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Abstract

In the article, a functional inequality in abstract spaces is established, which
gives a new affirmative answer to an open problem posed by Feng Qi in [9].
Moreover, some integral inequalities and a discrete inequality involving sums
are deduced.
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1. Introduction
Under what condition does the inequality

(1.1)
∫ b

a

[f(x)]tdx ≥
(∫ b

a

f(x)dx

)t−1

hold for t > 1?
This problem was proposed by the second author, F. Qi, in [9] after the fol-

lowing inequality was proved:

(1.2)
∫ b

a

[
f(x)

]n+2
dx ≥

(∫ b

a

f(x)dx

)n+1

,

wheref(x) has continuous derivative of then-th order on the interval[a, b],
f (i)(a) ≥ 0 for 0 ≤ i ≤ n− 1, andf (n)(x) ≥ n!.

In the joint paper [13], K.-W. Yu and F. Qi obtained an answer to the above
problem by using the integral version of Jessen’s inequality and a property of
convexity: Inequality (1.1) is valid for all f ∈ C([a, b]) such that

∫ b

a
f(x)dx ≥

(b− a)t−1 for givent > 1.
Let [x] denote the greatest integer less than or equal tox, f (−1)(x)=

∫ x

a
f(s)ds,

f (0)(x) = f(x), γ(t) = t(t− 1)(t− 2) · · · [t− (n− 1)] for t ∈ (n, n + 1], and
γ(t) = 1 for t < 1, wheren is a positive integer. In [12], N. Towghi provided
other sufficient conditions for inequality (1.1) to be valid: If f (i)(a) ≥ 0 for
i ≤ [t− 2] andf [t−2](x) ≥ γ(t− 1)(x− a)(t−[t]), then

∫ b

a
f(x)dx ≥ (b− a)t−1

and inequality (1.1) holds.
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T.K. Pogány in [8], by avoiding the assumptions of differentiability used in
[9, 12] and the convexity criteria used in [13], and instead using the classical
integral inequalities due to Hölder, Nehari, Barnes and their generalizations by
Godunova and Levin, established some inequalities which are generalizations,
reversed form, or weighted version of inequality (1.1).

In this paper, by employing a functional inequality introduced in [5], which
is an abstract generalization of the classical Jessen’s inequality [10], we further
establish the following functional inequality (1.4) from which inequality (1.1),
some integral inequality, and an interesting discrete inequality involving sums
can be deduced.

Theorem 1.1. LetL be a linear vector space of real-valued functions,p andq
be two real numbers such thatp ≥ q ≥ 1. Assume thatf andg are two positive
functions inL andG is a positive linear form onL such that

1. G(g) > 0,

2. fg andgfp ∈ L.

If

(1.3) [G(g)]p−1 ≤ [G(gf)]p−q,

then

(1.4) [G(gf)]q ≤ G(gfp).

The new inequality (1.4) has the feature that it is stated for summable func-
tions defined on a finite measure space(E, Σ, µ) whoseL1-norms are bounded
from below by some constant involving the measure of the whole spaceE as
well as the exponentsp andq.
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2. Lemma and Proof of Theorem1.1
To prove our main result, Theorem1.1, it is necessary to recall a functional
inequality from [5], which can be stated as follows.

Lemma 2.1. LetL be a linear vector space of real valued functions andf, g ∈
L with g ≥ 0. Assume thatF is a positive linear form onL andϕ : R → R is
a convex function such that

1. F (g) = 1,

2. fg and(ϕ ◦ f)g ∈ L.

Then

(2.1) ϕ(F (fg)) ≤ F ((ϕ ◦ f)g).

Notice that Lemma2.1 is in fact a form of the classical Jessen inequality.
There is a vast literature on this subject, see, e.g., [1, 2, 3, 4, 7, 11] and refer-
ences therein.

Proof of Theorem1.1. Define a positive linear formF (u) = G(u)
G(g)

, then, we ob-
viously haveF (g) = 1. From Lemma2.1, if we take as a convex function
ϕ(x) = xp for p ≥ 1, then

(2.2) [F (gf)]p ≤ F (gfp),

that is, [
G(gf)

G(g)

]p

≤ G(gfp)

G(g)
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which gives
[G(gf)]p−q

[G(g)]p−1
[G(gf)]q ≤ G(gfp).

Since inequality (1.3) holds, thus inequality (1.4) follows.
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3. Corollaries and Remarks
As a new positve and concrete answer to F. Qi’s problem mentioned at the be-
ginning of this paper, we get the following

Corollary 3.1. Let (E, Σ, µ) be a finite measure space and letL be the space
of all integrable functions onE. If p and q are two real numbers such that
p ≥ q ≥ 1, andf andg are two positive functions ofL such that

1.
∫

E
gdµ > 0,

2. fg andgfp ∈ L,

then

(3.1)

(∫
E

gfdµ

)q

≤
∫

E

gfpdµ,

provided that
(∫

E
gfdµ

)p−q ≥
(∫

E
gdµ

)p−1
.

Proof. This follows from Theorem1.1 by takingG(u) =
∫

E
udµ as a positive

linear form.

