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1. Introduction

Let Cm×n denote the set ofm×n complex matrices,Cm×n
r denote a subset ofCm×n

comprising matrices with rankr, Cm
≥ denote a set of Hermitian positive semidefinite

matrices of orderm, andCm
> denote a subset ofCm

≥ consisting of positive definite
matrices. LetIr be the identity matrix of orderr. GivenA ∈ Cm×n, the symbols
A∗, A#

MN , R(A), andr(A) stand for the conjugate transpose, weighted conjugate
transpose, range, and rank, respectively, ofA. Details for the concept ofA#

MN can
be found in [11, 13]. Moreover, unless otherwise specified, in this paper we always
assume that the given weight matricesM ∈ Cm×m andN ∈ Cn×n.

In the following, we give some definitions of matrix partial orderings.

Definition 1.1. For A, B ∈ Cm×m, we say thatA is belowB with respect to:

1. the Löwner partial ordering and writeA ≤L B, wheneverB − A ∈ Cm
≥ .

2. the weighted Löwner partial ordering and writeA ≤WL B, wheneverM(B −
A) ∈ Cm

≥ .

Definition 1.2. For A, B ∈ Cm×n, we say thatA is belowB with respect to:

1. the star partial ordering and writeA
∗
≤ B, wheneverA∗A = A∗B andAA∗ =

BA∗.

2. the weighted star partial ordering and writeA
#

≤ B, wheneverA#
MNA =

A#
MNB andAA#

MN = BA#
MN .

3. theWG-weighted star partial ordering and writeA
#

≤WG B, wheneverMAB#
MN ∈

Cm
≥ , NA#

MNB ∈ Cn
≥, andAA#

MN ≤WL AB#
MN .
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4. theWGL partial ordering and writeA ≤WGL B, whenever(AA#
MN)1/2 ≤WL

(BB#
MN)1/2 andAB#

MN = (AA#
MN)1/2(BB#

MN)1/2.

5. the WGL2 partial ordering and writeA ≤WGL2 B, wheneverAA#
MN ≤WL

BB#
MN andAB#

MN = (AA#
MN)1/2(BB#

MN)1/2.

6. the minus partial ordering and writeA
−
≤ B, wheneverA−A = A−B and

AA= = BA= for some (possibly distinct) generalized inversesA−, A= of A
(satisfyingAA−A = A = AA=A).

The weighted Löwner and weighted star partial orderings can be found in [6, 15]
and [9], respectively. TheWGL partial ordering was defined by Yang and Li in
[15] and theWGL2 partial ordering can be defined similarly. The minus partial
ordering was introduced by Hartwig [2], who also showed that the minus partial

ordering is equivalent to rank subtractivity, namelyA
−
≤B if and only if r(B−A) =

r(B) − r(A). For the relation
#

≤WG, we can use Lemma2.5 introduced below to
verify that it is indeed a matrix partial ordering according to the three laws of matrix
partial orderings.

Baksalary and Pukelsheim showed how the partial orderings of two Hermitian
positive semidefinite matricesA andB relate to the orderings of their squaresA2

andB2 in the sense of the Löwner partial ordering, minus partial ordering, and star
partial ordering in [1]. In terms of these steps, Hauke and Markiewicz [3] discussed
how the partial orderings of two rectangular matricesA andB relate to the orderings
of their generalized squareA(2) andB(2), A(2) = A(A∗A)1/2, in the sense of the
GL partial ordering, minus partial ordering,G-star partial ordering, and star partial
ordering. The definitions of theGL andG-star partial orderings can be found in
[3, 4].
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In addition, Hauke and Markiewicz [5] also compared the star partial ordering

A
∗
≤ B, G-star partial orderingA

∗
≤G B, andGL partial orderingA ≤GL B with

the orderingsf(A)
∗
≤ f(B), f(A)

∗
≤G f(B), andf(A) ≤GL f(B), respectively.

Here,f(A) is a matrix function defined inA [7]. Legiša [8] also discussed the star
partial ordering and surjective mappings onCn×n. These results extended the work
of Mathias [10] to some extent, who studied the relations between the Löwner partial
orderingA ≤L B and the orderingf(A) ≤L f(B).

