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ABSTRACT. This paper is devoted to the investigation of sinc interpolation properties corre-
sponding to a sequence of functions having the sinc function as a basis, the interpolation is taken
over the dyadic partition of the intervill, 2]. In particular, a new class of functions for which

the interpolation converge is introduced. The convergence of our interpolation processes is stud-
ied and answered in quite a comprehensive way. In fact, the paper aims to provide a guideline
towards a large number of problems of interest in applied sciences.
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1. INTRODUCTION

The sinc approximation method is a very promising method for function approximation, for
approximation of derivatives, for approximate definite and indefinite integration, for solving
initial value problems, for approximation and inversion of Fourier and Laplace transforms. The
sinc method is an attractive alternative for numerical solutions to those problems which have
no closed form. The theory of sinc series on the whole real line is developed in [8]. There are
several reasons to approximate by sinc functions. Firstly, they are easily implemented and give
good accuracy for problems with singularities; approximations by sinc function are typified by
errors of the formO(exp(—c/h)) wherec > 0 is a constant and is a step size. Secondly,
approximation by sinc functions handles singularities in the problem. The effect of any such
singularities will appear in some form in any scheme of numerical solution, and it is well known
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that polynomial methods do not perform well near singularities. Finally, these kinds of approx-
imation yield both an effective and rapidly convergent scheme for solving the problem, and so
circumvents the instability problems that one typically encounters in some difference methods.
Numerical processes of interpolation on the real line, with the help of adroitly selected confor-
mal maps is adapted to handle these same processes on finite intervals, or in general on other
subsets of the real line. For more details see,![3] 4, 5]. Also, it is worthy to mention the work by
Stenger[[9], where he presents practically useful constructive linear methods of approximation
of analytic functions by polynomials, sinc functions and rational functions. |In [6], the author
proves some convergence results on finite intervals, using the linear combination of the basis

functions B, = S(k,h) osinh™! <cos ht <i>) wherek = —n,...,n,h = logn/n, and

]
S(k, h) is the sinc translated function, to be defined later.

Although there is no unique choice for the conformal map, and so one will not guarantee an
exponential decay of the convergence rate using the sinc method. It should be pointed out that
it might be possible that the selection of the conformal mapping does not lead to a symmetric
discrete system. While a symmetric approximation system is not necessary for a good approx-
imation, it is computationally efficient and analytically advantageous for solving the discrete
system. As a final note on selection availability of the conformal mapping. In problems where
two (or more) maps are applicable, the use of either of the maps leads to a smaller size of the
discrete system, for example, in the case of the dorftaiso) there are available the selections
In(x) andIn(sinh(z)). The mapln(x) often leads to a smaller discrete system that does the
mapln(sinh(x)) for equivalent accuracy. To avoid these difficulties and as an alternative for the
extension (using conformal maps) made by Steriger [8], this paper is devoted to the investiga-
tion of sinc interpolation on the intervl, 27| (see,[[7]). The paper is organized as follows. In
Sectior] 2 we define our interpolation procesSgéf; =), where the nodes are taken to be the
diadic partition of the intervgl, 27r]. We then study some basic properties of the interpolating
function S, (f;z). In Sectior] B we take up the functional propertiesSof f; ). Sectior] #
deals with new classes of functions for which the interpolation processes converges. In the last
section of this chapter, we give the most important convergence results in this paper.

2. THE INTERPOLATION PROCESSES
Let By = {0, 7,27}, andEy = {0,7/2, 7,37 /2,27}. In general let

2k
(2.1) En:{Q—f 0§k§2"}.
In the following Lemma we state, without proof, some properties of the partijon

Lemma 2.1. For the setst, the following holds true
(1) The sequencéF,, } is an increasing sequence, iB; C F; C ....
(2) E = U2 | E, is dense subset @, 27].

Definition 2.1. Let f : [0, 27] — R be any function. For each natural numbewe define,

(2.2) Sulfrx) = > flar)Lnk(®),
where -

sin[20 (2 — 2]
(23) Ln,k(x) _ 5 T) (x — xk)k , T ;é Tk

1, T =1

andz;, = 2% for 0 < k < 2".
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In the following sequence of lemmas we will give the basic propertieS,0f,z) as an
interpolating function.

Lemma 2.2. For any natural numbers, £ andj where0 < k,j < 2" we have
L (x) = 0j-
Proof. If j = k thenL,, ;(z;) = 1 by the definition ofL,, (). Now if j # k, we have

s [ (3 — %)
T e -
sin[(j — k)7]
— 21z — )
=0.

