Journal of Inequalities in Pure and Applied Mathematics

SOME PROPERTIES OF THE SERIES OF COMPOSED NUMBERS

LAURENTIU PANAITOPOL

Faculty of Mathematics, University of Bucharest, 14 Academiei St., RO-70109 Bucharest, Romania *EMail*: pan@al.math.unibuc.ro

volume 2, issue 3, article 38, 2001. Received 27 March, 2001; accepted 11 June, 2001. Communicated by: L. Toth

©2000 Victoria University ISSN (electronic): 1443-5756 027-01

Abstract

If c_n denotes the *n*-th composed number, one proves inequalities involving c_n, p_{c_n}, c_{p_n} , and one shows that the sequences $(p_n)_{n\geq 1}$ and $(c_{p_n})_{n\geq 1}$ are neither convex nor concave.

2000 Mathematics Subject Classification: 11A25, 11N05. Key words: Prime Numbers, Composed Numbers, Asymptotic Behavior, Inequalities, Sums and Series.

The author gratefully acknowledges for partial support from Grant No. 7D/2000 awarded by the Consiliul Naţional al Cercetării Ştiinţifice din Învăţământul Superior, România.

Contents

1	Introduction	3
2	Inequalities Involving c_n	5
3	Inequalities Involving c_{p_n} and p_{c_n}	8
References		

Some Properties of the Series of Composed Numbers

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

1. Introduction

We are going to use the following notation

 $\pi(x)$ the number of prime numbers $\leq x$, C(x) the number of composed numbers $\leq x$, p_n the *n*-th prime number, c_n the *n*-th composed number; $c_1 = 4, c_2 = 6, \dots,$ $\log_2 n = \log(\log n)$.

For $x \ge 1$ we have the relation

(1.1)
$$\pi(x) + C(x) + 1 = [x]$$

Bojarincev proved (see [1], [4]) that (1.2) $c_n = n\left(1 + \frac{1}{\log n} + \frac{2}{\log^2 n} + \frac{4}{\log^3 n} + \frac{19}{2} \cdot \frac{1}{\log^4 n} + \frac{181}{6} \cdot \frac{1}{\log^5 n} + o\left(\frac{1}{\log^5 n}\right)\right).$

Let us remark that

(1.3)
$$c_{k+1} - c_k = \begin{cases} 1 & \text{if } c_k + 1 \text{ is composed,} \\ 2 & \text{if } c_k + 1 \text{ is prime.} \end{cases}$$

In the proofs from the present paper, we shall need the following facts related to $\pi(x)$ and p_n :

(1.4) for
$$x \ge 67$$
, $\pi(x) > \frac{x}{\log x - 0.5}$

Some Properties of the Series of Composed Numbers

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

(see [7]);

(1.5) for
$$x \ge 3299$$
, $\pi(x) > \frac{x}{\log x - \frac{28}{29}}$

(see [6]);

(1.6) for
$$x \ge 4$$
, $\pi(x) < \frac{x}{\log x - 1.12}$

(see [6]);

(1.7) for
$$n \ge 1$$
, $\pi(x) = \frac{x}{\log x} \sum_{k=0}^{n} \frac{k!}{\log^k x} + O\left(\frac{x}{\log^{n+1} x}\right)$,

(1.8) for
$$n \ge 2$$
, $p_n > n(\log n + \log_2 n - 1)$

(see [2] and [3]);

(1.9) for
$$n \ge 6$$
, $p_n < n(\log n + \log_2 n)$

(see [7]).

Some Properties of the Series of Composed Numbers

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

2. Inequalities Involving c_n

Property 2.1. We have

(2.1)
$$n\left(1 + \frac{1}{\log n} + \frac{3}{\log^2 n}\right) > c_n > n\left(1 + \frac{1}{\log n} + \frac{1}{\log^2 n}\right)$$

whenever $n \geq 4$.