In the present paper, based on the definitionA(2) = A(A#
MNA)1/2 (also called

the generalized square ofA), we study how the partial orderings of two rectangular
matricesA andB relate to the orderings of their generalized squaresA(2) andB(2) in
the sense of theWGL partial ordering,WG-weighted star partial ordering, weighted
star partial ordering, and minus partial ordering. Further, adopting the matrix func-

tions presented in [14], we also compare the weighted partial orderingsA
#

≤ B,

A
#

≤WG B, andA ≤WGL B with the orderingsf(A)
#

≤ f(B), f(A)
#

≤WG f(B),
andf(A) ≤WGL f(B), respectively. These works generalize the results of Hauke
and Markiewicz [3, 5].

Now we introduce the(M, N) weighted singular value decomposition [11, 12]
(MN-SVD) and the matrix functions based on the MN-SVD, which are useful in this
paper,

Lemma 1.3. LetA ∈ Cm×n
r . Then there existU ∈ Cm×m andV ∈ Cn×n satisfying

U∗MU = Im andV ∗N−1V = In such that

(1.1) A = U

(
D 0
0 0

)
V ∗,

whereD = diag(σ1, . . . , σr), σi =
√

λi > 0, and λ1 ≥ · · · ≥ λr > 0 are the
nonzero eigenvalues ofA#

MNA = (N−1A∗M)A. Here,σ1 ≥ · · · ≥ σr > 0 are
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called the nonzero(M, N) weighted singular values ofA. If, in addition, we let
U = (U1, U2) andV = (V1, V2), whereU1 ∈ Cm×r andV1 ∈ Cn×r, then

(1.2) U∗
1 MU1 = V ∗

1 N−1V1 = Ir, A = U1DV ∗
1 .

Considering the MN-SVD, from [14], we can rewrite the matrix functionf(A) :
Cm×n → Cm×n by way off(A) = U1f(D)V ∗

1 using the real functionf , wheref(D)
is the diagonal matrix with diagonal elementsf(σ1), . . . , f(σr). More information
on the matrix function can be found in [14].
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2. Relations Between the Weighted Partial Orderings

Firstly, it is easy to obtain that on the cone of generalized Hermitian positive semidef-
inite matrices (namely the cone comprising all matrixes which multiplied by a given
Hermitian positive definite matrix become Hermitian positive semidefinite matrices)
theWGL partial ordering coincides with the weighted Löwner partial ordering, i.e.,
for matricesA, B ∈ Cm×m satisfyingMA,MB ∈ Cm

≥ ,

A ≤WGL B if and only if A ≤WL B

and theWGL2 partial ordering coincides with theWGL partial ordering of the
squares of matrices, i.e., for matricesA, B ∈ Cmm satisfyingMA,MB ∈ Cm

≥ ,

A ≤WGL2 B if and only if A2 ≤WGL B2.

On the set of rectangular matrices, for the generalized square ofA, i.e., A(2) =
A(A#

MNA)1/2, the above relation takes the form:

(2.1) A ≤WGL2 B if and only if A(2) ≤WGL B(2),

which will be proved in the following theorem.

Theorem 2.1.LetA, B ∈ Cm×n, r(A) = a, andr(B) = b. Then (2.1) holds.

Proof. It is easy to find that the first conditions in the definitions ofWGL2 partial
ordering forA andB andWGL partial ordering forA(2) andB(2) are equivalent. To
prove the equivalence of the second conditions, let us use the MN-SVD introduced
in Lemma1.3.

Let A = U1DaV
∗
1 andB = U2DbV

∗
2 be the MN-SVDs ofA andB, whereU1 ∈

Cm×a, U2 ∈ Cm×b, V1 ∈ Cn×a, andV2 ∈ Cn×b satisfyingU∗
1 MU1 = V ∗

1 N−1V1 = Ia

andU∗
2 MU2 = V ∗

2 N−1V2 = Ib, andDa ∈ Ca
>, Db ∈ Cb

> are diagonal matrices.
Then
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AB#
MN =(AA#

MN)1/2(BB#
MN)1/2

⇔ U1DaV
∗
1 N−1V2DbU

∗
2 M

= (U1DaV
∗
1 N−1V1DaU

∗
1 M)1/2(U2DbV

∗
2 N−1V2DbU

∗
2 M)1/2

⇔ U1DaV
∗
1 N−1V2DbU

∗
2 M = U1DaU

∗
1 MU2DbU

∗
2 M

⇔ V ∗
1 N−1V2 = U∗

1 MU2.(2.2)

Note that

A(2) = A(A#
MNA)1/2 = U1DaV

∗
1 (N−1V1DaU

∗
1 MU1DaV

∗
1 )1/2(2.3)

= U1DaV
∗
1 N−1V1DaV

∗
1 = U1D

2
aV

∗
1 .