This completes the proof. O

Lemma 2.3.5,(f, x) interpolatesf on E,, for any functionf defined ono, 2x|. i.e., S, (f, zx) =
f(zy) forall zy € E,.

Proof.
f7 .Z'k Z f l’] n,j l'k
—f(l"k nkﬂCk fo] njl’k
TjFTL
= f(%)
Sincez,, is an arbitrary element af,, the result follows. O

We have shown thaf, (f, z) interpolatesf on the set¥,,, the following lemma is a general-
ization:

Lemma 2.4. For any real valued functiorf on [0, 27], if lim,, ., S,(f, ) = g(z) theng(x) =
f(z) forall z € E.

Proof. Let = be arbitrary element of. SinceF is the union of the set&’ s there must be
no such thatr € E, for all n > ny. Now forn > ng we haveS,(f,z) = f(z) therefore
lim, o Sn(f,x) = f(x), thusg(x) = f(z). Sincez is an arbitrary element of the result
follows. O

Lemma 2.5. S, (f,z) = S, (f,z) forall x in E,, wherek = min(n,m).

Proof. Let n andm be any two natural numbers, ahd= min(m,n). Letz, € E} for some/,
thenx, € E, becausé < n. But S, interpolatesf on E,,, so thatS,,(f,z,) = f(x,). By the
same argument, we can show tBat(f, x,) = f(xy). O

The following sequence of lemmas give some result on the derivative of the basis of the
interpolation, from which one can approximate the solution for some differential equations.

Lemma 2.6. For any natural numbers andk with 0 < k£ < 2™ we have
(2.4) L, w(x) = 0.
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Proof. Forz = x;, we have
Lnk(SC) - Lnk(ﬂik)

L;k(a:k) = lim

~ lim sin[2" Nz — )] — 2" Mz — )
T, 2n=Y(x — xy)?

_ im 2=t cos[2 Y (x — ap)] — 277!
T 2201z — xy)

~ lim —2n=lgn=Lgin[2n 1 (x — 4]
) 22n-1(1)

=0

and the lemma is proved.

Lemma 2.7. For any natural numbers andk with 0 < k£ < 2™ we have
2" x (—1)I*

2.5 L )=

( ) n,k:(x]) 27T(] N ]{7)

Proof.
Ly (2) = L i ()

L;,k(a:j) = lim

_ im sin[2" Yz — )]
e—a; 20w — xy) (2 — ;)

_ fim 2"t eos[2" Yz — z4)] lim 1
T 2n—1 =25 U — T
(~1p-*

N Tj— Tk

2" x (—1)7=*

o 2n(j—k)

Now the proof is complete.
For the second derivative, we have

Lemma 2.8. For any natural numbers andk with0 < £ < 2™ we have

_22n—2
(2.6) Ly plow) = —3
Proof.
L (x)—L ,(x
’ T—T) T — T
o 27w — ) cos2" (@ — )] — sin2" " (x — )
T—xp 2n—1<x _ xk:)3
~ im —2n=1on=l(y — ) sin[2" 7 (x — 2]
r—x; 3‘2n—1($ _ $k)2
—9on—1 9gn—1 _92n-2

3 ]

J. Inequal. Pure and Appl. Math4(2) Art. 32, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SOME CONVERGENCERESULTS ONSINC INTERPOLATION 5

The following is a connection between our interpolation and the Lagrange interpolation.

Lemma 2.9. Let f be a real-valued function of), 27| and letH,, denote the Lagrange inter-
polation function ont,,, thensS,,(f, z) = S,.(H,, x).

Proof. We recall thatf,,(z1.) = f(zy) for all z;, € E,,. Now,

€L,

= Z Hn(xk)Ln,k(x)

NS
= Sn(Hp, x).
OJ
In fact the previous lemma is a particular case of the following lemma.

Lemma 2.10. Let f and g be two real-valued functions defined {in2x] such thatg(zy) =
f(zy) for all z;, € E,, for some natural numbet, thensS,,(f,z) = S,.(g, ) for all z € [0, 27].

3. THE FUNCTIONAL PROPERTIES OF S,

Notice thatS,, can be considered as an operator on the space of all real-valued functions on
[0,27]. So that, it is convenient to study the functional properties,pas an operator on the
dual space of0, 2x|. Note thatS,,(f, z) is a linear operator on the space of all functions defined
on [0, 27].