Remark 3.1. We observe that ifp = q andG(g) ≤ 1, then inequality(1.3) is
always fulfilled, and accordingly, we have

[G(gf)]p ≤ G(gfp)

for all p ≥ 1.
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Remark 3.2. If L contains the constant functions, then for

(3.2) f =


0, p ≥ q ≥ 1,

[G(g)]p−q, p > q ≥ 1,

1, p = q, G(g) = 1,

equality occurs in(1.4)

Remark 3.3. In fact, inequality(1.4) holds even if inequality(1.3), as merely
a sufficient condition, is not satisfied. Letp > q ≥ 1, m = q−1

p−q
and c =[

q
(

p−q
p−1

)q−1]1/(p−q)
. If E = [a, b] is a finite interval ofR and f(x) = c(x −

a)m, then
(∫ b

a
fdx

)q
=
∫ b

a
fpdx. On the other hand, inequality(1.3) is no

longer satisfied ifq
(

p−q
p−1

)p−1
< 1. This is due to the fact that

(∫ b

a
fdx

)p−q
=

q
(

p−q
p−1

)p−1(
b− a

)p−1
.

Corollary 3.2. Letf ∈ L1(a, b), the space of integrable functions on the inter-
val (a, b) with respect to the Lebesgue measure, such that|f(x)| ≥ k(x) a.e.
for x ∈ (a, b), where

(3.3) (b− a)(p−1)/(p−q) ≤
∫ b

a

k(x)dx < ∞

for somep > q ≥ 1. Then

(3.4)

(∫ b

a

|f(x)|dx

)q

≤
∫ b

a

|f(x)|pdx.
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Proof. This follows easily from Lemma2.1.

We now apply Corollary3.2to deduce F. Qi’s main result, Proposition 1.3 in
[9], in detail.

Corollary 3.3. Suppose thatf ∈ Cn([a, b]) satisfiesf (i)(a) ≥ 0 andf (n)(x) ≥
n! for x ∈ [a, b], where0 ≤ i ≤ n−1 andn ∈ N, the set of all positive integers,
then

(3.5)
∫ b

a

[
f(x)

]n+2
dx ≥

(∫ b

a

f(x)dx

)n+1

.

Proof. Sincef (n)(x) ≥ n!, then successive integrations over[a, x] give

f (n−k)(x) ≥ n!

k!
(x− a)k, k = 0, 1, . . . , n− 1,

hence

(x− a)n−kf (n−k)(x) ≥ n!

k!
(x− a)n, k = 0, 1, . . . , n− 1.

On the other hand, Taylor’s expansion applied tof with Lagrange remainder
states that

f(x) = f(a) +
n−1∑
k=0

f (k)(a)

k!
(x− a)k +

f (n)(ξ)

n!
(x− a)n

≥
n∑

k=0

n!

k!(n− k)!
(x− a)n

= 2n(x− a)n,
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whereξ ∈ (a, x). But sincex is arbitrary and2n ≥ n + 1 for all n ∈ N, then

f(x) ≥ (n + 1)(x− a)n ≥ 0

for all x ∈ (a, b). Therefore∫ b

a

f(x)dx ≥ (b− a)n+1,

and inequality (3.5) follows by virtue of Corollary3.2.

Remark 3.4. The function

f : [a, b] → R+, x 7→ f(x) =
(x− a)n+1

(n + 2)n

for a fixedn ∈ N satisfiesf ∈ Cn([a, b]) andf (i)(a) ≥ 0, for 0 ≤ i ≤ n−1, but
f (n)(x) = (n+1)!

(n+2)n (x− a) for x ∈ [a, b]. This means that the conditionf (n) ≥ n!

on [a, b] is no longer fulfilled. However, we have(∫ b

a

fdx

)n+2

=

∫ b

a

fn+3dx =
(b− a)(n+2)2

(n + 2)(n+1)(n+2)
.

Finally, let us apply Corollary3.1to derive a discrete inequality.

Corollary 3.4. Let E = {a1, . . . , aN}, f : E → R+ defined byf(ai) = bi for
i = 1, . . . , N , and letµ be a discrete positive measure given byµ({ai}) = αi >
0 for i = 1, . . . , N . If, for p ≥ q ≥ 1

(3.6)

(
N∑

i=1

αi

)p−1

≤

(
N∑

i=1

αibi

)p−q

,
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then we have

(3.7)

(
N∑

i=1

αibi

)q

≤
N∑

i=1

αib
p
i .

If, in particular, α1 = · · · = αN = c > 0 satisfies

(3.8) cq−1 ≤ 1

Np−1

(
N∑

i=1

bi

)p−q

,

then

(3.9)

(
N∑

i=1

bi

)q

≤ 1

cq−1

N∑
i=1

bp
i .

Proof. We observe that(∫
E

fdµ

)p−q

=

(
N∑

i=1

f(ai)µ({ai})

)p−q

=

(
N∑

i=1

αibi

)p−q

≥

(
N∑

i=1

αi

)p−1

≡ [µ(E)]p−1.
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and thus, the sufficient condition is satisfied. We conclude by Corollary3.1that(∫
E

fdµ

)q

=

(
N∑

i=1

αibi

)q

≤
∫

E

fpdµ =
N∑

i=1

αib
p
i .

The proof of inequality (3.9) is a particular case of the above argument, and
thus we leave it to the interested reader.

Remark 3.5. The draft version of this paper is available online at
http://rgmia.vu.edu.au/v6n1.html . See [6].
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