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ABSTRACT. The approximation-solvability of the following class of nonlinear variational in-
equality (NVI) problems, based on a new generalized auxiliary problem principle, is discussed.
Find an element* € K such that

(S—=T)(z"),z—a")+ f(z) — f(z*) >0 forall z € K,

whereS, T : K — H are mappings from a nonempty closed convex sulisef a real Hilbert

spaceH into H, andf : K — R is a continuous convex functional dd. The generalized
auxiliary problem principle is described as follows: for given itetaliec K and, for constants
p > 0ando > 0), find z*+! such that

(p(S —=T) (y*) + 1" (") = W (y*) , 2 — 2" ) +p(f(2)— f(2"T1) > 0 forall z € K,
where

(o(S—=T) (z*) + ' (y*) = 1’ (2%) ,2 — ) + o(f(z) — f(y¥)) = 0 forall 2 € K,
wherel is a functional onk” andh’ the derivative ofh.

Key words and phrases: Generalized auxiliary variational inequality problem, Cocoercive mappings, Approximation-
solvability, Approximate solutions, Partially relaxed monotone mappings.
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1. INTRODUCTION

Recently, Zhu and Marcotte [23], based on the auxiliary problem principle introduced by Co-
hen [3], investigated the approximation-solvability of a class of variational inequalities involv-
ing the cocoercive and partially cocoercive mappings inRhespace. The auxiliary problem
technique introduced by Cohen [3], is quite similar to that of the iterative algorithm character-
ized as the auxiliary variational inequality studied by Marcotte and/Wu [12], but the estimates
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for the approximate solutions seem to be significantly different, which makes a difference es-
tablishing the convergence of the sequence of approximate solutions to a given solution of the
original variational inequality under consideration. On the top of that, using the auxiliary prob-
lem principle, one does not require any projection formula leading to a fixed point and eventu-
ally the solution of the variational inequality, which has been the case following the variational
inequality type algorithm adopted by Marcotte and Wu [12]. Recently Verma [21] introduced
an iterative scheme characterized as an auxiliary variational inequality type of algorithm and ap-
plied to the approximation-solvability of a class of nonlinear variational inequalities involving
cocoercive as well as partially relaxed monotone mappings [18] in a Hilbert space setting. The
partially relaxed monotone mappings seem to be weaker than cocoercive and strongly mono-
tone mappings. In this paper, we first intend to introduce the generalized auxiliary problem
principle, and then apply the generalized auxiliary problem principle, which includes the aux-
iliary problem principle of Cohen [3] as a special case, to approximation-solvability of a class
of nonlinear variational inequalities involving cocoercive mappings. The obtained results do
complement the earlier works of Cohen [3], Zhu and Marcotte [23] and Verma [18] on the
approximation- solvability of nonlinear variational inequalities in different space settings.

Let H be a real Hilbert space with the inner prodgct) and norm||-||. LetS,T : K — H
be any mappings andl a closed convex subset &f. Let f : K — R be a continuous convex
function. We consider a class of nonlinear variational inequality (abbreviated as NVI) problems:
find an element* € K such that

(1.1) (S—=T)(z"),x—a")+ f(z) — f(2") >0 forall z € K.

Now we need to recall the following auxiliary result, most commonly used in the context
of the approximation-solvability of the nonlinear variational inequality problems based on the
iterative procedures.

Lemma 1.1. An element u € K is a solution of the NVI problem if
(S—T)(u),z —u)+ f(x) — f(u) >0 forall x € K.
A mappingS : H — H is said to bex-cocoercive [19] if for all =,y € H, we have
lz = ylI* > a® |S(2) = SW)I* + la(S(2) = S()) = (z = )I”

wherea > 0 is a constant.
A mappingS : H — H is calleda-cocoercive [12] if there exists a constant > 0 such that

(S(x) = S(y),x —y) > a||S(x) = S(y)|* forall z,y e H.
S'is calledr-strongly monotone if for eachz,y € H, we have
(S(x) — S(y),x —y) > 7|z —y|? foraconstantr > 0.

This implies that
1S(z) — S| =7zl
thatis,S isr-expanding, and when= 1, itis expanding. The mappingis called5— Lipschitz
continuous (or S—Lipschitzian) if there exists a constant> 0 such that
15(z) =Sl < Bllz -yl forall z,y € H.
We note that ifS is a-cocoercive and expanding, théns a-strongly monotone. On the top
of that, if S is a-strongly monotone and@—Lipschitz continuous, thel is <%) cocoercive
for 5 > 0. Clearly everyn-cocoercive mapping is (é) —Lipschitz continuous.

Proposition 1.2. [21]]. Let S : H — H be a mapping from a Hilbert space H into itself. Then
the following statements are equivalent:
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(i) Foreachx,y € H and for a constant & > (0, we have

lz = ylI* = *[[S(2) = SW)|I” + la(S(x) = S(y) = (= = y)|I*.
(i) Foreachx,y € H, we have

(S(x) = S(y),z —y) > al|S(z) - Sy,
where o« > 0 is a constant.
Lemma 1.3. For all elements v,w € H, we have

1
2 2
[]I” + (v, w) = =7 fJwll.