Similarly,

(2.4) B(2) = U2D
2
bV

∗
2 .

Then

A(2)(B(2))#
MN =(A(2)(A(2))#

MN)1/2(B(2)(B(2))#
MN)1/2

⇔ U1D
2
aV

∗
1 N−1V2D

2
bU

∗
2 M

= (U1D
2
aV

∗
1 N−1V1D

2
aU

∗
1 M)1/2(U2D

2
bV

∗
2 N−1V2D

2
bU

∗
2 M)1/2

⇔ U1D
2
aV

∗
1 N−1V2D

2
bU

∗
2 M = U1D

2
aU

∗
1 MU2D

2
bU

∗
2 M

⇔ V ∗
1 N−1V2 = U∗

1 MU2,

which together with (2.2) gives

AB#
MN = (AA#

MN)1/2(BB#
MN)1/2

⇔ A(2)(B(2))#
MN = (A(2)(A(2))#

MN)1/2(B(2)(B(2))#
MN)1/2.

Therefore, the proof is completed.
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Before studying the relation between theWGL partial orderings forA andB and
that for their generalized squares, we first introduce a lemma from [1].

Lemma 2.2. LetA, B ∈ Cm
≥ . Then

(a) If A2 ≤L B2, then A ≤L B.

(b) If AB = BA and A ≤L B, then A2 ≤L B2.

Theorem 2.3.LetA, B ∈ Cm×n, r(A) = a, r(B) = b, and

(a) A ≤WGL B,

(b) A(2) ≤WGL B(2),

(c) (AB#
MN)#

MM = AB#
MN .

Then(b) implies(a), and(a) and(c) imply (b).

Proof. (i). (b) ⇒ (a).
Together with Theorem2.1 and the definitions ofWGL2 andWGL partial or-

derings, it suffices to show that

(2.5) (A(2)(A(2))#
MN)1/2 ≤WL (B(2)(B(2))#

MN)1/2

⇒ (AA#
MN)1/2 ≤WL (BB#

MN)1/2.

From the proof of Theorem2.1and the definition of weighted Löwner partial order-
ing, we have

(A(2)(A(2))#
MN)1/2 ≤WL (B(2)(B(2))#

MN)1/2(2.6)

⇔ U1D
2
aU

∗
1 M ≤WL U2D

2
bU

∗
2 M

⇔ MU1D
2
aU

∗
1 M ≤L MU2D

2
bU

∗
2 M
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⇔ M1/2U1D
2
aU

∗
1 M1/2 ≤L M1/2U2D

2
bU

∗
2 M1/2

⇔ M1/2U1DaU
∗
1 M1/2M1/2U1DaU

∗
1 M1/2

≤L M1/2U2DbU
∗
2 M1/2M1/2U2DbU

∗
2 M1/2.

Applying Lemma2.2(a) to (2.6) leads to

M1/2U1DaU
∗
1 M1/2 ≤L M1/2U2DbU

∗
2 M1/2(2.7)

⇔ MU1DaU
∗
1 M ≤L MU2DbU

∗
2 M

⇔ M(AA#
MN)1/2 ≤L M(BB#

MN)1/2

⇔ (AA#
MN)1/2 ≤WL (BB#

MN)1/2.

Then, by (2.6) and (2.7), we show that (2.5) holds.

(ii). (a) and(c) ⇒ (b).
Similarly, combining with Theorem2.1and the definitions ofWGL2 andWGL

partial orderings, we only need to prove that

(2.8) (AA#
MN)1/2 ≤WL (BB#

MN)1/2

⇒ (A(2)(A(2))#
MN)1/2 ≤WL (B(2)(B(2))#

MN)1/2.

