Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 2, Issue 3, Article 38, 2001

SOME PROPERTIES OF THE SERIES OF COMPOSED NUMBERS

LAURENŢIU PANAITOPOL

Faculty of Mathematics,
University of Bucharest,
14 Academiei St., RO-70109 Bucharest, Romania
pan@al.math.unibuc.ro
Received 27 March, 2001; accepted 11 June, 2001. Communicated by L. Toth

ABSTRACT. If c_{n} denotes the n-th composed number, one proves inequalities involving $c_{n}, p_{c_{n}}, c_{p_{n}}$, and one shows that the sequences $\left(p_{n}\right)_{n \geq 1}$ and $\left(c_{p_{n}}\right)_{n \geq 1}$ are neither convex nor concave.

Key words and phrases: Prime Numbers, Composed Numbers, Asymptotic Behaviour, Inequalities, Sums and Series.
2000 Mathematics Subject Classification. 11A25, 11N05.

1. Introduction

We are going to use the following notation

$$
\begin{aligned}
& \pi(x) \text { the number of prime numbers } \leq x, \\
& C(x) \text { the number of composed numbers } \leq x, \\
& p_{n} \text { the } n \text {-th prime number, } \\
& c_{n} \text { the } n \text {-th composed number; } c_{1}=4, c_{2}=6, \ldots, \\
& \log _{2} n=\log (\log n) .
\end{aligned}
$$

For $x \geq 1$ we have the relation

$$
\begin{equation*}
\pi(x)+C(x)+1=[x] . \tag{1.1}
\end{equation*}
$$

Bojarincev proved (see [1], [4]) that

$$
\begin{equation*}
c_{n}=n\left(1+\frac{1}{\log n}+\frac{2}{\log ^{2} n}+\frac{4}{\log ^{3} n}+\frac{19}{2} \cdot \frac{1}{\log ^{4} n}+\frac{181}{6} \cdot \frac{1}{\log ^{5} n}+o\left(\frac{1}{\log ^{5} n}\right)\right) . \tag{1.2}
\end{equation*}
$$

[^0]Let us remark that

$$
c_{k+1}-c_{k}= \begin{cases}1 & \text { if } c_{k}+1 \text { is composed } \tag{1.3}\\ 2 & \text { if } c_{k}+1 \text { is prime }\end{cases}
$$

In the proofs from the present paper, we shall need the following facts related to $\pi(x)$ and p_{n} :

$$
\begin{equation*}
\text { for } x \geq 67, \quad \pi(x)>\frac{x}{\log x-0.5} \tag{1.4}
\end{equation*}
$$

(see [7]);

$$
\begin{equation*}
\text { for } x \geq 3299, \quad \pi(x)>\frac{x}{\log x-\frac{28}{29}} \tag{1.5}
\end{equation*}
$$

(see [6]);

$$
\begin{equation*}
\text { for } x \geq 4, \quad \pi(x)<\frac{x}{\log x-1.12} \tag{1.6}
\end{equation*}
$$

(see [6]);

$$
\begin{equation*}
\text { for } n \geq 1, \quad \pi(x)=\frac{x}{\log x} \sum_{k=0}^{n} \frac{k!}{\log ^{k} x}+O\left(\frac{x}{\log ^{n+1} x}\right), \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\text { for } n \geq 2, \quad p_{n}>n\left(\log n+\log _{2} n-1\right) \tag{1.8}
\end{equation*}
$$

(see [2] and [3]);

$$
\begin{equation*}
\text { for } n \geq 6, \quad p_{n}<n\left(\log n+\log _{2} n\right) \tag{1.9}
\end{equation*}
$$

(see [7]).

2. INEQUALITIES INVOLVING c_{n}

Property 1. We have

$$
\begin{equation*}
n\left(1+\frac{1}{\log n}+\frac{3}{\log ^{2} n}\right)>c_{n}>n\left(1+\frac{1}{\log n}+\frac{1}{\log ^{2} n}\right) \tag{2.1}
\end{equation*}
$$

whenever $n \geq 4$.
Proof. If we take $x=c_{n}$ in (1.1), then we get

$$
\begin{equation*}
\pi\left(c_{n}\right)+n+1=c_{n} . \tag{2.2}
\end{equation*}
$$