Proof. If we take $x = c_n$ in (1.1), then we get

(2.2) $\pi(c_n) + n + 1 = c_n.$

Now (1.4) implies that for $n \ge 48$ we have

$$c_n > n + \pi(c_n) > n + \frac{n}{\log n}$$

and then

$$c_n > n + \pi(c_n) > n + \pi \left(n \left(1 + \frac{1}{\log n} \right) \right)$$
$$> n + \frac{n \left(1 + \frac{1}{\log n} \right)}{\log n + \log \left(1 + \frac{1}{\log n} \right) - 0.5}$$
$$> n + \frac{n \left(1 + \frac{1}{\log n} \right)}{\log n}$$
$$= n \left(1 + \frac{1}{\log n} + \frac{1}{\log^2 n} \right).$$

Some Properties of the Series of Composed Numbers

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

By (1.6) and (2.2) it follows that

(2.3)
$$c_n \cdot \frac{\log c_n - 2.12}{\log c_n - 1.12} < n + 1.$$
Since $c_n > n$, it follows that $\frac{\log c_n - 2.12}{\log c_n - 1.12} > \frac{\log n - 2.12}{\log n - 1.12}$ hence
 $n + 1 > c_n \cdot \frac{\log n - 2.12}{\log n - 1.12}.$

Assume that there would exist $n \ge 1747$ such that

$$c_n \ge n\left(1 + \frac{1}{\log n} + \frac{3}{\log^2 n}\right).$$

Then a direct computation shows that (12) implies

$$\frac{1}{n} \ge \frac{0.88 \log n - 6.36}{\log^2 n (\log n - 1.12)}.$$

For $n \ge 1747$, one easily shows that $\frac{0.88 \log n - 6.36}{\log n - 1.12} > \frac{1}{31}$, hence $\frac{1}{n} > \frac{1}{31 \log^2 n}$. But this is impossible, since for $n \ge 1724$ we have $\frac{1}{n} < \frac{1}{31 \log^2 n}$.

Consequently we have $c_n < n \left(1 + \frac{1}{\log n} + \frac{3}{\log^2 n}\right)$. By checking the cases when $n \le 1746$, one completely proves the stated inequalities.

Property 2.2. If $n \ge 30, 398$, then the inequality

$$p_n > c_n \log c_n$$

Some Properties of the Series of Composed Numbers

Laurențiu Panaitopol

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

holds.

Proof. We use (1.8), (2.1) and the inequalities

$$\log\left(1 + \frac{1}{\log n} + \frac{3}{\log^2 n}\right) < \frac{1}{\log n} + \frac{3}{\log^2 n},$$

and

$$n(\log n + \log \log n - 1) > n\left(1 + \frac{1}{\log n} + \frac{3}{\log^2 n}\right)\left(\log n + \frac{1}{\log n} + \frac{3}{\log^2 n}\right),$$

that is $\log \log n > 2 + \frac{4}{\log n} + \frac{4}{\log^2 n} + \frac{6}{\log^3 n} + \frac{9}{\log^4 n}$, which holds if $n \ge 61, 800$. Now the proof can be completed by checking the remaining cases. \Box

Proposition 2.1. We have

$$\pi(n)p_n > c_n^2$$

whenever $n \ge 19,421$.

Proof. In view of the inequalities (1.5), (1.8) and (2.1), for $n \ge 3299$ it remains to prove that $\frac{\log n + \log_2 n - 1}{\log n - \frac{28}{29}} > \left(1 + \frac{1}{\log n} + \frac{3}{\log^2 n}\right)^2$, that is $\log \log n > \frac{59}{29} + \frac{5.069}{\log n} - \frac{0.758}{\log^2 n} + \frac{3.207}{\log^3 n} - \frac{8.68}{\log^4 n}$.

It suffices to show that

$$\log \log n > \frac{59}{29} + \frac{5.069}{\log n}.$$

For n = 130,000, one gets $2.466 \dots > 2.4649 \dots$ The checking of the cases when n < 130,000 completes the proof.

Some Properties of the Series of Composed Numbers

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

3. Inequalities Involving c_{p_n} and p_{c_n}

Proposition 3.1. We have

(3.1) $p_n + n < c_{p_n} < p_n + n + \pi(n)$

for n sufficiently large.

