

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 2, Issue 2, Article 16, 2001

SUBHARMONIC FUNCTIONS AND THEIR RIESZ MEASURE

RAPHAELE SUPPER

UNIVERSITÉ LOUIS PASTEUR, UFR DE MATHÉMATIQUE ET INFORMATIQUE, URA CNRS 001, 7 RUE RENÉ DESCARTES, F-67 084 STRASBOURG CEDEX, FRANCE supper@math.u-strasbg.fr

Received 30 August, 2000; accepted 22 January, 2001 Communicated by A. Fiorenza

ABSTRACT. For subharmonic functions u in \mathbb{R}^N , of Riesz measure μ , the growth of the function $s \mapsto \mu(s) = \int_{|\zeta| \le s} d\mu(\zeta)$ ($s \ge 0$) is described and compared with the growth of u. It is also shown that, if $\int_{\mathbb{R}^N} u^+(x) \left[-\varphi'(|x|^2)\right] dx < +\infty$ for some decreasing C^1 function $\varphi \ge 0$, then $\int_{\mathbb{R}^N} \frac{1}{|\zeta|^2} \varphi(|\zeta|^2 + 1) d\mu(\zeta) < +\infty$. Given two subharmonic functions u_1 and u_2 , of Riesz measures μ_1 and μ_2 , with a growth like $u_i(x) \le A + B|x|^{\gamma} \, \forall x \in \mathbb{R}^N$ (i = 1, 2), it is proved that $\mu_1 + \mu_2$ is not necessarily the Riesz measure of a subharmonic function u with such a growth as $u(x) \le A' + B'|x|^{\gamma} \, \forall x \in \mathbb{R}^N$ (here A > 0, A' > 0 and 0 < B' < 2B).

Key words and phrases: subharmonic functions, order of growth, Riesz measure.

2000 Mathematics Subject Classification. 31A05, 31B05, 26D15, 28A75.

1. INTRODUCTION

Let μ be the Riesz measure of some subharmonic function u in \mathbb{R}^N ($N \in \mathbb{N}$, $N \ge 2$ and u non identically $-\infty$, see [1, p. 104]) and $\mu(s) = \int_{|\zeta| \le s} d\mu(\zeta)$ for any $s \ge 0$ (where $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^N). The function $s \mapsto \mu(s)$ is non-decreasing since μ is a positive measure. The order of the function $s \mapsto s^{2-N}\mu(s)$ is known to coincide with the convergence exponent of μ :

$$\inf\left\{c: \int_{1}^{+\infty} s^{2-N-c} \, d\mu(s)\right\} = \inf\left\{c: \int_{1}^{+\infty} s^{1-N-c} \, \mu(s) \, ds\right\}$$

(see [2, p. 66]) and does not exceed γ if u has a growth of the kind:

(1.1)
$$u(x) \le A + B|x|^{\gamma} \quad \forall x \in \mathbb{R}^N$$

(with constants $A \in \mathbb{R}$, B > 0 and $\gamma > 0$). This estimation of the growth of $\mu(s)$ will be examined below, in Sections 3 and 4.

ISSN (electronic): 1443-5756

^{© 2001} Victoria University. All rights reserved.

⁰³⁰⁻⁰⁰

Definition 1.1. Given $\gamma > 0$ and B > 0, let $SH(\gamma, B)$ stand for the set of all subharmonic functions u in \mathbb{R}^N which are harmonic in some neighbourhood of the origin with u(0) = 0 and which satisfy estimate (1.1) for some constant $A \in \mathbb{R}$.

In Proposition 5.2 (see Section 5), a counterexample is produced to show that, given u_1 and u_2 two functions in this set $SH(\gamma, B)$ and $B' \in [0, 2B[$, the sum of their respective Riesz measures μ_1 and μ_2 is not necessarily the Riesz measure of a function of $SH(\gamma, B')$.

Of course $\mu_1 + \mu_2$ is the Riesz measure associated with $u_1 + u_2 \in SH(\gamma, 2B)$, but $\mu_1 + \mu_2$ is also the Riesz measure of u_1+u_2-h for any harmonic function h in \mathbb{R}^N . This proposition means that there does not necessarily exist a harmonic function h such that $u_1 + u_2 - h \in SH(\gamma, B')$.

Let μ denote the Riesz measure of some function of $SH(\gamma, B)$ with growth (1.1). Sections 3 and 4 are devoted to the growth of the repartition function $s \mapsto \mu(s)$. For instance, when N = 2, we obtain the inequality: $\mu(s) \leq Be\gamma s^{\gamma} e^{\frac{A\gamma}{\mu(s)}}$ (see Theorem 3.1 and Corollary 3.2).

