Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 3, Article 110, 2006

A q-ANALOGUE OF AN INEQUALITY DUE TO KONRAD KNOPP

L. D. ABREU
Department of Mathematics
Universidade de Coimbra
Apartado 3008, 3001-454 Coimbra
Portugal
daniel@mat.uc.pt
URL: http://www.mat.uc.pt/faculty/daniel.html

Received 25 January, 2006; accepted 22 March, 2006
Communicated by H.M. Srivastava

Abstract. We derive a simple q-analogue of Konrad Knopp's inequality for Euler-Knopp means, using the finite and infinite q-binomial theorems.

Key words and phrases: Knopp's inequality, q-analogue.
2000 Mathematics Subject Classification 05A30.

1. Introduction

Given a sequence $\left(a_{n}\right)$ and a number t such that $0<t<1$, its Euler-Knopp mean $e_{n}(t)$ is defined by

$$
e_{n}(t)=\sum_{m=0}^{n}\binom{n}{m}(1-t)^{n-m} t^{m} a_{m}
$$

Knopp's inequality [2, Section 3] states that, if $p>1$ and $0<t<1$ then

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[e_{n}(t)\right]^{p} \leq \frac{1}{t} \sum_{m=0}^{\infty}\left[a_{m}\right]^{p} \tag{1.1}
\end{equation*}
$$

if the series on the right hand side is convergent.
The aim of this short note is to prove the following q-extension of Knopp's inequality (1.1), valid if $p>1,0<t<1$ and $0<q<1$:

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[e_{n}(t ; q)\right]^{p} \leq \frac{1}{t} \sum_{m=0}^{\infty} q^{\frac{m(m-1)}{2}}\left[a_{m}\right]^{p}, \tag{1.2}
\end{equation*}
$$

[^0]provided the series on the right hand side of 1.2 converges. The sequence $\left(e_{n}(t ; q)\right)$ is
$$
e_{n}(t ; q)=\sum_{m=0}^{n}\binom{n}{m}_{q} q^{\frac{m(m-1)}{2}}(1-t)^{n-m} t^{m} a_{m}
$$
with the q-analogue of the numbers $\binom{n}{m}_{q}$ defined by
$$
\binom{n}{m}_{q}=\frac{(q ; q)_{n}}{(q ; q)_{m}(q ; q)_{n-m}}
$$
where
\[

$$
\begin{gathered}
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=1}^{n}\left(1-a q^{k-1}\right) \\
(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}
\end{gathered}
$$
\]

When $q \rightarrow 1$ then clearly $\binom{n}{m}_{q} \rightarrow\binom{n}{m}$ and both members in 1.2 tend to 1.1 .

2. Proof of (1.2)

We will follow the notations in [1].
The proof of our result uses the q-binomial theorem and the finite q-binomial theorem. The finite q-binomial theorem states that

$$
\begin{equation*}
[x-a]_{q}^{n}=\sum_{m=0}^{n}(-1)^{m}\binom{n}{m}_{q} q^{\frac{m(m-1)}{2}} x^{n-m} a^{m}, \tag{2.1}
\end{equation*}
$$

where

$$
[x-a]_{q}^{n}=(x-a)(x-a q) \ldots\left(x-a q^{n-1}\right)
$$

The q-binomial theorem states that

$$
\begin{equation*}
\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} z^{n}, \quad|z|<1 \tag{2.2}
\end{equation*}
$$

Using Hölder's inequality in the form

$$
\left[\sum a_{k} b_{k}\right]^{p} \leq \sum b_{k} a_{k}^{p}\left[\sum b_{k}\right]^{p-1}, \quad p>1
$$

we have, if $p>1$,

$$
\left[e_{n}(t ; q)\right]^{p} \leq \sum_{m=0}^{n}\binom{n}{m}_{q} q^{\frac{m(m-1)}{2}}(1-t)^{n-m} t^{m} a_{m}^{p}\left[\sum_{m=0}^{n}\binom{n}{m}_{q} q^{\frac{m(m-1)}{2}}(1-t)^{n-m} t^{m}\right]^{p-1} .
$$

The finite q-binomial theorem (2.1) gives

$$
\begin{aligned}
\sum_{m=0}^{n}\binom{n}{m}_{q} q^{\frac{m(m-1)}{2}}(1-t)^{n-m} t^{m} & =\sum_{m=0}^{n}(-1)^{m}\binom{n}{m}_{q} q^{\frac{m(m-1)}{2}}(1-t)^{n-m}(-t)^{m} \\
& =[(1-t)+t]_{q}^{n} \\
& =(1-t+t)(1-t+q t) \ldots\left(1-t+q^{n-1} t\right)<1
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left[e_{n}(t ; q)\right]^{p} \leq \sum_{m=0}^{n}\binom{n}{m}_{q} q^{\frac{m(m-1)}{2}}(1-t)^{n-m} t^{m} a_{m}^{p} \tag{2.3}
\end{equation*}
$$

Now, if $0<t<1$, then for every positive k we have $\left(1-q^{k}\right) t<1-q^{k}$. This implies $t<\left(1-(1-t) q^{k}\right)$ and consequently, $t^{m}<((1-t) q ; q)_{m}$. Using this last estimate on 2.3) and summing in n from 0 to ∞, the result is

$$
\begin{align*}
\sum_{n=0}^{\infty}\left[e_{n}(t ; q)\right]^{p} & \leq \sum_{n=0}^{\infty} \sum_{m=0}^{n}\binom{n}{m}_{q} q^{\frac{m(m-1)}{2}}(1-t)^{n-m}((1-t) q ; q)_{m} a_{m}^{p} \\
& =\sum_{m=0}^{\infty}((1-t) q ; q)_{m} q^{\frac{m(m-1)}{2}} a_{m}^{p} \sum_{n \geq m}^{\infty}\binom{n}{m}_{q}(1-t)^{n-m} \tag{2.4}
\end{align*}
$$

To evaluate the sum in n, observe that

$$
\begin{aligned}
\sum_{n>m}^{\infty}\binom{n}{m}_{q}(1-t)^{n-m} & =\sum_{n \geq m}^{\infty} \frac{(q ; q)_{n}}{(q ; q)_{n-m}(q ; q)_{m}}(1-t)^{n-m} \\
& =\sum_{k=0}^{\infty} \frac{(q ; q)_{m+k}}{(q ; q)_{k}(q ; q)_{m}}(1-t)^{k} \\
& =\sum_{k=0}^{\infty} \frac{\left(q^{m+1} ; q\right)_{k}}{(q ; q)_{k}}(1-t)^{k} \\
& =\frac{\left(q^{m+1}(1-t) ; q\right)_{\infty}}{(q(1-t) ; q)_{\infty}} \\
& =\frac{1}{((1-t) ; q)_{m+1}}
\end{aligned}
$$

where the q-binomial formula (2.2) was used in the fourth identity. Substituting in (2.4) we finally have

$$
\sum_{n=0}^{\infty}\left[e_{n}(t ; q)\right]^{p} \leq \sum_{m=0}^{n} \frac{((1-t) q ; q)_{m}}{((1-t) ; q)_{m+1}} q^{\frac{m(m-1)}{2}} a_{m}^{p}=\sum_{m=0}^{n} \frac{1}{t} q^{\frac{m(m-1)}{2}} a_{m}^{p}
$$

for every n. Taking the limit as $n \rightarrow \infty$ gives (1.2).

References

[1] V. KAC and P. CHEUNG, Quantum Calculus, Springer, 2002.
[2] K. KNOPP, Über reihen mit positiven gliedern, J. Lond. Math. Soc., 18 (1930), 13-21.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 023-06

