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ABSTRACT. M. and S. Izumi[[2] and the present authDr [7] have extended certain theorems
of R.P. Boas|[[l1] concerning to the Fourier coefficients of functions belonging to the Lipschitz
classes. Very recently L. Leindler|[6] has given further generalization using the so called quasi
power-monotone sequences. The goal of the present work is to prove further theorems similar to
those of L. Leindler.
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1. INTRODUCTION

In 1967 R.P. Boas [1] proved a series of theorems on the connection between the magnitude
of the Fourier-coefficients of a functiofiand its structural properties described by the modulus
of continuity. Namely, he investigated the function classgsy and the Zygmund class from
this point of view. In 1969 M. and S. Izumil[2] generalized these results for the(case < 1
and for the Zygmund class. They used in the definition of these classes a fuji¢lionhich
is more a general function thafi. In 1990 Boas'’s results were also generalized by the present
author [7] using the so called generalized Lipschitz and Zygmund classes replacing the function
t* (0 < a < 1) by the more general function of moduli of continuity,,(¢) (0 < a < 1).

Very recently, L. Leindler[[6] has given generalization of two of our theorems of the type
mentioned above, using the so called quasi power-monotone sequences. His results contain our
theorems for the case< a < 1 and in the case: = 1 for the sine series. It should be noted
that it can easily be proved that Leindler’s theorems contain the main results of M. and S. Izumi,
too. In other words it turns out that the common root of the two directions of generalizations
given by M. and S. Izumi and the present author is tightly connected with the main properties
of the quasi power-monotone sequences.
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2 J. NEMETH

The object of this paper is to prove two further theorems using Leindler’'s method for the case
wy(t) if @ = 0 and for the generalized Zygmund class, showing again the utility of the con-
cept of quasi power-monotone sequences in unifying the earlier completely different directions
of generalization concerning Boas’s results. These results are the generalizations of further
theorems of M. and S. Izumi and ours.

The idea of writing this paper originated from L. Leindler’s intention drawn up in his recent
paper [6].

2. NOTIONS AND NOTATIONS

Before formulating the known and new results we recall some definitions and notations.

Let w(6) be a modulus of continuity, i.e. a nondecreasing function on the intéryat|
having the propertieso(0) = 0, w(d; + d2) < w(d1) + w(d2).

Denotew(f; ) andw®(f;0) the modulus of continuity and the modulus of continuity of
second order of a functiofy respectively.

L. Leindler [3] introduced the following function classes. K&t (0 < « < 1) denote the set
of the moduli of continuityw(d) = w,(d) having the following properties:

(1) for anya’ > « there exists a natural number= ;.(o’) such that
(2.1) 219 o (277H) > 2w, (27™) holds for alln(> 1),

(2) for every natural number there exists a natural numbar:= N(v) such that
(2.2) 2", (277Y) < 2wo(277), if n > N.

For anyw, € €, the classe¢/“~, and(H“*)*, i.e.
He = {f:w(f;6) = O(wa(0))}
and
(H) = {f : w?(f;6) = O(wi(6))}

will be called generalized Lipschitz and Zygmund classes, respectively.

M. and S. Izumil[2], introduced the following function classes. f(&} be a positive and non-
decreasing function defined on the intery@l1). TheLipj(¢) andA(j(t)) classes are defined

as follows:
i) = (HE ) <o
AG() _{f S}ff(’f( )—25((t:;)+f(w—t)|><oo}'

(Further conditions required ojft) will be detailed later in the next paragraph.)

We shall say that a sequenge= {~,,} of positive terms is quagi-power-monotone increas-
ing (decreasing) if there exists a natural numier= N (3, v) and constank’ := K(3,v) > 1
such that

(2.3) Knﬂ% > mﬁvm, (nﬁvn < Kmﬁym)

holds for anyn > m > N.

Here and in what followd< and K; denote positive constants that are not necessarily the
same at each occurrence.

If (.3) holds with = 0 then we omit the attributes-power” in the inequality.
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Furthermore, we shall say that a sequence {~,} of positive terms is quasi geometrically
increasing (decreasing) if there exist natural numbers: u(v), N := N(~) and a constant
K := K(v) > 1 such that

1
(24) 7n+u 2 2%1 andﬁ)/n S K'Vn-&-la <7n+u S 5%1 and7n+1 S K’Yn)

hold for alln > N.
Finally a sequencéy, } will be called bounded by blocks if the inequalities

0411—‘;1? < Yo < OéQFS\]j[)y 0<a <ay <
hold for any2* < n < 2*1 k=12 ... where

T®) = min(yor, yors1) andFE\’}) := max(Ygk, Yor+1).