From the proof of Theorem2.1and the definition of weighted Löwner partial order-
ings, we have

(AA#
MN)1/2 ≤WL(BB#

MN)1/2(2.9)

⇔ U1DaU
∗
1 M ≤WL U2DbU

∗
2 M

⇔ MU1DaU
∗
1 M ≤L MU2DbU

∗
2 M

⇔ M1/2U1DaU
∗
1 M1/2 ≤L M1/2U2DbU

∗
2 M1/2.
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According to (c), we have

(2.10) U2DbV
∗
2 N−1V1DaU

∗
1 M = U1DaV

∗
1 N−1V2DbU

∗
2 M.

Thus, together with (2.10) and (2.2), we can obtain

(2.11) U2DbU
∗
2 MU1DaU

∗
1 M = U1DaU

∗
1 MU2DbU

∗
2 M

⇔ M1/2U1DaU
∗
1 M1/2M1/2U2DbU

∗
2 M1/2

= M1/2U2DbU
∗
2 M1/2M1/2U1DaU

∗
1 M1/2.

Applying Lemma2.2(b) to (2.11) and (2.9), we have

(2.12) M1/2U1DaU
∗
1 M1/2M1/2U1DaU

∗
1 M1/2

≤L M1/2U2DbU
∗
2 M1/2M1/2U2DbU

∗
2 M1/2.

Then, combining with (2.12) and (2.6), we can show that (2.8) holds.

The weighted star partial ordering was characterized by Liu in [9], using the
simultaneous weighted singular value decomposition of matrices [9]. He obtained
the following result.

Lemma 2.4. LetA, B ∈ Cm×n andr(B) = b > r(A) = a ≥ 1. ThenA
#

≤ B if and
only if there exist matricesU ∈ Cm×m andV ∈ Cn×n satisfyingU∗MU = Im and
V ∗N−1V = In such that

A = U

(
Da 0
0 0

)
V ∗ = U1DaV

∗
1 ,

B = U

 Da 0 0
0 D 0
0 0 0

 V ∗ = U2

(
Da 0
0 D

)
V ∗

2 ,
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whereU1 ∈ Cm×a, V1 ∈ Cn×a and U2 ∈ Cm×b, V2 ∈ Cn×b denote the firsta
and b columns ofU ,V , respectively, and satisfyU∗

1 MU1 = V ∗
1 N−1V1 = Ia and

U∗
2 MU2 = V ∗

2 N−1V2 = Ib, andDa ∈ Ca
> andD ∈ Cb−a

> are diagonal matrices.

Similarly to Lemma2.4, we can take the following form to characterize theWG-
weighted star partial ordering. A detailed proof is omitted.

Lemma 2.5. LetA, B ∈ Cm×n andr(B) = b > r(A) = a ≥ 1. ThenA
#

≤WG B if
and only if there exist matricesU ∈ Cm×m andV ∈ Cn×n satisfyingU∗MU = Im

andV ∗N−1V = In such that

A = U

(
Da 0
0 0

)
V ∗ = U1DaV

∗
1 ,

B = U

 Da′ 0 0
0 D 0
0 0 0

 V ∗ = U2

(
Da′ 0
0 D

)
V ∗

2 ,

whereU1 ∈ Cm×a, V1 ∈ Cn×a andU2 ∈ Cm×b, V2 ∈ Cn×b denote the firsta andb
columns ofU ,V , respectively, and satisfyU∗

1 MU1 = V ∗
1 N−1V1 = Ia andU∗

2 MU2 =
V ∗

2 N−1V2 = Ib, and Da, Da′ ∈ Ca
> and D ∈ Cb−a

> are diagonal matrices, and
Da′ −Da ∈ Ca

≥.

From the simultaneous weighted singular value decomposition of matrices [9],
Lemma2.4, and Lemma2.5, we can derive the following theorem.

Theorem 2.6.LetA, B ∈ Cm×n. Then

(a) A
#

≤ B ⇔ MAB#
MN ∈ Cm

≥ , NA#
MNB ∈ Cn

≥, andAA#
MN = (AA#

MN)1/2(BB#
MN)1/2.

(b) A
#

≤WG B ⇔ MAB#
MN ∈ Cm

≥ , NA#
MNB ∈ Cn

≥, and (AA#
MN)1/2 ≤WL

(BB#
MN)1/2.
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Considering Definition1.2(4) and Theorem2.6, we can present the following
relations between three weighted partial orderings by the sequence of implications:

A
#

≤ B ⇒ A
#

≤WG B ⇒ A ≤WGL B.