Notation 1.1. When $N \ge 3$, throughout the paper we set $C(\gamma, N) = \left(\frac{\gamma+N-2}{\gamma}\right)^{\frac{\gamma+N-2}{N-2}}$ and $D(B, \gamma, N) = \frac{\gamma+N-2}{\gamma} \left(\frac{B\gamma}{N-2}\right)^{\frac{N-2}{\gamma+N-2}}$, sometimes written merely D for brevity.

Note that

$$\frac{\gamma}{N-2}C(\gamma,N) = \frac{\gamma}{N-2}\left(\frac{\gamma+N-2}{\gamma}\right)^{\frac{\gamma+N-2}{N-2}} = \frac{\gamma+N-2}{N-2}\left(1+\frac{N-2}{\gamma}\right)^{\frac{\gamma}{N-2}} \le e\frac{\gamma+N-2}{N-2}$$

For $N \ge 3$, we also obtain inequalities describing the growth of $s \mapsto \mu(s)$ and the constants involved in these estimations are given explicitly in terms of A, B and γ . For example:

$$\mu(s) \le \frac{B\gamma}{N-2} C(\gamma, N) \, s^{\gamma+N-2} \, \left(1 + \frac{A}{D \cdot [\mu(s)]^{\frac{\gamma}{\gamma+N-2}}} \right)^{\frac{\gamma+N-2}{N-2}}$$

(see Theorem 3.4 and Corollary 3.5).

It points out that $\limsup_{s\to+\infty} \frac{\mu(s)}{s^{\gamma+N-2}}$ is not greater than $Be\gamma$ (when N = 2) or $\frac{B\gamma}{N-2} C(\gamma, N)$ (when $N \ge 3$). Moreover, $\liminf_{s\to+\infty} \frac{\mu(s)}{s^{\gamma+N-2}}$ does not exceed $B\gamma$ (if N = 2) or $\frac{B\gamma}{N-2}$ (if $N \ge 3$). This will follow from Theorems 4.2 and 4.5 which assert that the sets:

$$\left\{s: \mu(s) < B\gamma \, s^{\gamma} \, e^{\frac{A\gamma}{\mu(s)}}\right\}$$

 $\left\{s : \mu(s) < \frac{B\gamma}{N-2} s^{\gamma+N-2} \left(1 + \frac{A}{D \cdot [\mu(s)]^{\frac{\gamma}{\gamma+N-2}}}\right)^{\frac{\gamma+N-2}{N-2}}\right\}$

and

are unbounded in the cases when N = 2 and N > 3 respectively.

The last section studies subharmonic functions u in \mathbb{R}^N (harmonic in some neighbourhood of the origin with u(0) = 0) such that the subharmonic function u^+ (defined by $u^+(x) = \max(u(x), 0) \ \forall x \in \mathbb{R}^N$) satisfies a L^1 condition, for example in Theorem 6.1:

 $\int_{\mathbb{R}^N} u^+(x) \left[-\varphi'(|x|^2)\right] dx < +\infty \text{ (see Section 6.1 for more details on the decreasing function } \varphi). The Riesz measure <math>\mu$ of u is then proved to verify: $\int_{\mathbb{R}^N} \frac{\varphi(|\zeta|^2+1)}{|\zeta|^2} d\mu(\zeta) < +\infty.$ Propositions 6.2 and 6.3 provide similar results under different L^1 conditions.

2. Some Preliminaries

Lemma 2.1. *If* N = 2*, then*

$$\int_{|\zeta| \le s} \log \frac{r}{|\zeta|} \, d\mu(\zeta) \le \int_{|\zeta| \le r} \log \frac{r}{|\zeta|} \, d\mu(\zeta)$$

for each r > 0 and each s > 0.

Proof. If $r \leq s$, then $h_r(\zeta) := \log \frac{r}{|\zeta|} \leq 0$ for $r < |\zeta| \leq s$, so that

$$\int_{|\zeta| \le s} h_r(\zeta) \, d\mu(\zeta) = \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) + \underbrace{\int_{r < |\zeta| \le s} h_r(\zeta) \, d\mu(\zeta)}_{\le 0} \le \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) = \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) + \underbrace{\int_{r < |\zeta| \le s} h_r(\zeta) \, d\mu(\zeta)}_{\le 0} \le \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) = \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) + \underbrace{\int_{r < |\zeta| \le s} h_r(\zeta) \, d\mu(\zeta)}_{\le 0} \le \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) = \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) + \underbrace{\int_{r < |\zeta| \le s} h_r(\zeta) \, d\mu(\zeta)}_{\le 0} \le \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) = \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) + \underbrace{\int_{r < |\zeta| \le s} h_r(\zeta) \, d\mu(\zeta)}_{\le 0} \le \int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) = \int_{|\zeta|$$