Lemma 3.1. For each natural number, the operators,, is a bounded linear operator.

Proof. In order to show the boundedness%f we find a real numbet, such that|S,,(f)| <
el f]]- This is an immediate result. O

Corollary 3.2. For each natural numbe, S,, is a continuous linear operator.

We have shown th&f, is a continuous function of), 2] and is a continuous linear operator
on the dual space ¢, 27|. Therefore,S,, is a continuous maping in both its components, i.e.,
if we consider

Sy X x [0,271] — R,
thensS,, is continuous orX x [0, 27|, whereX is the dual space @6, 27].
The following few results give us some fixed points .

Lemma 3.3. For any natural numbers andk where0 < k& < 2™ we have
(3.1) Sn(Ln ks ) = L g ().

Proof.
nka Z Lnk x] n,J )

zj€Ey
_Lnkz(mkz Z Lnk x] n,j )
T Ty

O

Lemma 3.4. For any natural number. and for any functiorf on|[0, 27| we haveS,,(S,(f), z) =

Sn(f,x).
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Proof.

Sn(Sn(f),r) = Z Su(fs ) Lk ()

e,

= > Y F@y) L) Luk()

T €EEL x;€ER

= > D f@)desLnk(x)

2p€En 2;€E,
= Z f(@r) Lng(z) = Su(f, ).
zp€E,

O

ThussS,, as a linear operator on the class of all real valued functions definéd 1| has at
least2™ + 2 fixed points.

Talking about fixed points of a linear operator leads to talking about the contraction which is
considered in the following corollary.

Theorem 3.5. For any functionf on [0, 2x|, the operatorsS,,(f, z) is not a contraction.

Proof. We firstly recall that the space of all real valued functionsar| is a complete metric
space with respect to the metric

(3.2) d(f,g) = sup{f(z) — g(x) : = € [0, 27]}.

Now, if we assume on the contrary thé(f, =) is a contraction, thets,, will satisfy the re-
quirments of the “Banach fixed point theorem”, and, hert;ehas a unique fixed point. The
last statement is a contradiction becadsdas at least™ + 2 fixed points. Thus, we conclude
that.S,, is not a contraction. O

SinceS,, is not a contraction, one may ask about the relation betwégn 1), S, (¢g)) and
d(f,g). The following theorem answers this question.

Theorem 3.6.Let f andg be any two functions of), 2x]. For each natural numbet, we have

(3.3) d(Sn(f), Sulg)) < (2" 4+ 1)d(f, ).
Proof.
d(Sn(f),Sn(g)) = Sl;p] |Su(f,x) — Sulg, )|
b |1Sn(f = 9)I

on

= [sup] | Z [f (@ — g(wk)] L k()]
0,27 k=0
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< sup Z\f )] = (2" + 1)d(f, 9).

[0,27] .= 0

4. SPECIAL CLASSESOF FUNCTIONS

Since the nodes of the interpolation are of the fo%ﬁ one can think about the limit;
lim, oo S5 | £ (22)]. In fact this idea introduces the following definition.

Definition 4.1. Let U[0, 2| be the class of all real valued-functiofi®n [0, 2] and for which

i 320 (57| <=

Lemma 4.1. The condition in the last lemma is equivalent to the condition

Z |f (k)] < 0.
R
Proof. We show that
2kmw
i 3 (3] - 32 e
R

in order to prove the lemma. For, numerate the countabl& set following:
The elements of; arex, r; andx,.

The elements of), — F, arexs, x4.

The elements of); — F, arexs, ..., xg.

In general, the elements éf,. | — F, arernH, weey Tont1. NOW,

D

(2kw>‘
zrER

the last equation is valid because of our ch0|ce of the numeration. O

The reader must realize that any rearrangement of the above sums is not important because
we are dealing with absolute sums.

Example 4.1. Here we give an example of a function that belongs to the élés2r], i.e, we
show that/[0, 2] # (). For, letf : [0,27] — R be defined by

f(x)z{ e

1, x# xy.
Here we consider some numeration for the countabl&séitis clear that

2k 1 2
S| (5)] - S e ==
k=1
Therefore,f € U[0727r]

rreEE
Example 4.2. In this example we show that the clad$§), 27| doesn’t contain any polynomial
of the form f(z) = az™. For, consider

- £ (|- E - e

n—oo
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Although the exact formula for the last sum needs more complicated computations, we know
that this sum will be a polynomial ia” of degreem + 1. Thus,a, = |a| %= 2nm x g(m + 1),
whereg(m + 1) is the indicated polynomial. Now it is clear thétn,, ., a, = co. Therefore

f # U|0,27].