3. THEOREMS

To begin with, we recall one theorem of M. and S. Izumi [2], two of olufs [7] and finally one
of Leindler’s theorems |6].

Throughout the rest of this papefx), f(x), ¢(x) will denote continuougr periodic func-
tions; furthermorey(x) and f(x) always denote odd and even functions, respectiveliy:)
will denote either an odd or an even function whilg will denote the Fourier coefficients of
g(x), f(x) or p(z).
Theorem 3.1.([2]). Let), > 0 and letj(¢) be a positive and nondecreasing function in the
interval (0, 1), satisfying the conditions

t
(3.1) / j(wutdu < Kj(t) as t—0,
0
and
1
(3.2) / jwudu < Kjt)t™* as t— 0.
t
Theny € A(j(t)) if and only if
(3.3 Z M < Kj (l) as n — oo.
k=n/2 "
It should be noted that by (3.1) the conditipn (3.3) is equivalent to
(3.4) kz_;/\kSKj (%) as n — oo.

Furthermore, in its original form this theorem seems to be slightly more general, since the
continuity of v is not mentioned, although in the definition ®ft) given by Zygmund([9] this
additional condition is assumed.

Theorem 3.2.([7]). Let\,, > 0. Then
(3.5) p € (H)
if and only if

a0 S-o(a (1)
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Theorem 3.3.([7]). Let\,, > 0. Then

(3.7) fe H*
if and only if
= 1
(3.8) g Ay =0 (wo (5» .
Furthermore,
(3.9) g € H*
implies
_ 1
A = -
(3.10) ;mk o) (nwo (n)>
and from
= 1
(3.11) ]; A, =0 (wg (E)) ,
(3.12) ge H™
follows.

Theorem 3.4.([6]). Assume that a given positive sequefigg} has the following properties.
There exists a positivesuch that:

(P, ) the sequencén®~, } is quasi monotone decreasing and
(P_) the sequencén'~¢~,} is quasi monotone increasing.

If A, >0, then
1
(3.13) w (so, 5) = O(n)
if and only if
(3.14) S =0()
k=n

or, equivalently,
(3.15) > ke = O(n).
k=1

As we mentioned earlier, Theorém 3.4 contains one of theorems of M. and S. Izuniil(see [2,
Theorem 1]) and two of ours (sele [7, Theorems 1 and 2]). We now proceed to formulate our
new theorems.

Theorem 3.5.Let \,, > 0 and lety,, have the properties:

(P, ) the sequencén®~, } is quasi monotone decreasing and
(P) the sequencén®—<+,} is quasi monotone increasing for some positiv&éhen

(3.16) w® (w; %) = O0(7)
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if and only if
(3.17) 3 M = 0(m).
k=n
Theorem 3.6. Assume that,, has the following property:

(P_) the sequencén'—<v,} is quasi monotone increasing for some positivéf )\, > 0,
then

1
(3.18) w (f; E) = O(n)
if and only if
(3.19) SN =0().
k=n
Furthermore,
1
(3.20) w (g; 5) = O(7n)
implies
(3.21) > ke = O(n),
k=1
and from
(3.22) > e =0(1),
k=n
1
(3.23) w (g; 5) = O0(7n)
follows.

Remark 3.7. We shall prove that Theorem 8.5 includes Theorgmps 3.1 and 3.2. Additionally,
Theorenj 3.6 implies Theorem B.3.

4. LEMMAS

To prove our theorems we require the following lemmas.

Lemma 4.1. ([5]). A positive sequencfy, } bounded by blocks is quasipower monotone
increasing (decreasing) with a certain negative (positive) expondrand only if the sequence
{d2n } is quasi geometrically increasing (decreasing).

