

exp

(
2πkit

2n

)
e−ixtdt.

Proof.

1

2n

∫ 2n−1

−2n−1

e
2πkit
2n −ixtdt

=
1

2n

∫ 2n−1

−2n−1

ei( 2kπ
2n −x)tdt

=
1

2n

1

i
(

2πk
2n − x

) [ei( 2kπ
2n −x)t

]2n−1

−2n−1

=
1

2n

1

i
(

2πk
2n − x

) [ei( 2kπ
2n −x)2n−1 − e−i( 2kπ

2n −x)2n−1
]

=
1

2n

1

i
(

2πk
2n − x

) [cos[2n−1

(
2kπ

2n
− x

)
]

]
+

1

2n

1

i
(

2πk
2n − x

) [i sin

[
2n−1

(
2kπ

2n
− x

)]
− cos

[
2n−1

(
2kπ

2n
− x

)]]
+

1

2n

1

i
(

2πk
2n − x

) [i sin

[
2n−1

(
2kπ

2n
− x

)]]
=

sin
[
2n−1

(
x− 2kπ

2n

)]
2n−1

(
x− 2kπ

2n

)
= Ln,k(x).

The last proof is valid wheneverx 6= xk; the case wherex = xk is easy to seen. �

Corollary 5.2. The Fourier transform ofLn,k(x) is

(5.2) F (t) =

{ 2π
2n exp(2kiπt

2n ), |t| < 2n−1

0, |t| > 2n−1

Proof. Let F be the Fourier transform off , thenF must satisfy the equation

Ln,k(t) =
1

2π

∫
R

e−ixtF (x)dx.

By the last lemma we find that the function defined in equation (5.2) satisfies this condition,
and since the Fourier transform is unique, the result follows. �

Corollary 5.3. For any natural numbersn, k andj where0 ≤ k, j ≤ 2n we have

(5.3)
∫

R
Ln,k(x)Ln,j(x)dx =

2π

2n
δk,j.

Proof. Let F andG denote the Fourier transforms ofLn,k andLn,j respectively, then by Parse-
val’s theorem, ∫

R
Ln,k(x)Ln,j(x)dx =

1

2π

∫
R

F (t)G(t)dt.
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Firstly, if k = j, then∫
R

Ln,k(x)Ln,j(x)dx =
1

2π

∫ 2n−1

−2n−1

4π2

22n
dt =

2π

2n
=

2π

2n
δk,k.

Secondly, ifk 6= j then∫
R

Ln,k(x)Ln,j(x)dx =
1

2π

∫ 2n−1

−2n−1

4π2

22n
e2πit( k−j

2n )dt

=
2π

22n

2n

2iπ(k − j)

[
e2πit( k−j

2n )
]2n−1

−2n−1

=
1

2ni(k − j)
2i sin[(k − j)π]

= 0.

�

Corollary 5.4. Letf : [0, 2π] −→ R. For each natural nubern we define

(5.4) Fn(x) =


2π

2n

2n∑
k=0

f

(
2kπ

2n

)
exp

(
2kπix

2n

)
, |x| < 2n−1,

0, |x| > 2n−1,

then for any natural numbern, we have

(5.5) Sn(f, t) =
1

2π

∫ 2n−1

−2n−1

Fn(x)e−ixtdx.

In fact,Fn is the Fourier transform ofSn.

Proof.

1

2π

∫ 2n−1

−2n−1

Fn(x)e−itxdx =
1

2π

∫ 2n−1

−2n−1

2π

2n

2n∑
k=0

f

(
2kπ

2n

)
e

2kπix
2n e−itxdx

=
2n∑

k=0

f

(
2kπ

2n

)∫ 2n−1

−2n−1

e
2kπix

2n e−itxdx

=
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(t)

= Sn(f, t).

�

Corollary 5.5. Let f be a real-valued function such that bothf and |f | are integrable in the
sense of Riemann, and such thatf = 0 outside[0, 2π], also letF be the Fourier transform off ,
then

(5.6) lim
n→∞

Fn(x) = F (x),

whereFn is defined in Corollary 5.4. MoreoverFn −→ F uniformly.

Proof. For fix x ∈ [−2n−1, 2n−1], let

(5.7) g(t) = f(t) exp(itx), t ∈ [0, 2π]
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and consider then-th Reimann sum ofg over [0, 2π];

(5.8) Rn(g) =
2π

2n

2n∑
k=1

f

(
2kπ

2n

)
exp

(
2kπix

2n

)
therefore,

lim
n→∞

Rn(g) = lim
n→∞

2π

2n

2n∑
k=1

f

(
2kπ

2n

)
exp

(
2kπix

2n

)
= lim

n→∞
Fn(x),

which implies ∫ 2π

0

f(t) exp(itx)dt = lim
n→∞

Fn(x)

thus,
F (x) = lim

n→∞
Fn(x)

The uniformly convergence fact follows because

(5.9) lim
n→∞

2n∑
k=0

∣∣∣∣2π2n
f

(
2kπ

2n

)
exp

(
2kπix

2n

)∣∣∣∣ ≤ lim
n→∞

2n∑
k=0

∣∣∣∣2π2n
f

(
2kπ

2n

)∣∣∣∣
and the last series converges to a real number because|f | is integrable. By theM−testwe have
the result. And the corollary is proved. �

Corollary 5.6. For any natural numbersn andk with 0 ≤ k ≤ 2n, we have

(5.10) f

(
2kπ

2n

)
=

1

2π

∫ 2n−1

−2n−1

Fn(x) exp

(
−2kπix

2n

)
dx,

where{Fn} as defined in corollary 5.4.