A mappingS : H — H is said to bey—partially relaxed monotone [18] if for all z,y, z € H,
we have

(S(z) = S(y), 2 —y) = =z —z|* for v > 0.
Proposition 1.4.[18]. Let S : H — H be an «-cocoercive mapping on H. Then S is (i) —
partially relaxed monotone.

Proof. We include the proof for the sake of the completeness. Sitise-cocoercive, itimplies
by Lemmd 1.1, for alk, y, = € H, that

(S(x) = S(y),z—y) = (S(x) = S(y),z —y) + (S(x) = S(y),z —x)
> allS(z) = SW)|I* + (S(x) — S(y), z — x)

= a{lIsta) - s+ (

DY) e = op?
—|—llz—=
4oy ’

thatis,S is (1= ) —partially relaxed monotone.
A mappingT : H — H is said to beu-co-Lipschitz continuous if for eachz,y € H and for
a constany > 0, we have

JIECEEOREEY

AR

v

o =yl < plT(x) =T
This clearly implies that

(T(x) = T(y),x —y) < p||T(x) — T(y)|.

Clearly, everyu-co-Lipschitz continuous mappirg is <i> —expanding. O

2. GENERALIZED AUXILIARY PROBLEM PRINCIPLE

This section deals with the approximation-solvability of the NVI problem|(1.1), based on the
generalized auxiliary nonlinear variational inequality problem principle by Verma [18], which
includes the auxiliary problem principle introduced by Cohen [3] and later applied and studied
by others, including Zhu and Marcotte [22]. This generalized auxiliary nonlinear variational
inequality (GANVI) problem is as follows: for a given iterat&, determine a**! such that
(for k& > 0):

(2.1) (p(S—=T)(y*) + N (&) =W (y*) ;2 — 2*1)
+p(f(z)—f(2*")) >0 forall z € K,
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where

(2.2) <U(S -T) (xk) +n (yk) —n (xk) T — yk>
—I—J(f(x) —f(yk)) >0 forall x € K,

and for a strongly convex functiodnon K (whereh’ denotes the derivative af).
Wheno = p in the GANVI problem [(2.]1){(2]2), we have GANVI problem as follows: for a
given iterater®, determine an*+! such that (fokc > 0):

(2.3) <p(5 -T) (yk) +n (mk“) — (yk) T — xk+1>
+p(f(z)— f (") >0 forall z € K,

where

2.4) (p(S—T) (z") + 1 (y*) = I’ (%), 2 — ¢*)
—i—p(f(x) — f (yk)) >0 forall z € K.

Foro = 0 andy* = 2*, the GANVI problem[(2.1L)[(2]2) reduces to: for a given iterate
determine ar**! such that (fork > 0):

(2.5) <p(S -T) (xk) +n (xkﬂ) — R (xk) T — xk+1>
+p(f(z)—f(2*") >0 forall z € K.

Next, we recall some auxiliary results crucial to the approximation-solvability of the NVI
problem [(1.1).

Lemma 2.1.[23]. Let h : K — R be continuously differentiable on a convex subset K of H.
Then we have the following conclusions:

(i) If h is b-strongly convex, then

hz) — h(y) > (W) x—y) + (g) le — gl forall 2.y € K.

(ii) If the gradient h' is p—Lipschitz continuous, then

bie) = (o) < W)~ + (3 ) e = ol forall ey € &

We are just about ready to present, based on the GANVI problein (2.1] - (2.2), the approximation-
solvability of the NVI problem([(1]1) involving/—cocoercive mappings in a Hilbert space set-
ting.

Theorem 2.2. Let H be a real Hilbert space and S : K — H a y—cocoercive mapping from
a nonempty closed convex subset K of H into H. Let'l' : K — H be a u-co-Lipschitz
continuous mapping. Suppose that h : K — R is continuously differentiable and b-strongly
convex, and I, the derivative of h, is p—Lipschitz continuous. Then z**! is a unique solution

of - . If in addition, if z* € K is any fixed solution of the NVI problem , then z*

is bounded and converges to x* for0 < p < 2, p+ o < band (z*" — 2*, 2F —y*) > 0.

Proof. Before we can show that the sequenn{e:é} converges tac*, a solution of the NVI
problem [(1.1), we need to compute the estimates. Sirisé—strongly convex, it ensures the
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uniqueness of solution**! of the GANVI problem|[(2.]l) - (2]2). Let us define a functiah
by

AN (z) = h(z")—h(z) — (M(z),z* — )

b
> (5) |z* — z|* for z € K,

wherez* is any fixed solution of the NVI problerm.l). It follows fgf € K that
A (') = h@)=h(y) =W (6°) 2" o)
= h(z")=h(y") = (I ("), 2" — 2" +2F — b)),
Similarly, we can have
A* (25 = h(2*) = b () = (B (2FT) ,2* — 2™
Now we can write

