ON AN OPEN QUESTION REGARDING AN INTEGRAL INEQUALITY

K. BOUKERRIOUA AND A. GUEZANE-LAKOUD
Department of Mathematics
University of Guelma
Guelma, Algeria
khaledV2004@yahoo.fr
University Badji Mokhtar, Annaba
Annaba, Algeria
a_guezane@yahoo.fr

Received 16 January, 2007; accepted 14 July, 2007
Communicated by J.E. Pečarić

Abstract

In the paper "Notes on an integral inequality" published in J. Inequal. Pure \& Appl. Math., 7(4) (2006), Art. 120, an open question was posed. In this short paper, we give the solution and we generalize the results of the mentioned paper.

Key words and phrases: Integral inequalitiy, AG inequality.
2000 Mathematics Subject Classification. 26D15.

1. Introduction

The following open question was proposed in the paper [1]:
Under what conditions does the inequality

$$
\begin{equation*}
\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\beta} f^{\alpha}(x) d x \tag{1.1}
\end{equation*}
$$

hold for α and β ?
In the above paper, the authors established some integral inequalities and derived their results using an analytic approach.

In the present paper, we give a solution and further generalization of the integral inequalities presented in [1].

2. The Answer to the Posed Question

Throughout this paper, we suppose that $f(x)$ is a continuous and nonnegative function on $[0,1]$.

In [1]], the following lemma was proved.

[^0]Lemma 2.1. If f satisfies

$$
\begin{equation*}
\int_{x}^{1} f(t) d t \geq \frac{1-x^{2}}{2}, \quad \forall x \in[0,1] \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{0}^{1} x^{\alpha+1} f(x) d x \geq \frac{1}{\alpha+3}, \quad \forall \alpha>0 \tag{2.2}
\end{equation*}
$$

Theorem 2.2. If the function f satisfies (2.1), then the inequality

$$
\begin{equation*}
\int_{0}^{1} x^{\beta} f^{\alpha}(x) d x \geq \frac{1}{\alpha+\beta+1} \tag{2.3}
\end{equation*}
$$

holds for every real $\alpha \geq 1$ and $\beta>0$.
Proof. Applying the AG inequality, we get

$$
\begin{equation*}
\frac{1}{\alpha} f^{\alpha}(x)+\frac{\alpha-1}{\alpha} x^{\alpha} \geq f(x) x^{\alpha-1} . \tag{2.4}
\end{equation*}
$$

Multiplying both sides of 2.4 by x^{β} and integrating the resultant inequality from 0 to 1 , we obtain

$$
\begin{equation*}
\int_{0}^{1} x^{\beta} f^{\alpha}(x) d x+\frac{\alpha-1}{\alpha+\beta+1} \geq \alpha \int_{0}^{1} x^{\alpha+\beta-1} f(x) d x \tag{2.5}
\end{equation*}
$$

Taking into account Lemma 2.1, we have

$$
\int_{0}^{1} x^{\beta} f^{\alpha}(x) d x+\frac{\alpha-1}{\alpha+\beta+1} \geq \frac{\alpha}{\alpha+\beta+1} .
$$

That is,

$$
\int_{0}^{1} x^{\beta} f^{\alpha}(x) d x \geq \frac{1}{\alpha+\beta+1} .
$$

This completes the proof.
Theorem 2.3. If the function f satisfies (2.1), then

$$
\begin{equation*}
\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\beta} f^{\alpha}(x) d x \tag{2.6}
\end{equation*}
$$

for every real $\alpha \geq 1$ and $\beta>0$.
Proof. Using the AG inequality, we obtain

$$
\begin{equation*}
\frac{\alpha}{\alpha+\beta} f^{\alpha+\beta}(x)+\frac{\beta}{\alpha+\beta} x^{\alpha+\beta} \geq x^{\beta} f^{\alpha}(x) \tag{2.7}
\end{equation*}
$$

Integrating both sides of (2.7), we get

$$
\begin{equation*}
\frac{\alpha}{\alpha+\beta} \int_{0}^{1} f^{\alpha+\beta}(x) d x+\frac{\beta}{(\alpha+\beta)(\alpha+\beta+1)} \geq \int_{0}^{1} x^{\beta} f^{\alpha}(x) d x . \tag{2.8}
\end{equation*}
$$

From

$$
\int_{0}^{1} x^{\beta} f^{\alpha}(x) d x=\frac{\alpha}{\alpha+\beta} \int_{0}^{1} x^{\beta} f^{\alpha}(x) d x+\frac{\beta}{\alpha+\beta} \int_{0}^{1} x^{\beta} f^{\alpha}(x) d x
$$

and by virtue of Theorem 2.3, it follows that

$$
\begin{equation*}
\int_{0}^{1} x^{\beta} f^{\alpha}(x) d x \geq \frac{\alpha}{\alpha+\beta} \int_{0}^{1} x^{\beta} f^{\alpha}(x) d x+\frac{\beta}{(\alpha+\beta)(\alpha+\beta+1)} \tag{2.9}
\end{equation*}
$$

From this inequality and using (2.8) we have,

$$
\frac{\alpha}{\alpha+\beta} \int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \frac{\alpha}{\alpha+\beta} \int_{0}^{1} x^{\beta} f^{\alpha}(x) d x .
$$

Thus (2.6) is proved.

References

[1] Q.A. NGÔ, D.D. THANG, T.T. DAT and D.A. TUAN, Notes On an integral inequality, J. Inequal. Pure \& Appl. Math., 7(4) (2006), Art. 120. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=737].

[^0]: The authors thank the referee for making several suggestions for improving the presentation of this paper.
 028-07