Proof. Consider the Fourier series representation forFn in (−2n−1, 2n−1);

Fn(x) =
∞∑

k=−∞

ck exp

(
2kπix

2n

)
, |x| < 2n−1.

Compare this with the definition ofFn(x) to get ck = 0 for k < 0 and k > 2n and ck =
2π
2n f

(
2kπ
2n

)
for 0 ≤ k ≤ 2n. Also we know that

ck =
1

2n

∫ 2n−1

−2n−1

F (x) exp

(
−2kπix

2n

)
dx,

and hence

f

(
2kπ

2n

)
=

1

2π

∫ 2n−1

−2n−1

F (x) exp

(
−2kπix

2n

)
dx.

�

The last corollary gives rise to the following new class of functions.

Definition 5.1. Let J [0, 2π] be the class of all real-valued functions,f on [0, 2π] and0 outside
this interval) for which there is a functionFn satisfying the following conditions:

• Fn(x) = 0 for all x outside(−2n−1, 2n−1) for some natural numbern

• f(t) = 1
2π

∫ 2n−1

−2n−1 Fn(x)e−ixt for all t ∈ [0, 2π].
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Although the classJ [0, 2π] seems to be very complicated, it has many nice properties. In the
following sequence of theorems we give the most important properties for this class.

Theorem 5.7.For any functionf ∈ J [0, 2π] we have the series representation

f(x) = Sn(f, x),

wheren is as in the definition ofJ [0, 2π] and

(5.11) Sn(f, x) =
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(x).

Proof. Sincef ∈ J [0, 2π], there existsn0 such that

f(t) =
1

2π

∫ 2n−1

−2n−1

e−ixtFn(x)dx

for all n ≥ n0. The functionF in the last equation can be represented on the interval(−2n−1, 2n−1)
by its Fourier series representation, i.e.

Fn(x) =
∞∑

k=−∞

ck exp

(
2kπix

2n

)
,−2n−1 < x < 2n−1

with

ck =
1

2n

∫ 2n−1

−2n−1

Fn(x) exp

(
−2kπix

2n

)
dx.

By our choice ofFn we have,ck = 2π
2n f

(
2kπ
2n

)
.

Substitute this value in the Fourier series ofF to get

Fn(x) =


2π

2n

∞∑
k=−∞

f

(
2kπ

2n

)
exp

(
2kiπx

2n

)
, |x| < 2n−1,

0, |x| > 2n−1.

Now,

f(t) =
1

2π

∫ 2n−1

−2n−1

e−ixtF (x)dx

=
1

2π

∫ 2n−1

−2n−1

2π

2n

∞∑
k=−∞

f

(
2kπ

2n

)
exp

(
2kiπx

2n

)
e−ixtdx

=
1

2n

∞∑
k=−∞

f

(
2kπ

2n

)∫ 2n−1

−2n−1

exp

(
2kiπx

2n
− ixt

)
dx

=
∞∑

k=−∞

f

(
2kπ

2n

)
Ln,k(t) =

2n∑
k=0

f

(
2kπ

2n

)
Ln,k(t) = Sn(f, t).

�

Theorem 5.8. If f ∈ J [0, 2π] then forn as in Definition 5.1,∫ 2π

0

|f(x)|2dx =
2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 .
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Proof. Sincef ∈ J [0, 2π] we have

f(x) =
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(x)

for n as in Definition 5.1 . Now,∫
R
|f(x)|2dx

=

∫
R

[
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(x)

]2

dx

=

∫
R

[
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 L2
n,k(x) +

∑
k 6=j

f

(
2kπ

2n

)
f

(
2jπ

2n

)
Ln,k(x)Ln,j(x)

]
dx

=
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 ∫
R

L2
n,k(x)dx +

∑
k 6=j

(
2kπ

2n

)
f

(
2jπ

2n

)∫
R

Ln,k(x)Ln,j(x)dx

=
2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 .

�

The following theorem tells us some type of convergence of our interpolation.

Theorem 5.9.Letf : [0, 2π] −→ R such thatf 2 is integrable in the sense of Riemann, then

(5.12)
∫ 2π

0

|f(x)|2dx = lim
n→∞

∫ ∞

−∞
S2

n(f, x)dx

Proof. Firstly, we notice that

S2
n(f, x) =

(
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(x)

)2

=
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 L2
n,k(x) +

∑
k 6=j

f

(
2kπ

2n

)
f

(
2jπ

2n

)
Ln,k(x)Ln,j(x).

