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ABSTRACT. By making use of the familiar concept of neighborhoods of analytic functions,
the authors prove several inclusion relations associated witfntf#g-neighborhoods of certain
subclasses of analytic functions of complex order, which are introduced here by means of the
Ruscheweyh derivatives. Special cases of some of these inclusion relations are shown to yield
known results.
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1. INTRODUCTION AND DEFINITIONS
Let . A(n) denote the class of functiorfsof the form:

o0

(1.1) f(z)=2z— Z ap2® (ar >0; ke N\{l};neN:={1,2,3,...}),
k=n-+1

which areanalyticin the openunit disk
U:={2:2€C and |[z|<1}.
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2 G. MURUGUSUNDARAMOORTHY AND H.M. SRIVASTAVA

Following the works of Goodmahn|[9] and Ruscheweyh [14], we definéth&)-neighborhood
of a functionf € A(n) by (see alsa [2]/[3],14], and [16])

(1.2) Nos(f):= {g e An): g(z) =z — Z b2 and Y klag — by < 5}.
k=n+1 k=n+1
In particular, for thadentity function
(13) 6(2) fr— 2’7
we immediately have
(1.4) Nys (e) := {gEA( )=2z— Z b, 2¥ and Z k]bkygd}.
k=n+1 k=n+1

The above concept dfz, §)-neighborhoods was extended and applied recently to families
of analytically multivalent functions by Altintagt al. [6] and to families ofmeromorphically
multivalent functions by Liu and Srivastava ([10] and/[11]). The main object of the present paper
is to investigate thén, §)-neighborhoods of several subclasses of the ¢clds3 of normalized
analytic functions iflU with negativeand missing coefficients, which are introduced below by
making use of the Ruscheweyh derivatives.

First of all, we say that a functiofi € A(n) is starlike of complex ordety (v € C\ {0}),
thatis,f € S*(v), if it also satisfies the following inequality:

2f'(2) D
15 RI1+— [ —1 >0 (ze€U;yeC\{0}).
15) (141 [HE (- €Uy e C\ {o})
Furthermore, a functiorf € A(n) is said to beconvex of complex order (v € C\ {0}), that
is, f € Cn(7), ifit also satisfies the following inequality:

1 zf”(z)>
1.6 R(1+— >0 (z€eU;veC\{0}).
16) (142205 (e Uiy eC\{o})

The classes(v) andC, () stem essentially from the classes of starlike and convex func-
tions of complex order, which were considered earlier by Nasr and Aouf [12] and Wiatrowski
[18], respectively (see alsol[5] and [7]).

Next, for the functionsf; (j = 1, 2) given by

@) CEEES SINFN )
k=2
let f1 * f, denote the Hadamard product (or convolution)pénd f,, defined by
(1.8) (f1 = f2) (2 —Z+Zak1ak2z =: (fax f1) (2).
Thus the Ruscheweyh derivative operaloy: A — A is defined ford := A (1) by
(19) Df(2) = ﬁ “f(z) A>—L fed
or, equivalently, by
(1.10) - i(“l“_1> F (> 1 feA

k=2
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for a functionf € A of the form [1.1). Hereand in what followswe make use of the following
standard notation:

(1.11) (’;) =) 'k':!(“ —ktD eCi ke

for a binomial coefficient. In particular, we have

z (z"fl f(2) )(n)
ol

(1.12) D" f(z) = (n € No:=NuU{0}).

Finally, in terms of the Ruscheweyh derivative (A > —1) defined by[(1.9) of (1.10) above,
letS,. (v, A\, 3) denote the subclass df(n) consisting of functiong which satisfy the following

inequality:
1 (2 (D*f(2)
1.13 | — 1| <
(143 gl ( D> f(2) ’
(z€U;ve C\{0}; A>—-1;0<p3<1).
Also letR,, (v, A, 5; 1) denote the subclass gf (n) consisting of functiong’ which satisfy the
following inequality:

Ha-w P LB @ ey -1) <o
(z€U;7yeC\{0} A>-1,0</<1;0< <),

Various further subclasses of the classgéy, A, 3) and R, (v, A, 3; u) with v = 1 were
studied in many earlier worksf, e.g, [8] and [17]; see also the references cited in these
earlier works). Clearly, in the case of (for example) the clags, A, 5), we have

(1.15) Su(7,0,1) C Sp(y) and S,(v,1,1) C Cu()
(n € N; v € C\{0}).

(1.14)

2. INCLUSION RELATIONS INVOLVING N, s(e)

In our investigation of the inclusion relations involving, ;(e), we shall require Lemmjg 1
and LemmalR below.

Lemma 1. Let the functionf € A(n) be defined byfI.1)). Thenf is in the classS, (v, A, 3) if
and only if

= A+ k-
@Y > (TETN) onl - vac< sl
k=n+1

Proof. We first suppose that € S, (v, A, 3). Then, by appealing to the conditign (1.13), we
readily obtain

2 (D> f(z '
(2.2) R <(DT((Z))) — 1) > —0lv| (z€)

or, equivalently,

B i (/\+k_1>(k—1)akzk

-~ k—1
(2.3) R >—Bh| (z€U),
S L AV
k=n+1 kE—1 g
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where we have made use pf (1. H0)d the definition[(1.[L). We now choose values:abn the

real axis and let — 1— through real values. Then the inequality {2.3) immediately yields the
desired condition (2]1). Conversely, by applying the hypothési$ (2.1) and lettirg 1, we

find that

i ()\ Zﬁ; 1) (k — Daxz"*

k=n+1

< Atk—1
P> ( 2—1 )“kzk

k=n+1

o) A+k—1
(-5 (1))
0 A+ k—1
RN (i I

(2.4) < Bl

Hence, by the maximum modulus theorem, we have

f €87, A B),
which evidently completes the proof of Lemirja 1. O

2 (D f ()

Dfm |

<

Similarly, we can prove the following result.