(2.6) A* (yk) — A* (xk“)
= b () = B (5F) — (B (gF), 2 — ) (B () — B () 2 — 2
b k+1 k|2 1o k+1 1k * k+1
> () et =P 0 @) = o) = )
> (B) 1 = I 018 =1V 0 b0 ) 4 7 (64 - 10,

for z = x* in (2.7).
If we replacer by 2°+! in (1.1) and combine witH (2]6), we obtain

N () - A ()

5 g (S~ T) ()5 —a) = p (S~ T (27) 5 — %)

| S

NS NS NS
+ N— " — 7 N

H{L’k’—i-l — kaQ —|—p<(S -T) (yk) — (S =T)(z¥) ’xk+1 _ x*>

kaﬂ —yk||2+p<(S—T) (yk) . (S—T) (x*)jkarl _yk_'_yk_x*>

I
/‘\/\/I\/‘\

[ = *|)* + 0 (S = T) () = (S = T) (+7),y* — %)
p((S=T) (") = (S=T) ("), " —y").

SincesS is y—cocoercive and’ is p-co-Lipschitz continuous, it implies that

2.7) A (%) — A" (4
> (g) 254 = * | + oy [|(S = 1) (%) = (S = T) (@)

+ p<(S -T) (yk) — (S =T) (z*), 2 — yk>
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B <g> [ ="+ {5 = 1) (") = (5 = 1) @)
+<%)<(S—T)() (8 = T)(a), 2"+ - ’“>}
(it ()1 i

_1 _ p k+1 k|2 .
_Q{b (—2(7—,“))] H:c y|| for v —u > 0.

Similarly, we can have

(28) A" (a") - A" (4")
=N (yf) = h (") = (B (2%) 5 =) + (0 (") = 1 (a%) 2" — o)
> (5 ) ¥ =7+ G0 ) = 0 () o o)
> (3) I =2 o7 () =)+ (7 0) = £ ).

for x = 2* in (2.3).
Again, if we replacer by »* in (1.1) and combine witH (28), we obtain

(2.9) A" (2") = A" ()

(B 16t =417+ (5 =) (). 7)o (5= T) 0. )
( ) Hyk — :17’“”2 + U<(S -T) (a:k) —(S=T) (z*),2" — m*>
+o((S=T)(z") = (S=T)(2%),y* — 2¥)

> (5) I =1 - (T ) I 1
B (%) [b_ (2(70_ u))} ly* — %]

Finally, we move toward finding the required estimate
(2.10)

v

> Hyk — $k||2 +0((S—=T)(z") = (S=T) (2%),y" — 2" + 2% — 2¥)

NS N o

*;)—A*(yk) A () = A (")
v~ (g )| =T+
(2(70 M) )} v = +(

=2t P [t =yt 2

)] et =
)l

N = N~

) - (2
)= (2
k)
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-Gt b (25w -1
Ll e

1 P )] k+1 k|l 2 4
> (=) p— (2 — - forb— —" >0,
B 2) { (Q(V—M) I« a 2(y — p)
b— 4(‘::% 0 and(z"*! — 2k 2% — y*) > 0.

O

It follows from (2.19) that fors"+! = y* = 2" thatz* is a solution of the variational inequal-

ity. If not, the conditions — ;-2 > 0,0 — 4(?_% > 0 and(z*™ — 2% 2% — y*) > 0 ensure

that the sequencA*(2%) — A*(2*1)} is nonnegative and, as a result, we have

lim H:UkH — :L‘k” =0.
k—o0

On the top of that||z* — kaQ < (2) A* (2%) and the sequencA* (z¥) } is decreasing ,
that meang z*} is a bounded sequence. Assume tHait a cluster point of{:c’“}. Then as
k — oo in (2.1) — [2.2),2’ is a solution of the variational inequality because there is no loss
generality ifz* is replaced byt’. If we associate’ to A’ and define\’ by

N (@) = ) - h () - () )
< ()~ oy Lemmez),

then we have
N (@) < (5) o ="

Since the sequende\’ (z*) } is strictly decreasing, it follows that’ (z¥) — 0. On the other
hand, we already have

/ b /
N = (5) I -t

Thus, we can conclude that the entire seque{n&@ converges ta’, and this completes the
proof. Foro = p in Theorem 2.2, we find:

Theorem 2.3. Let H be a real Hilbert space andT : K — H a ~y—cocoercive mapping from a
nonempty closed convex subset K of H into H. Let h : K — R be continuously differentiable
and b—strongly convex, and I/, the derivative of h, is p—Lipschitz continuous. Then x** is a
unique solution of (2.3) — (2.4).

If in addition, z* € K is any fixed solution of the NVI problem , then {z*} is bounded

and converges to z* for 0 < p < 2 and (2" — 2*, 2% —y*) > 0.

Wheno = 0 andy* = 2*, Theorem 2. reduces to:

Theorem 2.4.[23]. Let H be a real Hilbert space and T' : K — H a y—cocoercive mapping
from a nonempty closed convex subset K of H into H. Let h : K — R be continuously

differentiable and b—strongly convex, and b/, the derivative of h, is p—Lipschitz continuous.
Then x*** is a unique solution of .

If in addition, z* € K is any fixed solution of the NVI proble.l), the{n:’“} is bounded
and converges to* for 0 < p < 2.
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