If s < r, then $h_r(\zeta) \ge 0$ for $|\zeta| \le r$, hence

$$\int_{|\zeta| \le r} h_r(\zeta) \, d\mu(\zeta) = \int_{|\zeta| \le s} h_r(\zeta) \, d\mu(\zeta) + \underbrace{\int_{s < |\zeta| \le r} h_r(\zeta) \, d\mu(\zeta)}_{\ge 0} \ge \int_{|\zeta| \le s} h_r(\zeta) \, d\mu(\zeta).$$

Lemma 2.2. When $N \ge 3$, the following majoration is valid for all r > 0 and s > 0:

$$\int_{|\zeta| \le s} \left(\frac{1}{|\zeta|^{N-2}} - \frac{1}{r^{N-2}} \right) \, d\mu(\zeta) \le \int_{|\zeta| \le r} \left(\frac{1}{|\zeta|^{N-2}} - \frac{1}{r^{N-2}} \right) \, d\mu(\zeta).$$

Proof. As in the previous proof, with $h_r(\zeta) = \frac{1}{|\zeta|^{N-2}} - \frac{1}{r^{N-2}}$ instead of $\log \frac{r}{|\zeta|}$.

Lemma 2.3. If N = 2, then:

$$\int_0^r \frac{\mu(t)}{t} dt = \int_{|\zeta| \le r} \log \frac{r}{|\zeta|} d\mu(\zeta),$$

for any r > 0.

Proof. It follows from Fubini's theorem that:

$$\int_0^r \frac{\mu(t)}{t} dt = \int_0^r \frac{1}{t} \left(\int_{|\zeta| \le t} d\mu(\zeta) \right) dt = \int_{|\zeta| \le r} \left(\int_{|\zeta|}^r \frac{dt}{t} \right) d\mu(\zeta) = \int_{|\zeta| \le r} \log \frac{r}{|\zeta|} d\mu(\zeta).$$

Lemma 2.4. When $N \ge 3$, then

$$(N-2)\int_0^r \frac{\mu(t)}{t^{N-1}} dt = \int_{|\zeta| \le r} \left(\frac{1}{|\zeta|^{N-2}} - \frac{1}{r^{N-2}}\right) d\mu(\zeta),$$

for any r > 0

Proof. As in the previous proof:

$$(N-2)\int_{0}^{r} \frac{\mu(t)}{t^{N-1}} dt = \int_{0}^{r} \frac{N-2}{t^{N-1}} \left(\int_{|\zeta| \le t} d\mu(\zeta) \right) dt$$

=
$$\int_{|\zeta| \le r} \left(\int_{|\zeta|}^{r} \frac{N-2}{t^{N-1}} dt \right) d\mu(\zeta)$$

=
$$\int_{|\zeta| \le r} \left[\frac{-1}{t^{N-2}} \right]_{|\zeta|}^{r} d\mu(\zeta)$$

=
$$\int_{|\zeta| \le r} \left(\frac{1}{|\zeta|^{N-2}} - \frac{1}{t^{N-2}} \right) d\mu(\zeta).$$

3. ESTIMATIONS OF THE RIESZ MEASURE

3.1. Jensen–Privalov formula. For any function u, subharmonic in \mathbb{R}^N , harmonic in some neighbourhood of the origin, the Jensen–Privalov formula (see [2, p. 44]) holds for every r > 0:

$$\frac{1}{2\pi} \int_0^{2\pi} u(r e^{i\theta}) d\theta = \int_0^r \frac{\mu(t)}{t} dt + u(0) \qquad \text{if } N = 2$$
$$\frac{1}{\sigma_N} \int_{S_N} u(rx) d\sigma_x = (N-2) \int_0^r \frac{\mu(t)}{t^{N-1}} dt + u(0) \qquad \text{if } N \ge 3$$

with S_N the unit sphere in \mathbb{R}^N , $d\sigma$ the area element on S_N and $\sigma_N = \int_{S_N} d\sigma = \frac{2\pi^{N/2}}{\Gamma(N/2)}$ (see [1, p. 29]). In all statements of both Sections 3 and 4, it will be assumed that $u \in SH(\gamma, B)$ and that its growth is indicated by (1.1).