Lemma 2. Let the functionf € A (n) be defined byfl.1]). Thenf is in the classR (v, A, 3; i)
if and only if

[e o]

(25) > (M7 5T -0+ e < gl

Vo k—1
Remark 1. A special case of Lemnigwhen
n=1, v =1, and f[f=1-« 0<a<l)
was given earlier by Ahujfl]. Furthermore, if in Lemmg]with
n=1, v =1, and (f=1-a«a 0<a<l),
we set\ = 0 and X\ = 1, we shall obtain the familiar results of Silverm§kg].
Ouir first inclusion relation involvingV, s(e) is given by Theorer|1 below.

Theorem 1. If

. gom L) <),
ht+m (M)

then

(27) Sn(’ya )‘>ﬁ) C Nn,5(e)

Proof. For a functionf € S,,(7, A, 8) of the form [1.1), Lemmp]1 immediately yields

Gl (M) Y s )

k=n+1
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so that

- il
(2.8) Z ar < ~
S @kl (M)

On the other hand, we also find from (2.1) ahd](2.8) that

(7)) S bwsapira-sn (M) ¥ w
n k=n+1 n k=n+1
A
<o+ = (M)
hl+m (M)

(n+1)B|
<~ <1),
< pra (<D
that is,
- 1
2.9) " kay < (e DBh
A+n
S @kl (M)
n
which, in view of the definition[(1]4), proves Theorgin 1. O

By similarly applying Lemma]2 instead of Leminja 1, we now prove Thedijem 2 below.
Theorem 2. If

(n+1) B
(2.10) 0= ,
(un + 1) ()\ + n)
n
then

Proof. Suppose that a functiofi € R (v, A, 3; i) is of the form [(1.1). Then we find from the
assertion[(2]5) of Lemmnjg 2 that

(/\Zn> (i +1) > ap < Bl

k=n+1
which yields the following coefficient inequality:

(2.12) Y a< 5"”“” .
k=n+1 (Mn+1)< i )

Making use of[(2.p) in conjunction witfi (Z.]12), we also have

o0

(1) S kay <Al +(n-1) MY w

k=n+1 k=n-+1
A
(2.13) < Byl + (p— 1) ( —;n) Bl

(kn+1) (A:n>
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that is,
Z kay, < (n+1)381y| _.5
A+n
k=n+1 (’un —+ ]_) ( )
n
which, in light of the definition[(1}4), completes the proof of Theofem 2. O

Remark 2. By suitably specializing the various parameters involved in The@amd Theo-
rem[2, we can derive the corresponding inclusion relations for many relatively more familiar
function classegsee also Equatiofil.15) and Remark]above.

3. NEIGHBORHOODS FOR THE CLASSES S\ (v, A, 3) AND R (v, A\, B )

In this section we determine the neighborhood for each of the classes
S\, A 8) and R (y, A, B; ),

which we define as follows. A functiofi € A(n) is said to be in the class(® (v, A, B) if there
exists a functiory € S,,(v, A, 3) such that

(3.1) ‘——1‘<1—a (zeU;0<a< ).

Analogously, a functiory € A(n) is said to be in the clasg!® (v, A\, B; ) if there exists a
functiong € R,.(7, A, B; ) such that the inequality (3.1) holds true.

Theorem 3. If g € S,,(, A\, 3) and
A4n
hl+ma(* ")

(3.2) a=1-— ,
1) @1+ (M) < sl

then

(3.3) Nns(g) C S (7, A B).

Proof. Suppose thaf € N, 5(g). We then find from the definition (1.2) that

(3.4) > klar—bil <9,

k=n+1

which readily implies the coefficient inequality:

(3.5) Z jar = bl < —— (n€N).
k=n+1
Next, sincey € S,,(7, A, 3), we have f. Equation|(2.B)]
(3.6) 3 < Bl

Sl (M7
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so that
S ap — b
‘f(z) 1‘<kzn:+1‘ # il
(2) S
g 1— 5 by
k=n-+1
A+n
e hln (M27)
“n+1 A+n
Ghi+m (*1) -
(3.7) =1—a,
provided thaty is given precisely b2). Thus, by definitiofi,c S (v, A, B) for « given
by (3.2). This evidently completes our proof of Theofgm 3. O

Our proof of Theorer}4 below is much akin to that of Theofg¢m 3.
Theorem 4. If g € R, (v, A, 5; 1) and

(un—i—l)é(/\;tn)
(3.8) a=1- ,
et 1) G+ 1) (V) <
then
(3.9) Nas(g) C R (7, A, B; ).

Remark 3. Just as we indicated already in Sectjgand Remark)], Theorenf|and Theorerfi]
can readily be specialized to deduce the corresponding neighborhood results for many simpler
function classes.
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