Lemma4.2.1f f is any real valued function ol, 27r] such that f| is integrable in the sense of
Reimann and € U[0,2n] then [ | f (x)|dz = 0.

Proof. For each natural number, E, = {ZZ,0 < k < 2"} is a partition for[0,2x]. The
subintervals of this partition are

SN L
2n 2n " 2n 2m

Now consider the Riemann sum pfover this partition R,,(f) = 2= S22 |f ()] wherex; is
any point of thek — ¢th interval of the partition. Sincgf| is integrable (in the sense of Riemann)
A

we can taker; to bex;, = 2k and, hence,
2T 2km
Ra(lf) = Z\ka -5 ( )‘
Now write the integral off as the limit of a Riemann sum to get

()]

But sincef € U[0, 2] we havelim, ... > ;. | f (£2)| is finite. Thus,

mn

2 n

évwwﬂgMW—m—

277,

2 o
/ |f(2)|dz = lim o X (finite value = 0.
0

n—oo
UJ

Lemma4.3.1f f € U[0,27] and|f] is integrable in the sense of Riemann, th&r7] does not
contain any intervall such thatf(x) # 0 forall x € 1.

Proof. Assume that there is an intervalC [0, 27| such thatf(z) # 0 for all z € I, then

[t = fis [ i
> [ 1@l
>0

but this contradicts the last lemma, and the lemma is proved. 0J
Lemma 4.4. The only continuous function iri[0, 2] is the zero function.

Proof. Let f be a non-zero continuous function 27|, then there is at least onec [0, 27]
such thatf(z) # 0. Sincef is continuous at:, there must be an intervdl containingz for
which f(z) # 0 for all z € I. Butm(I) > 0 and this contradicts the last lemma. O
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5. SOME CONVERGENCE RESULTS

Lemma 5.1. For any natural numbers andk with 0 < £ < 2", we have

I omkit\
' n,k Xr) = — exp TR e*ZItdt‘
51 13
’ 2" _9n—1 2n
Proof.
anl v
i 62;ﬁn —ixtdt
2” _277,71
2n—1
= i ei(QQIizT*I)tdt
271 _2n—1
r n—1
= i; ei(é]wz)t}2
2”2 (2271'_”]{) —_ ,T) L —on—1
= i+ [i(Zr—a)2nt _ e,i(zngw,x)Qn_l}
2 (5 ) |
1 1 [ 2km
= on TR Cos[2”1( - —x)]}
2vi (3 — =) | 2
1 1 2% 9%
on TRy |isin 27T T 2| —cos |2t (28—
+ ]' ]' .. 2n71 2]{371'
— 5.~ 7SI — 7
_sin [2n7! (2 — 2]
R

The last proof is valid whenever+# x;; the case where = z;, is easy to seen.

Corollary 5.2. The Fourier transform of,, ;(z) is

In oxp(2Rit) |t < 27!
Ft) = 2 2

0,

Proof. Let F' be the Fourier transform of, then F’ must satisfy the equation

1 .
Lupl) = 5 /R e~ (2 da.

By the last lemma we find that the function defined in equafion (5.2) satisfies this condition,
and since the Fourier transform is unique, the result follows. O

(5.2)
t| > 2n1

Corollary 5.3. For any natural numbers, k£ andj where0 < k, 5 < 2™ we have

2
/ L) Ly (2)d = 21
R

— 0 ;-
Proof. Let F' andG denote the Fourier transforms bf, ,, and L,, ; respectively, then by Parse-

53
(53) o
val's theorem,

1

/Rank(QZ)Lnyj(I)dI = —

2 Jr
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Firstly, if £ = j, then

1 47r 2T 2

k() Ly - —
/R”v’“m slolde =52 2nlz%d o = O

Secondly, ifk # j then

1 2n—1 4 2 ' B
/ (@)L = L [ A i)
R ’ 27 ) _gno1 227
_r_ 2 [ezm(g—,;)]?“
221 257 (k — §) -

2isin[(k — j)n]