Now (1.4) implies that for $n \geq 48$ we have

$$
c_{n}>n+\pi\left(c_{n}\right)>n+\frac{n}{\log n}
$$

and then

$$
\begin{aligned}
c_{n} & >n+\pi\left(c_{n}\right)>n+\pi\left(n\left(1+\frac{1}{\log n}\right)\right) \\
& >n+\frac{n\left(1+\frac{1}{\log n}\right)}{\log n+\log \left(1+\frac{1}{\log n}\right)-0.5} \\
& >n+\frac{n\left(1+\frac{1}{\log n}\right)}{\log n} \\
& =n\left(1+\frac{1}{\log n}+\frac{1}{\log ^{2} n}\right) .
\end{aligned}
$$

By (1.6) and (2.2) it follows that

$$
c_{n} \cdot \frac{\log c_{n}-2.12}{\log c_{n}-1.12}<n+1 .
$$

Since $c_{n}>n$, it follows that $\frac{\log c_{n}-2.12}{\log c_{n}-1.12}>\frac{\log n-2.12}{\log n-1.12}$ hence

$$
\begin{equation*}
n+1>c_{n} \cdot \frac{\log n-2.12}{\log n-1.12} \tag{2.3}
\end{equation*}
$$

Assume that there would exist $n \geq 1747$ such that

$$
c_{n} \geq n\left(1+\frac{1}{\log n}+\frac{3}{\log ^{2} n}\right) .
$$

Then a direct computation shows that (12) implies

$$
\frac{1}{n} \geq \frac{0.88 \log n-6.36}{\log ^{2} n(\log n-1.12)}
$$

For $n \geq 1747$, one easily shows that $\frac{0.88 \log n-6.36}{\log n-1.12}>\frac{1}{31}$, hence $\frac{1}{n}>\frac{1}{31 \log ^{2} n}$. But this is impossible, since for $n \geq 1724$ we have $\frac{1}{n}<\frac{1}{31 \log ^{2} n}$.

Consequently we have $c_{n}<n\left(1+\frac{1}{\log n}+\frac{3}{\log ^{2} n}\right)$. By checking the cases when $n \leq 1746$, one completely proves the stated inequalities.

Property 2. If $n \geq 30,398$, then the inequality

$$
p_{n}>c_{n} \log c_{n}
$$

holds.
Proof. We use (1.8), (2.1) and the inequalities

$$
\log \left(1+\frac{1}{\log n}+\frac{3}{\log ^{2} n}\right)<\frac{1}{\log n}+\frac{3}{\log ^{2} n},
$$

and

$$
n(\log n+\log \log n-1)>n\left(1+\frac{1}{\log n}+\frac{3}{\log ^{2} n}\right)\left(\log n+\frac{1}{\log n}+\frac{3}{\log ^{2} n}\right),
$$

that is $\log \log n>2+\frac{4}{\log ^{n}}+\frac{4}{\log ^{2} n}+\frac{6}{\log ^{3} n}+\frac{9}{\log ^{4} n}$, which holds if $n \geq 61,800$. Now the proof can be completed by checking the remaining cases.

Proposition 2.1. We have

$$
\pi(n) p_{n}>c_{n}^{2}
$$

whenever $n \geq 19,421$.
Proof. In view of the inequalities (1.5), (1.8) and (2.1), for $n \geq 3299$ it remains to prove that $\frac{\log n+\log _{2} n-1}{\log n-\frac{28}{29}}>\left(1+\frac{1}{\log n}+\frac{3}{\log ^{2} n}\right)^{2}$, that is

$$
\log \log n>\frac{59}{29}+\frac{5.069}{\log n}-\frac{0.758}{\log ^{2} n}+\frac{3.207}{\log ^{3} n}-\frac{8.68}{\log ^{4} n} .
$$

It suffices to show that

$$
\log \log n>\frac{59}{29}+\frac{5 \cdot 069}{\log n}
$$

For $n=130,000$, one gets $2.466 \cdots>2.4649 \ldots$ The checking of the cases when $n<$ 130,000 completes the proof.

3. INEQUALITIES INVOLVING $c_{p_{n}}$ AND $p_{c_{n}}$

Proposition 3.1. We have

$$
\begin{equation*}
p_{n}+n<c_{p_{n}}<p_{n}+n+\pi(n) \tag{3.1}
\end{equation*}
$$

for n sufficiently large.
Proof. By 1.2 and 1.7 it follows that for n sufficiently large we have $c_{n}=n+\pi(n)+\frac{n}{\log ^{2} n}+$ $O\left(\frac{n}{\log ^{3} n}\right)$, hence

$$
\begin{equation*}
c_{p_{n}}=p_{n}+n+\frac{p_{n}}{\log ^{2} p_{n}}+O\left(\frac{n}{\log ^{2} n}\right) . \tag{3.2}
\end{equation*}
$$