3.2. The case N = 2.

Theorem 3.1. When N = 2, the following inequality holds for each s > 0:

$$\frac{\mu(s)}{\gamma} \log\left(\frac{\mu(s)}{Be\gamma}\right) \le A + \int_{|\zeta| \le s} \log|\zeta| \, d\mu(\zeta).$$

Proof. For each r > 0 and each s > 0, it follows from Lemmas 2.1 and 2.3 that

$$\int_{|\zeta| \le s} \log \frac{r}{|\zeta|} \, d\mu(\zeta) \le \frac{1}{2\pi} \, \int_0^{2\pi} u(r \, e^{i\theta}) \, d\theta \le A + B \, r^\gamma,$$

so that

$$\int_{|\zeta| \le s} \log \frac{1}{|\zeta|} \, d\mu(\zeta) \le A + B \, r^{\gamma} - \mu(s) \log r = A + \frac{\mu(s)}{\gamma} \left(\frac{B\gamma}{\mu(s)} \, r^{\gamma} - \log r^{\gamma} \right) := \varphi(r).$$

Consider s constant, the minimum of φ is attained when $B\gamma r^{\gamma} = \mu(s)$, since $\varphi'(r) = \frac{1}{r}(B\gamma r^{\gamma} - \mu(s))$. Finally, for each s > 0:

$$\int_{|\zeta| \le s} \log \frac{1}{|\zeta|} \, d\mu(\zeta) \le A + \frac{\mu(s)}{\gamma} \left[1 - \log\left(\frac{\mu(s)}{B\gamma}\right) \right] = A - \frac{\mu(s)}{\gamma} \log\left(\frac{\mu(s)}{Be\gamma}\right)$$

In Corollaries 3.2, 3.3 and 3.5, we set $\varepsilon > 0$ such that $\mu(s) > 0 \ \forall s > \varepsilon$. Corollary 3.2. If N = 2, then $\mu(s) \leq Be\gamma s^{\gamma} e^{\frac{A\gamma}{\mu(s)}}$ for any $s > \varepsilon$. \square

Proof. Theorem 3.1 may be rewritten as:

(3.1)
$$\log\left(\frac{\mu(s)}{Be\gamma}\right) \le \frac{A\gamma}{\mu(s)} + \int_{|\zeta| \le s} \log(|\zeta|^{\gamma}) \frac{d\mu(\zeta)}{\mu(s)}$$

The previous integral being $\leq \log s^{\gamma}$, Corollary 3.2 results.

Corollary 3.3. When N = 2, we have for every $s > \varepsilon$:

$$[\mu(s)]^2 \le Be\gamma \exp\left(\frac{A\gamma}{\mu(s)}\right) \int_{|\zeta| \le s} |\zeta|^{\gamma} d\mu(\zeta).$$

Proof. Jensen's inequality applies to (3.1) since $\int_{|\zeta| \le s} \frac{d\mu(\zeta)}{\mu(s)} = 1$, hence:

$$\frac{\mu(s)}{Be\gamma} \leq \exp\left(\frac{A\gamma}{\mu(s)}\right) \cdot \exp\left(\int_{|\zeta| \leq s} \log(|\zeta|^{\gamma}) \frac{d\mu(\zeta)}{\mu(s)}\right) \\
\leq \exp\left(\frac{A\gamma}{\mu(s)}\right) \int_{|\zeta| \leq s} |\zeta|^{\gamma} \frac{d\mu(\zeta)}{\mu(s)}.$$

3.3. The case $N \ge 3$.

Theorem 3.4. When $N \ge 3$, the following estimation is valid for each s > 0:

$$\int_{|\zeta| \le s} \frac{1}{|\zeta|^{N-2}} d\mu(\zeta) \le A + D\left[\mu(s)\right]^{\frac{\gamma}{\gamma+N-2}}$$

Proof. For all r > 0 and s > 0, Lemmas 2.2 and 2.4 lead to:

$$\int_{|\zeta| \le s} \left(\frac{1}{|\zeta|^{N-2}} - \frac{1}{r^{N-2}} \right) \, d\mu(\zeta) \le \frac{1}{\sigma_N} \, \int_{S_N} u(rx) \, d\sigma_x \le A + B \, r^{\gamma},$$

that is

$$\int_{|\zeta| \le s} \frac{1}{|\zeta|^{N-2}} d\mu(\zeta) \le A + B \, r^{\gamma} + \frac{\mu(s)}{r^{N-2}}$$