Lemma 4.2. ([4]). For any positive sequenee:= {+, } the inequalities

nyngK’ym (m=1,2,...; K > 1),

n=m

or

Z%gK% (m=1,2,...;K>1),

n=1

hold if and only if the sequenceis quasi geometrically decreasing or increasing, respectively.
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Lemma 4.3. ([6]). Letu, > 0, 3, > 0andé > 0. Assume that there exists a positiveuch
that the sequence

(2) {n"¢3,} is quasi monotone increasing
and the sequence
(42) {n*7°p,} is quasi monotone decreasing
Then
(4.1) > K =0(B)

k=1

is equivalent to
(4.2) > e =0(Bn"0).
k=n

Lemma 4.4. ([6]). Letpy, > 0, > 77 uy be convergent and < o < 1. Moreover, assume that
a given positive sequengé,, } has the following properties. There exists a positigeich that:

(4i7) the sequencén® 4, } is quasi monotone decreasing, and
(7v) the sequencén® ¢4, } is quasi monotone increasing.
Finally let
o, if 2 =2 n>1;
d(z) =
linear on the interval [ 25, 1]
Then
(4.3) > (1 = coskz) = O(z“(x)) (z — 0)
k=1
if and only if
(4.4) > = 0(n"%5,).
k=n

5. PROOF OF THE THEOREMS

Proof of Theorem 3|5Firstly we prove the theorem for the cosine series. Suppose that (3.16)
holds. This implies that

(5.1) [f(z+h) + f(z —h) = 2f(z)] < K~y(h),

where

Yo if =21 n>1;

(5.2) v(z) = 1

linear on the interval |-, 1] .

From (5.1) it follows that
(5.3) [f(h) = F(O)] < Kr(h).
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Sincef is continuous and,, > 0, from a theorem of Paley (se€ [8]) it follows that

oo
EE:Ak'< o0,
k=1

whence

(5.4) D M(1 = coskh) = O(v(h))
k=1

follows.

Using Lemma 44 forv = 0, py, = \g, 0, = v, We have|(3.1]7), that was to be proved. Now
we assumeg (3.17) and estimate the following difference by using again Lemjma 4.4 in the last
step (fora = 0, ux = A\ @andé,, = v,)

4 Z g sin? kh cos kz

k=1

[f(x +2h) + f(z —2h) = 2f(z)] =

< 4)  Mesin®kh =2 Ap(1 — cos 2kh)
k=1 k=1

= O(y(n)).

Thus the proof of Theorefn 3.5 is completed for the cosine series.
The proof for the sine series in the direction frgm (3.17) to (3.16) can be done in the same
way as for the cosine series, since

(5.5) lg(x + 2h) + g(z — 2h) — 2g(z)| =4 i A\ sin kx sin® kh| .
k=1
So we detail only the other direction. Suppdse (B.16), that is
(5.6) l9(z +h) + g(z — h) = 29(z)| = O(v(h)).
Writing (5.6) in the following form (using again Paley’s theorem cited before):
(5.7) 2 i A sin kx(1 — coskh)| = O(y(h)).
k=1
By integrating term by term ofD, =) in (5.7) we get
(5.8) i 1= coske (1 —coskh) = O(xzvy(h)).
k=
From (5.8) we have
(5.9) Z xzkkk kgoi kx< —coskh) = O(zvy(h)).

SinceK > t~2(1 — cost) | on(0, 1), from (5.9) it follows that

[1/2]
(5.10) > " wkA(1 = coskh) = O(~(h)).

k=1
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Puttingh = z in (5.10)

[1/]
(5.11) > " hkA(1 = coskh) = O(v(h))
k=1

can be obtained which gives

[1/h]

—cos kh
(5.12) Z B3 N COS D o = 0(1(h)).
From (5.12) taking: = 1
(5.13) > KM= 0(ny,)
k=1

follows.

By using Lemma 43 fop, = n%y,, ¢ = 3 (5.13) implies ) which was to be proved.
It can easily be verified that the conditiofis énd i) of Lemmd 4.8 follow from propertie®
and P+ of v, respectively.

Thus Theorer 3|5 is completely proved. O

Proof of Theorerfi 3|6Let f(z) = Y7, A\x cos kz and suppose thdt (3[18) is valid. Then we
have|f(h) — f(0)| < K~(h) (for the definitiory(z) see|(5.R)).
That is,

> (1 = coskh) < Ky(h).
k=1
Integrating both sides oft), ) we have

= A
(5.14) Z f (kz —sinkx) < Kxvy(z).

k=1
Sincekz — sin kz > 0, we have from[(5.14)
Ak
5.15 kx —sinkzr) < Kx
(5.15) ;23 7 ) < Kay(z).