Now integrate both sides of the last equation onR, to get∫
R

S2
n(f, x)dx

=

∫
R

(
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 L2
n,k(x) +

∑
k 6=j

f

(
2kπ

2n

)
f

(
2jπ

2n

)
Ln,k(x)Ln,j(x)

)
dx

=
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 ∫
R

L2
n,kdx +

∑
k 6=j

f

(
2kπ

2n

)
f

(
2jπ

2n

)∫
R

Ln,k(x)Ln,j(x)dx

=
2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 .

J. Inequal. Pure and Appl. Math., 4(2) Art. 32, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


14 MOHAMAD S. SABABHEH , ABDUL-MAJID NUSAYR, AND KAMEL AL-KHALED

The validity of the last equation arises from corollary 5.3. Now take the limit of the last equation
asn −→∞ to get

lim
n→∞

∫
R

S2
n(f, x)dx = lim

n→∞

2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2
but

lim
n→∞

2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 =

∫ 2π

0

|f(x)|2dx

because it is the limit of the Riemann sum forf 2 on [0, 2π], this completes the proof of the
theorem. �

Lemma 5.10.Letf be any real-valued function on[0, 2π], then for any natural numbersn and
k with 0 ≤ k ≤ 2n, we have

(5.13)
∫

R
Sn(f, x)Ln,k(x)dx =

2π

2n
f

(
2kπ

2n

)
.

Proof. We recall that

Sn(f, x) =
2n∑

j=0

f

(
2jπ

2n

)
Ln,j(x),

multiply both sides byLn,k(x) and integrate onR to get:∫
R

Sn(f, x)Ln,k(x)dx =

∫
R

2n∑
j=0

f

(
2jπ

2n

)
Ln,j(x)Ln,k(x)dx

= f

(
2kπ

2n

)∫
R

L2
n,k(x)dx +

∑
j 6=k

f

(
2jπ

2n

)∫
R

Ln,k(x)Ln,j(x)dx

= f

(
2kπ

2n

)
2π

2n
+ 0

=
2π

2n
f

(
2kπ

2n

)
.

�

Theorem 5.11.Let f be a real-valued function such thatf and |f | are integrable in the sense
of Riemann on[0, 2π], then

(5.14) lim
n→∞

Sn(f, x) = f(x) a.e.

on [0, 2π].

Proof. We saw in Corollary 5.4 thatFn is the Fourier transform ofSn, and that in Corollary 5.5,

lim
n→∞

Fn = F

uniformly, whereF is the Fourier transform off .
Therefore,

lim
n→∞

F(Sn) = F(f)

but by our conditions onf and,F is a continuous linear operator, we have,

F( lim
n→∞

Sn) = F(f)
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So, we conclude that
lim

n→∞
Sn = f a.e.

�

As a notation, LetPn(x) denote theLagrangeinterpolating function ofSn(f, x) with the
nodes ofEn, and letHn(x) denote theLagrangeinterpolating function off(x) with the nodes
of En.

Lemma 5.12.Letf be any real-valued function on[0, 2π], thenPn(x) = Hn(x).

Proof. By the definition of theLagrangeinterpolation we have,

Pn(x) =
∑

xk∈En

Sn(f, xk)Jn,k(x),

whereJn,k(x) =
∏

j 6=k
x−xj

xk−xj
andj ranges over the integers between0 and2n, included. But

sinceSn(f, xk) = f(xk) for all xk ∈ En, we would have

Pn(x) =
∑
j 6=k

f(xk)Jn,k(x)

= Hn(x).

�

Theorem 5.13.Let f ∈ C2n+1[0, 2π] for any natural numbern then for eachx ∈ [0, 2π] we
have

(f(x)− Sn(f, x)) =
1

(2n + 1)!

∏
xk∈En

(x− xk)
{
S(2n+1)

n (ζ(x)) + f (2n+1)(ξ(x))
}

,

whereζ(x) andξ(x) are two numbers in the interval(0, 2π) and depend onx only.

Proof. Let Hn andPn as in the last lemma, then

(f(x)− Sn(f, x)) = (f(x)−Hn(x) + Hn(x)− Pn(x) + Pn(x)− Sn(f, x))

= (f(x)−Hn(x)) + (Hn(x)− Pn(x)) + (Pn(x)− Sn(f, x))

=
1

(2n + 1)!

∏
xk∈En

(x− xk)
(
f (2n+1)(ξ(x))

)
+

1

(2n + 1)!

∏
xk∈En

(x− xk)
(
S(2n+1)

n (ζ(x))
)

=
1

(2n + 1)!

∏
xk∈En

(x− xk)
{
S(2n+1)

n (ζ(x)) + f (2n+1)(ξ(x))
}

which completes the proof. �
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