~ 2i(k — j)
=0.
O
Corollary 5.4. Let f : [0,27] — R. For each natural nuben we define
2km 2kmix 1
(54) Fn(l’)z Zf( ) ( on )a |l’|<2 )
O, |z| > 2n~1)
then for any natural number, we have
1 .
(5.5) Sn(f,t) = / F,(x)e "™dx.
2T
In fact, £, is the Fourier transform ob,,.
Proof.
I A 1 9 2
— F,(x)e " dx = —/ u Zf T e T ey
27 _on—1 2 _on-—1 2n =0 AL
2" 2n71
=)/ (22](&:) / e I e
k=0 —2nt
. 2km
=1 (57 Eastt)
k=0
0

Corollary 5.5. Let f be a real-valued function such that bofhand | f| are integrable in the
sense of Riemann, and such tifat 0 outside|0, 27|, also let/’ be the Fourier transform of,
then

(5.6) nh—>nolo F,(z) = F(x),

whereF, is defined in Corollary 5l4. Moreover,, — F' uniformly.
Proof. For fixx € [—2"~1, 2771, let

(5.7) g(t) = f(t) exp(itz), t € [0, 27]

J. Inequal. Pure and Appl. Math4(2) Art. 32, 2003 http://jipam.vu.edu.au/
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and consider the-th Reimann sum of over [0, 27;

2n .
58) Rl =5 3 1 (57 ) e ()
k=1

therefore,

2km 2kmix
. o 27
25, Fnlo) an{.lozan( Jeo (%5)
= lim F,(x),

n—oo

which implies

/27r f(t)exp(itx)dt = lim F,(z)
0 n—oo

thus,
F(z) = lim F,(z)

The uniformly convergence fact follows because

2k 2kmix > |or 2km
. < li —
69 2 () oo (55| = m B 500 (7))
and the last series converges to a real number be¢Alsantegrable. By thé// —testwe have
the result. And the corollary is proved. O

Corollary 5.6. For any natural numbers andk with 0 < £ < 2", we have

— ki
Fn(:p)exp( k‘mx) dz,

gn—1

(5.10) f (22]“:) - %/2

where{F,} as defined in corollarl 5|4.

2n

Proof. Consider the Fourier series representationffpin (—2"~1, 2"1);

Fo(z) = Z Cr exp( 27;@:17) . |m < 2n

k=—00
Compare this with the definition of},(z) to getc, = 0 for k < 0 andk > 2" and¢;, =

Zrf (%) for 0 < k < 2". Also we know that

2n1

crp = L F(z)exp (—2kmx> dz,

2” —on—1 2”

and hence

2%k 1 —Okmix
- F .
/ ( on ) o /_ - (z) eXp( on )dm

The last corollary gives rise to the following new class of functions.

Definition 5.1. Let J[0, 2] be the class of all real-valued functiorfson [0, 2] and0 outside
this interval) for which there is a functiof), satisfying the following conditions:

e F,(z) = 0for all » outside(—2"~*, 2"~ 1) for some natural number
n—1 .
= L[ Fu(x)e ™ forallt € [0,27].
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Although the clasg |0, 27| seems to be very complicated, it has many nice properties. In the
following sequence of theorems we give the most important properties for this class.

Theorem 5.7. For any functionf € J|0, 27| we have the series representation

f(x) = Su(f, ),

wheren is as in the definition of [0, 27| and

(5.11) Zf(le> #(@).

Proof. Sincef € J[0, 27}, there exists, such that

2n—1

f(t) = % /2n—1 e " F, (2)dx

foralln > ny. The functionF in the last equation can be represented on the inténzi—! 27-1)
by its Fourier series representation, i.e.

F.(x) = Z Ck, €XP ( mx) =2 < < 2!

2n
k=—oc0
with
1 ki
Cp = % s F,(x)exp (— 27;2:6) dx.
By our choice ofF;, we haveg, = 22 f (1),

Substitute this value in the Fourler seriesfofo get

2 — 2k ki
- 2n71
Fn<l’) — on k_Z: f ( on ) exXp ( on ) ) |$| < y

0, |z| > 2n~L.
Now,
1 2n,—1 .
f(t) = Py /2" 1 e " F(z)dx

1 A = 2km 2kimr\ i
() ()
1 2k [ okimxr
:2_”kz_oof( o >/_2n1exp( o —zxt) dx
> 2km 2 2k
=Y (57 bt - > (%57 ) Lnalt) = .50

k=—o00

Theorem 5.8.1f f € J[0, 27| then forn as in Definitior 5.]L,
o 27 2k |

dr =
| 1@ - 7 2 (2>

J. Inequal. Pure and Appl. Math4(2) Art. 32, 2003 http://jipam.vu.edu.au/
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Proof. Sincef € J|0, 2] we have

:Z (2k37r> (@)

for n as in Definitior] 5.[L . Now,

JCIE

[ k=0 k+£j
> e\ |2 k
= Z f (22,1#) /RLka(x)dx + Z (2—:) f (25—:) /RLnk( )Ly ;(z)dx
k=0 k#j

The following theorem tells us some type of convergence of our interpolation.