Putting1/n for x and taking into account that

E—sin(ﬁ) E%E for k> 2n

n n n
we get
(5.16) > M < Ko,
k=2n
which gives|(3.1P).

Now we suppose thdt (3.]19) holds and we prove (3.18).
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Let us consider the following difference:

Z Ai[cos k(x + 2h) — cos kx]

k=1

(5.17) [f(z+2h) = f(2)| =

2 Z Ak sink(x 4 h) sin kh
k=1
(1/h]
< 22)\ksmkh+ Z Ne=1+11I.
k=[1/h]
Using (3.19) we have thdtl = O(~(h)). Now we estimatd..
(1/] (1/h] sin kh (1/h]
(5.18) I=2- Z)\ksmkh—%Zk/\k o <K hy khe=1T.

k=1 k=1

But by using the property’_ and Lemma 1, Lemma 2 we show that (3.19) implies
(5.19) Z kX = O(ny).

Indeed, le” < n < 2v*! then we have

v gm+1 2m+1
ka<z 3 kAk<KZQm > Ak<KZ2 Yom < Ky,
m=0 k=2m+1 m=0  k=2m+1

which gives|(5.IP). Finally (5.17)], (5.18) arjd (5.19) give (B.18), which was to be proved.
Now we prove|(3.2]1) fron{ (3.20). Using the estimation

(5.20) lg(z)| < Kv(x),

term by term integration of0, z) gives from [(5.2p) that
5.21 — (1 —coskz) < Kxy(x),
(5.21) kZ Pl ) < Kay(a)
that is
[1/]

1 — coskx v(z)
5.22 kX <K
( ) ; FT 22 = T

holds for any positive:. As before from([(5.2)2) it follows that

(1/z]

(5.23) Z kN, < K—)

which takingz = 1 gives 3.21)

The proof of [3.2B) from|[(3.22) can be done in the very same waly ag (3.18)[from (3 19), so
we omit it. Theoren 3]6 is completed
Proof of Remark 3] 7For the implication Theorefn 3:6-Theorenj 31 let;,, := j (1/n) . Then

using Lemma 1 and Lemma 2 fro@ 1), propefty follows, while ( ) implies property’
of ~,.
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To show that Theoremn 3.5 includes Theo3.2 it is enough totake w,; (1/n) and to

take into account that using Lemma 1 prope(2.1¢;(f5) implies property?” while from
condition [2.2) the property, of ,, follows.

Similarly, to prove the conclusion Theor¢m |3-6Theoren{ 3.8 it is enough to use Lemma
1 to show that the conditiof (2.1) af,(§) implies thatw, (1/n) satisfies the property_, so
choosingy,, := wy (1/n) the proof is completed. O

REFERENCES

[1] R.P. BOAS Jr., Fourier series with positive coefficiedtdviath. Anal. Appl.17(1967), 463-483.

[2] M. IZUMI AND S. IZUMI, Lipschitz classes and Fourier coefficienisMath. Mech. 18 (1969),
857-870.

[3] L. LEINDLER, Strong approximation and generalized Lipschitz claskesctional analysis and
approximation(Oberwolfach, 1980), Birkhauser (Basel-Boston, 1981), 343-350.

[4] L. LEINDLER, On the converses of inequality of Hardy and Littlewoddta Sci. Math(Szeged),
58(1993), 191-196.

[5] L. LEINDLER AND J. NEMETH, On the connection between quasi power-monotone and quasi ge-
ometrical sequences with application to integrability theorems for power sadesMath. Hungar.
68(1-2) (1995), 7-19.

[6] L. LEINDLER, Power-monotone sequences and Fourier series with positive coefficieimsqual.
Pure Appl. Math.1(1) (2000), Articlelhttp://jipam.vu.edu.au/vin1/001_99.html

[7] J. NEMETH, Fourier series with positive coefficients and generalized Lipschitz classtsSci.
Math. (Szeged)54 (1990), 291-304.

[8] R.E.A.C. PALEY, On Fourier series with positive coefficienisLondon Math. Soc7(2) (1932),
205-208.

[9] A. ZYGMUND, Trigonometric SeriesCambridge, 1959.

J. Inequal. Pure and Appl. Math2(2) Art. 14, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/v1n1/001_99.html
http://jipam.vu.edu.au/

	1. Introduction
	2. Notions and Notations
	3. Theorems
	4. Lemmas
	5. Proof of the Theorems
	References