Proof. By (1.2) and (1.7) it follows that for n sufficiently large we have $c_n = n + \pi(n) + \frac{n}{\log^2 n} + O\left(\frac{n}{\log^3 n}\right)$, hence

(3.2)
$$c_{p_n} = p_n + n + \frac{p_n}{\log^2 p_n} + O\left(\frac{n}{\log^2 n}\right).$$

Thus for n large enough we have $c_{p_n} > p_n + n$.

Since the function $x \mapsto \frac{x}{\log^2 x}$ is increasing, one gets by (1.9)

$$\frac{p_n}{\log^2 p_n} < \frac{n(\log n + \log_2 n)}{(\log n + \log(\log n + \log_2 n))^2} < \frac{n(\log n + \log_2 n)}{\log n(\log n + 2\log_2 n)} < n \cdot \frac{\log n - \frac{1}{2}\log_2 n}{\log^2 n} = \pi(n) - \frac{1}{2} \cdot \frac{n\log_2 n}{\log^2 n} + O\left(\frac{n}{\log^2 n}\right)^2$$

Both this inequality and (3.2) show that for n sufficiently large we have indeed $c_{p_n} < p_n + n + \pi(n)$.

Some Properties of the Series of Composed Numbers Laurențiu Panaitopol

Page 8 of 13

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

Proposition 3.2. If n is large enough, then the inequality

$$p_{c_n} > c_{p_n}$$

holds.

Proof. By (2.1) it follows that

(3.3)
$$c_{p_n} = \pi(c_{p_n}) + p_n + 1.$$

Now (3.1) and (3.3) imply that for n sufficiently large we have $\pi(c_{p_n}) < n + \pi(n)$. But by (2.1) it follows that $c_n > n + \pi(n)$, hence $c_n > \pi(c_{p_n})$. If we assume that $c_{p_n} > p_{c_n}$, then we obtain the contradiction $\pi(c_{p_n}) \ge \pi(p_{c_n}) = c_n$. Consequently we must have $c_{p_n} < p_{c_n}$.

It is easy to show that the sequence $(c_n)_{n\geq 1}$ is neither convex nor concave. We are lead to the same conclusion by studying the sequences $(c_{p_n})_{n\geq 1}$ and $(p_{c_n})_{n\geq 1}$. Let us say that a sequence $(a_n)_{n\geq 1}$ has the property P when the inequality

$$a_{n+1} - 2a_n + a_{n-1} > 0$$

holds for infinitely many indices and the inequality

$$a_{n+1} - 2a_n + a_{n-1} < 0$$

holds also for infinitely many indices. Then we can prove the following fact.

Proposition 3.3. Both sequences $(c_{p_n})_{n\geq 1}$ and $(p_{c_n})_{n\geq 1}$ have the property P.

In order to prove it we need the following auxiliary result.

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

Lemma 3.4. If the sequence $(a_n)_{n>n_1}$ is convex, then for $m > n \ge n_1$ we have

(3.4)
$$\frac{a_m - a_n}{m - n} \ge a_{n+1} - a_n.$$

If the sequence $(a_n)_{n \ge n_2}$ is concave, then for $n > p \ge n_2$ we have

$$(3.5) \qquad \qquad \frac{a_n - a_p}{n - p} \ge a_{n+1} - a_n$$

whenever $m > n \ge n_1$.

Proof. In the first case, for $i \ge n$ we have $a_{i+1} - a_i \ge a_{n+1} - a_n$, hence $\sum_{i=n}^{m-1} (a_{i+1} - a_i) \ge (m-n)(a_{n+1} - a_n)$, that is (3.4). The inequality (3.5) can be proved similarly.

Proof of Proposition 3.3. Erdös proved in [3] that, with $d_n = p_{n+1} - p_n$, we have

 $\limsup_{n\to\infty} \frac{\min(d_n, d_{n+1})}{\log n} = \infty.$ In particular, the set $M = \{n \mid \min(d_n, d_{n+1}) > 2\log n\}$ is infinite.