Thus for n large enough we have $c_{p_{n}}>p_{n}+n$.
Since the function $x \mapsto \frac{x}{\log ^{2} x}$ is increasing, one gets by 1.9 ,

$$
\begin{aligned}
\frac{p_{n}}{\log ^{2} p_{n}} & <\frac{n\left(\log n+\log _{2} n\right)}{\left(\log n+\log \left(\log _{2}+\log _{2} n\right)\right)^{2}} \\
& <\frac{n\left(\log n+\log _{2} n\right)}{\log n\left(\log n+2 \log _{2} n\right)} \\
& <n \cdot \frac{\log n-\frac{1}{2} \log _{2} n}{\log ^{2} n} \\
& =\pi(n)-\frac{1}{2} \cdot \frac{n \log _{2} n}{\log ^{2} n}+O\left(\frac{n}{\log ^{2} n}\right) .
\end{aligned}
$$

Both this inequality and (3.2) show that for n sufficiently large we have indeed $c_{p_{n}}<p_{n}+n+$ $\pi(n)$.

Proposition 3.2. If n is large enough, then the inequality

$$
p_{c_{n}}>c_{p_{n}}
$$

holds.

Proof. By (2.1) it follows that

$$
\begin{equation*}
c_{p_{n}}=\pi\left(c_{p_{n}}\right)+p_{n}+1 . \tag{3.3}
\end{equation*}
$$

Now (3.1) and (3.3) imply that for n sufficiently large we have $\pi\left(c_{p_{n}}\right)<n+\pi(n)$. But by (2.1) it follows that $c_{n}>n+\pi(n)$, hence $c_{n}>\pi\left(c_{p_{n}}\right)$. If we assume that $c_{p_{n}}>p_{c_{n}}$, then we obtain the contradiction $\pi\left(c_{p_{n}}\right) \geq \pi\left(p_{c_{n}}\right)=c_{n}$. Consequently we must have $c_{p_{n}}<p_{c_{n}}$.
It is easy to show that the sequence $\left(c_{n}\right)_{n \geq 1}$ is neither convex nor concave. We are lead to the same conclusion by studying the sequences $\left(c_{p_{n}}\right)_{n \geq 1}$ and $\left(p_{c_{n}}\right)_{n \geq 1}$. Let us say that a sequence $\left(a_{n}\right)_{n \geq 1}$ has the property P when the inequality

$$
a_{n+1}-2 a_{n}+a_{n-1}>0
$$

holds for infinitely many indices and the inequality

$$
a_{n+1}-2 a_{n}+a_{n-1}<0
$$

holds also for infinitely many indices. Then we can prove the following fact.
Proposition 3.3. Both sequences $\left(c_{p_{n}}\right)_{n \geq 1}$ and $\left(p_{c_{n}}\right)_{n \geq 1}$ have the property P.
In order to prove it we need the following auxiliary result.
Lemma 3.4. If the sequence $\left(a_{n}\right)_{n \geq n_{1}}$ is convex, then for $m>n \geq n_{1}$ we have

$$
\begin{equation*}
\frac{a_{m}-a_{n}}{m-n} \geq a_{n+1}-a_{n} . \tag{3.4}
\end{equation*}
$$

If the sequence $\left(a_{n}\right)_{n \geq n_{2}}$ is concave, then for $n>p \geq n_{2}$ we have

$$
\begin{equation*}
\frac{a_{n}-a_{p}}{n-p} \geq a_{n+1}-a_{n} \tag{3.5}
\end{equation*}
$$

whenever $m>n \geq n_{1}$.
Proof. In the first case, for $i \geq n$ we have $a_{i+1}-a_{i} \geq a_{n+1}-a_{n}$, hence $\sum_{i=n}^{m-1}\left(a_{i+1}-a_{i}\right) \geq$ $(m-n)\left(a_{n+1}-a_{n}\right)$, that is (3.4). The inequality (3.5) can be proved similarly.
Proof of Proposition 3.3. Erdös proved in [3] that, with $d_{n}=p_{n+1}-p_{n}$, we have $\limsup \operatorname{sim}_{n \rightarrow \infty} \frac{\min \left(d_{n}, d_{n+1}\right)}{\log n}=\infty$. In particular, the set $M=\left\{n \mid \min \left(d_{n}, d_{n+1}\right)>2 \log n\right\}$ is infinite.
For every n, at least one of the numbers n and $n+1$ is composed, that is, either $n=c_{m}$ or $n+1=c_{m}$ for some m. Consequently, there exist infinitely many indices m such that $p_{c_{m}+1}-p_{c_{m}}>2 \log c_{m}$. Since $c_{m+1} \geq c_{m}+1$ and $c_{m}>m$, we get infinitely many values of m such that