As in Theorem2.3, we now discuss the corresponding result forWG-weighted
star partial ordering using Lemma2.5.

Theorem 2.7.LetA, B ∈ Cm×n, r(A) = a, andr(B) = b. Then

A(2)
#

≤WG B(2) if and only ifA
#

≤WG B.

Proof. Let the MN-SVDs ofA andB be as in the proof of Theorem2.1. Considering
Lemma1.3, from (2.3), (2.4), and Lemma2.5, we have

A(2) = U1D
2
aV

∗
1 = U

(
D2

a 0
0 0

)
V ∗,

B(2) = U2D
2
bV

∗
2 = U

(
D2

b 0
0 0

)
V ∗.

In this case, the MN-SVDs ofA andB can be rewritten as

A = U

(
Da 0
0 0

)
V ∗, B = U

(
Db 0
0 0

)
V ∗.

Thus, from Lemma2.5, we have

A(2)
#

≤WG B(2) ⇒ A
#

≤WG B.

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Weighted Partial Orderings

Hanyu Li, Hu Yang and Hua Shao

vol. 10, iss. 2, art. 41, 2009

Title Page

Contents

JJ II

J I

Page 14 of 20

Go Back

Full Screen

Close

Conversely, from Lemma2.5, A
#

≤WG B is equivalent to

A = U

(
Da 0
0 0

)
V ∗, B = U

 Da′ 0 0
0 D 0
0 0 0

 V ∗.

Then

A(2) = U

(
D2

a 0
0 0

)
V ∗, B(2) = U

 D2
b 0 0

0 D2 0
0 0 0

 V ∗.

Therefore, from Lemma2.5again, the proof is completed.

The characterization of the weighted star partial ordering can be obtained simi-
larly using Lemma2.4, and is given in the following theorem.

Theorem 2.8.LetA, B ∈ Cm×n, r(A) = a, andr(B) = b. Then

A(2)
#

≤B(2) if and only ifA
#

≤B.

The following result was presented by Liu [9]. It is useful for studying the relation
between the minus ordering forA andB and that forA(2) andB(2).

Lemma 2.9. LetA, B ∈ Cm×n. Then

A
#

≤B if and only ifA
−
≤B,

(AB#
MN)#

MM = AB#
MN , and(A#

MNB)#
NN = A#

MNB.
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Theorem 2.10.Let A, B ∈ Cm×n, r(A) = a, r(B) = b, (AB#
MN)#

MM = AB#
MN ,

and(A#
MNB)#

NN = A#
MNB. Then

A(2)
−
≤B(2) if and only ifA

−
≤B.

Proof. According to(AB#
MN)#

MM = AB#
MN , (A#

MNB)#
NN = A#

MNB, the proof of
Theorem 5.3.2 of [9], and the simultaneous unitary equivalence theorem [7], we have

A = U

(
Ec 0
0 0

)
V ∗, B = U

(
Fc 0
0 0

)
V ∗,

whereU ∈ Cm×mandV ∈ Cn×n satisfyU∗MU = Im andV ∗N−1V = In, and
Ec ∈ Cc×c

≥ andFc are real diagonal matrices,c = max{a, b}.
As in (2.3) and (2.4), we can obtain

A(2) = U

(
E2

c 0
0 0

)
V ∗, B(2) = U

(
Fc |Fc| 0

0 0

)
V ∗.

Thus, it is easy to verify that

(A(2)(B(2))#
MN)#

MM = A(2)(B(2))#
MN and

((A(2))#
MNB(2))#

NN = (A(2))#
MNB(2).

As a result,

A(2)
−
≤B(2) ⇔ A(2)

#

≤B(2).

By Theorem2.8and Lemma2.9, the proof is completed.
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3. Weighted Matrix Partial Orderings and Matrix Functions

In this section, we study the relations between some weighted partial orderings of
matrices and the orderings of their functions. Here, we are interested in such matrix
functions for whichr[f(A)] = r(A), i.e., functions for whichf(x) = 0 only for
x = 0. These functions are said to be nondegenerating.

The following properties off gathered in Lemma3.1will be used in subsequent
parts of this section.