For every n, at least one of the numbers n and n + 1 is composed, that is, either $n = c_m$ or $n + 1 = c_m$ for some m. Consequently, there exist infinitely many indices m such that $p_{c_m+1} - p_{c_m} > 2 \log c_m$. Since $c_{m+1} \ge c_m + 1$ and $c_m > m$, we get infinitely many values of m such that

(3.6) $p_{c_{m+1}} - p_{c_m} > 2\log m.$

Let M' be the set of these numbers m.

Page 10 of 13

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

If we assume that the sequence $(p_{c_n})_{n \ge n_1}$ is convex, then (3.4) implies that for $m \in M'$ we have

$$\frac{p_{c_{2m}} - p_{c_m}}{m} \ge p_{c_{m+1}} - p_{c_m} > 2\log m,$$

hence $p_{c_{2m}} > 2m \log m + p_{c_m}$. But this is a contradiction because $c_n \sim n$ and $p_n \sim n \log n$, that is $p_{c_{2m}} \sim 2m \log 2m$ and $p_{c_m} \sim m \log m$.

On the other hand, if we assume that the sequence $(p_{c_n})_{n \ge n_2}$ is concave, then (3.5) implies that for $x \in M'$ we have

$$\frac{p_{c_m} - p_{c[m/2]}}{m - \left[\frac{m}{2}\right]} \ge p_{c_{m+1}} - p_{c_m} > 2\log m,$$

that is

$$1 > \frac{2\left(m - \left[\frac{m}{2}\right]\right)\log m + p_{c[m/2]}}{p_{c_m}}$$

For $m \to \infty$, $m \in M'$, the last inequality implies the contradiction $1 \ge 1 + \frac{1}{2}$. Consequently the sequence $(p_{c_n})_{n\ge 1}$ has the property P.

Now let us assume that the sequence $(c_{p_n})_{n \ge n_1}$ is convex. Then for $n \in M$, $n \ge n_1$, we get by (3.4)

$$\frac{c_{p_{2n}} - c_{p_n}}{n} \ge c_{p_{n+1}} - c_{p_n} \ge p_{n+1} - p_n > 2\log n$$

If we take $n \to \infty$, $n \in M$, in the inequality $1 > (2n \log n + c_{p_n})/c_{p_{2n}}$, then we obtain the contradiction $1 \ge \frac{3}{2}$.

Some Properties of the Series of Composed Numbers

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

Finally, if we assume that the sequence $(c_{p_n})_{n \ge n_2}$ is concave, then (3.5) implies that for $n \in M$, $n \ge n_2$, we have

$$\frac{c_{p_n} - c_{p_{[n/2]}}}{n - \left[\frac{n}{2}\right]} \ge c_{p_{n+1}} - c_{p_n} \ge p_{n+1} - p_n > 2\log n,$$

which is again a contradiction.

 \square

Some Properties of the Series of Composed Numbers

Laurențiu Panaitopol

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au

References

- [1] A.E. BOJARINCEV, Asymptotic expressions for the *n*th composite number, *Ural. Gos. Univ. Mat. Zap.*, **6** (1967), 21–43 (in Russian).
- [2] P. DUSART, The *k*th prime is greater than $k(\ln k + \ln \ln k 1)$ for $k \ge 2$, *Math. Comp.*, **68** (1999), no. 225, 411–415.
- [3] P. ERDÖS, Problems and results on the differences of consecutive primes, *Publ. Math. Debrecen*, **1** (1949), 33–37.
- [4] J.-P. MASSIAS AND G. ROBIN, Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux, 8 (1996), 215–242.
- [5] D.S. MITRINOVIĆ, J. SÁNDOR AND B. CRSTICI, *Handbook of Number Theory*, Kluwer Academic Publishers, Dordrecht Boston London, 1996.
- [6] L. PANAITOPOL, Several approximations of $\pi(x)$, *Math. Ineq. & Appl.*, **2**(3) (1999), 317–324.
- [7] J.B. ROSSER AND L. SCHOENFIELD, Approximate formulas for some functions of prime numbers, *Illinois J. Math.*, **6** (1962), 64–94.

Some Properties of the Series of Composed Numbers

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001 http://jipam.vu.edu.au