Theorem 5.9.Let f : [0,27] — R such thatf? is integrable in the sense of Riemann, then

27 e8]
(5.12) /0 |f(z)|*dz = lim S2(f, x)dx

n—oo
—00

Proof. Firstly, we notice that

s2(f,) (Zf(””) e >)2

(%—:) L2, () +Zf(2]m) (2‘”> Lo (2) L s (2).

k#j
Now integrate both sides of the last equationirio get

/RS,%(f, x)d::
L (Eb e
O

-2

k=

k=

Lnp(@)+ ) f (ka) (Q‘M) Ln,k(x)Ln,j(fﬂ)) dx

k#j

L2 W+ > f (2’”> f (?—f) /R Ly (%) Ly j () dac

k#j

2m
2w
-F3)

k=

)
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The validity of the last equation arises from corollary] 5.3. Now take the limit of the last equation
. 9 27
lim [ S;(f,z)dz = lim —Z

asn — oo to get
2k \ |2
R k=0

pr f(22k:)'2:/02w|f(x)|2dx

because it is the limit of the Riemann sum {6t on [0, 27], this completes the proof of the
theorem. 0

but

Lemma 5.10. Let f be any real-valued function df, 2r|, then for any natural numbersand
kwith0 < k < 2", we have

(5.13) [ s tastaris = 3 (2’”) |

Proof. We recall that

S50 =3 s (%27) Lot

j=0
multiply both sides by, ,(z) and integrate ofR to get:

/ n(f, @) L ( dx—/Zf(Q‘”) (2) L () daz
_f(z’”)/Lgk dx+;f<2”)/ w(@) Ly (2)da
iy (ka) il

(). D

Theorem 5.11.Let f be a real-valued function such thitand| f| are integrable in the sense
of Riemann on0, 27}, then

(5.14) lim S,(f,z) = f(z) a.e.

n—oo

on [0, 27].
Proof. We saw in Corollary 5J4 thaf,, is the Fourier transform of,,, and that in Corollar 5|5,
lim F, = F

uniformly, whereF' is the Fourier transform of.
Therefore,

lim F(S,) = F(f)
but by our conditions orf and,F is a continuous linear operator, we have,
F(lim S,) = F(f)
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So, we conclude that
lim S, = f a.e.

n—oo

0

As a notation, LetP,(z) denote theLagrangeinterpolating function ofS,,(f, z) with the
nodes ofF,,, and letH,,(x) denote thd_agrangeinterpolating function off (x) with the nodes
of E,.

Lemma 5.12. Let f be any real-valued function df, 2=}, thenP,(z) = H,(z).

Proof. By the definition of the_.agrangeinterpolation we have,
= Z Sn(f7 xk)t]n,k(x)a
zp€b,

where J, (z) = H#k P 2 andj ranges over the integers betweeand2”, included. But
sinceS,,(f, zx) = f(xy) for aII 1, € E,, we would have
2) =Y flar)Jos(z)
J#k
= H,(z).
0J
Theorem 5.13.Let f € C*"*1(0, 27| for any natural number. then for eachr € [0, 27] we

have
1

(f(z) = Su(f,2)) = m

[T (&= an) {SFH0(C@) + f* I E@))}

rL€E,

where((z) and&(z) are two numbers in the intervéd, 27) and depend om only.
Proof. Let H,, and P, as in the last lemma, then
(f(x) = Su(f,2)) = (f(z) = Ho(z) + Ho(x) = Po(z) + Fu(z) — Su(f, ))
= (f(x) = Hu(x)) + (Hn(z) — Fu(2)) + (Pa(x) — Su(f, )

1 n
=@y L @m0 (@)
'xkEEn
1 n
tary L - (87 @)
rL€EE,
]_ n n
=@ L @ a{SE0EE) + /46 @))
rreE,
which completes the proof. O
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