$$
\begin{equation*}
p_{c_{m+1}}-p_{c_{m}}>2 \log m \tag{3.6}
\end{equation*}
$$

Let M^{\prime} be the set of these numbers m.
If we assume that the sequence $\left(p_{c_{n}}\right)_{n \geq n_{1}}$ is convex, then (3.4) implies that for $m \in M^{\prime}$ we have

$$
\frac{p_{c_{2 m}}-p_{c_{m}}}{m} \geq p_{c_{m+1}}-p_{c_{m}}>2 \log m
$$

hence $p_{c_{2 m}}>2 m \log m+p_{c_{m}}$. But this is a contradiction because $c_{n} \sim n$ and $p_{n} \sim n \log n$, that is $p_{c_{2 m}} \sim 2 m \log 2 m$ and $p_{c_{m}} \sim m \log m$.

On the other hand, if we assume that the sequence $\left(p_{c_{n}}\right)_{n \geq n_{2}}$ is concave, then (3.5) implies that for $x \in M^{\prime}$ we have

$$
\frac{p_{c_{m}}-p_{c[m / 2]}}{m-\left[\frac{m}{2}\right]} \geq p_{c_{m+1}}-p_{c_{m}}>2 \log m,
$$

that is

$$
1>\frac{2\left(m-\left[\frac{m}{2}\right]\right) \log m+p_{c[m / 2]}}{p_{c_{m}}}
$$

For $m \rightarrow \infty, m \in M^{\prime}$, the last inequality implies the contradiction $1 \geq 1+\frac{1}{2}$. Consequently the sequence $\left(p_{c_{n}}\right)_{n \geq 1}$ has the property P.

Now let us assume that the sequence $\left(c_{p_{n}}\right)_{n \geq n_{1}}$ is convex. Then for $n \in M, n \geq n_{1}$, we get by (3.4)

$$
\frac{c_{p_{2 n}}-c_{p_{n}}}{n} \geq c_{p_{n+1}}-c_{p_{n}} \geq p_{n+1}-p_{n}>2 \log n
$$

If we take $n \rightarrow \infty, n \in M$, in the inequality $1>\left(2 n \log n+c_{p_{n}}\right) / c_{p_{2 n}}$, then we obtain the contradiction $1 \geq \frac{3}{2}$.
Finally, if we assume that the sequence $\left(c_{p_{n}}\right)_{n \geq n_{2}}$ is concave, then 3.5 implies that for $n \in M, n \geq n_{2}$, we have

$$
\frac{c_{p_{n}}-c_{p_{[n / 2]}}}{n-\left[\frac{n}{2}\right]} \geq c_{p_{n+1}}-c_{p_{n}} \geq p_{n+1}-p_{n}>2 \log n
$$

which is again a contradiction.

References

[1] A.E. BOJARINCEV, Asymptotic expressions for the nth composite number, Ural. Gos. Univ. Mat. Zap., 6 (1967), 21-43 (in Russian).
[2] P. DUSART, The k th prime is greater than $k(\ln k+\ln \ln k-1)$ for $k \geq 2$, Math. Comp., 68 (1999), no. 225, 411-415.
[3] P. ERDÖS, Problems and results on the differences of consecutive primes, Publ. Math. Debrecen, 1 (1949), 33-37.
[4] J.-P. MASSIAS and G. ROBIN, Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux, 8 (1996), 215-242.
[5] D.S. MITRINOVIĆ, J. SÁNDOR and B. CRSTICI, Handbook of Number Theory, Kluwer Academic Publishers, Dordrecht - Boston - London, 1996.
[6] L. PANAITOPOL, Several approximations of $\pi(x)$, Math. Ineq. \& Appl., 2(3) (1999), 317-324.
[7] J.B. ROSSER AND L. SCHOENFIELD, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962), 64-94.

[^0]: ISSN (electronic): 1443-5756
 (c) 2001 Victoria University. All rights reserved.

 The author gratefully acknowledges for partial support from Grant No. 7D/2000 awarded by the Consiliul Naţional al Cercetării Ştiinţifice din Învăţământul Superior, România.

 027-01