Lemma 3.1. Let A, B ∈ Cm×n and letf be a nondegenerating matrix function.
Then

(a) R(A) = R(f(A)).

(b) AB#
MN = (AA#

MN)1/2(BB#
MN)1/2

⇔ f(A)f(B#
MN) = f((AA#

MN)1/2)f((BB#
MN)1/2).

Proof. (a). From the MN-SVD ofA, i.e., (1.2), and the property off , we have

R(A) = R(U1DV ∗
1 ) = R(U1) = R(U1f(D)V ∗

1 ) = R(f(A)).

(b). Similar to the proof of Theorem2.1, let A = U1DaV
∗
1 andB = U2DbV

∗
2 be the

MN-SVDs of A andB respectively. Considering the definition of matrix functions,
we obtain

f(A)f(B#
MN) = f((AA#

MN)1/2)f((BB#
MN)1/2)

⇔ U1f(Da)V
∗
1 N−1V2f(Db)U

∗
2 M = U1f(Da)U

∗
1 MU2f(Db)U

∗
2 M

⇔ V ∗
1 N−1V2 = U∗

1 MU2,

which together with (2.2) implies the proof.
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In the following theorems, we compare some weighted partial orderings of ma-
trices with orderings of their functions.

Theorem 3.2.LetA, B ∈ Cm×n and letf be a positive one-to-one function. Then

A
#

≤ B if and only if f(A)
#

≤ f(B).

Proof. From Definition1.2(2) and Lemma2.4, we have thatA
#

≤ B is equivalent to

AB#
MN = U1D

2
aU

∗
1 M = AA#

MN and A#
MNB = N−1V1D

2
aV

∗
1 = A#

MNA,

andf(A)
#

≤ f(B) is equivalent to

f(A)f(B)#
MN = U1f(Da)

2U∗
1 M = f(A)f(A#

MN) and

f(A)#
MNf(B) = N−1V1f(Da)

2V ∗
1 = f(A#

MN)f(A).

Then, using the properties off , the proof is completed.

Theorem 3.3.LetA, B ∈ Cm×n and letf be a positive strictly increasing function.
Then

A
#

≤WG B if and only if f(A)
#

≤WG f(B).

Proof. From Definition1.1(2), Definition 1.2(3), and Lemma2.5, we obtain that

A
#

≤WG B is equivalent to

MAA#
MN = MU1D

2
aU

∗
1 M ≤L MU1DaDa′U∗

1 M = MAB#
MN ,

MAB#
MN = MU1DaDa′U∗

1 M ∈ Cm
≥ ,
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and
NA#

MNB = V1DaDa′V ∗
1 ∈ Cn

≥;

andf(A)
#

≤WG f(B) is equivalent to

Mf(A)f(A)#
MN = MU1f(Da)

2U∗
1 M ≤L MU1f(Da)f(Da′)U∗

1 M

= Mf(A)f(B)#
MN ,

Mf(A)f(B)#
MN = MU1f(Da)f(Da′)U∗

1 M ∈ Cm
≥

and
Nf(A)#

MNB = V1f(Da)f(Da′)V ∗
1 ∈ Cn

≥.

Therefore, the proof follows from the property off .

We need to point out that the above results are not valid for theWGL partial
ordering or for the weighted Löwner partial ordering. However, it is possible to
reduce the problem of comparing theWGL partial ordering of matrices and the
WGL partial ordering of their functions to a suitable problem involving the weighted
Löwner partial ordering. Thus, from Definition1.1(2), Definition1.2(4), and Lemma
3.1, we can deduce the following theorem.

Theorem 3.4.LetA, B ∈ Cm×n and letf be a positive strictly increasing function.
The following statements are equivalent:

(a) A ≤WGL B if and only if f(A) ≤WGL f(B).

(b) (AA#
MN)1/2 ≤WL (BB#

MN)1/2 if and only iff((AA#
MN)1/2) ≤WL f((AA#

MN)1/2).

Remark1. It is worthwhile to note that some of the results of Section3 can be
regarded as generalizations of those in Section2. For example, iff(t) = t2, then
f(A) = U1D

2V ∗
1 = A(2), hence, in this case, Theorem3.2 and Theorem3.3 will

reduce to Theorem2.8and Theorem2.7, respectively.
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