whose minimum (with *s* constant) is attained when $B\gamma r^{\gamma} = (N-2) \frac{\mu(s)}{r^{N-2}}$. In other words, this minimum is $A + \left(\frac{N-2}{\gamma} + 1\right) \frac{\mu(s)}{r^{N-2}}$ with $\frac{1}{r^{N-2}} = \left(\frac{B\gamma}{N-2} \frac{1}{\mu(s)}\right)^{\frac{N-2}{\gamma+N-2}}$. Finally: $\int_{|\zeta| \le s} \frac{1}{|\zeta|^{N-2}} d\mu(\zeta) \le A + \left(\frac{N-2}{\gamma} + 1\right) \left(\frac{B\gamma}{N-2}\right)^{\frac{N-2}{\gamma+N-2}} (\mu(s))^{\frac{\gamma}{\gamma+N-2}}.$

Corollary 3.5. When $N \ge 3$, the following estimation holds for every $s > \varepsilon$:

$$\mu(s) \leq \frac{B\gamma}{N-2} C(\gamma, N) \, s^{\gamma+N-2} \, \left(1 + \frac{A}{D \cdot [\mu(s)]^{\frac{\gamma}{\gamma+N-2}}}\right)^{\frac{\gamma+N-2}{N-2}}$$

Proof. Let $\alpha = \frac{N-2}{\gamma+N-2}$. According to Theorem 3.4, for any $s > \varepsilon$ we have

$$\frac{1}{s^{N-2}} \le \frac{1}{\mu(s)} \int_{|\zeta| \le s} \frac{1}{|\zeta|^{N-2}} d\mu(\zeta) \le \frac{A}{\mu(s)} + \frac{D}{\mu(s)^{\alpha}} = \frac{D}{\mu(s)^{\alpha}} \left(1 + \frac{A}{D} \frac{\mu(s)^{\alpha}}{\mu(s)} \right).$$

Hence

$$[\mu(s)]^{\alpha} \le D \, s^{N-2} \, \left(1 + \frac{A}{D} \, \frac{1}{[\mu(s)]^{1-\alpha}} \right)$$

5

Now, it is obvious that $1 - \alpha = \frac{\gamma}{\gamma + N - 2}$ and $D^{1/\alpha} = \frac{B\gamma}{N - 2}C(\gamma, N)$.

Corollary 3.6. With $N \ge 3$ and $\alpha = \frac{N-2}{\gamma+N-2}$, the following holds for each s > 0:

$$\mu(s) \log\left(\frac{\mu(s)^{\alpha}}{D}\right) - \frac{A}{D} \mu(s)^{\alpha} \le (N-2) \int_{|\zeta| \le s} \log|\zeta| \, d\mu(\zeta)$$

Proof. It follows from Jensen's inequality that:

$$\exp\left(\int_{|\zeta| \le s} \left(\log \frac{1}{|\zeta|^{N-2}}\right) \frac{d\mu(\zeta)}{\mu(s)}\right) \le \int_{|\zeta| \le s} \exp\left(\log \frac{1}{|\zeta|^{N-2}}\right) \frac{d\mu(\zeta)}{\mu(s)}$$
$$= \int_{|\zeta| \le s} \frac{1}{|\zeta|^{N-2}} \frac{d\mu(\zeta)}{\mu(s)}$$
$$\le \frac{A}{\mu(s)} + \frac{D}{\mu(s)^{\alpha}},$$

so that:

$$-(N-2)\int_{|\zeta| \le s} \log|\zeta| \frac{d\mu(\zeta)}{\mu(s)} \le \log\left(\frac{A}{\mu(s)} + \frac{D}{\mu(s)^{\alpha}}\right) \le \log\left(\frac{D}{\mu(s)^{\alpha}}\right) + \frac{A}{D} \frac{\mu(s)^{\alpha}}{\mu(s)}.$$

4. GROWTH OF THE REPARTITION FUNCTION

4.1. A measure on $[0, +\infty[$, image of μ . Let $\Phi : \mathbb{R}^N \to [0, +\infty[$ be the measurable map defined by $\Phi(\zeta) = \mu(|\zeta|)$ (the function $s \mapsto \mu(s)$ is increasing hence measurable on $[0, +\infty[$). Let $\nu = \Phi * \mu = \mu \circ \Phi^{-1}$ denote the measure image of μ under Φ (see [3, p. 80]):

$$\int_0^{+\infty} f(t) \, d\nu(t) = \int_{\mathbb{R}^N} f(\Phi(\zeta)) \, d\mu(\zeta)$$

holds for any nonnegative measurable function f on $[0, +\infty)$ (and for any ν -integrable f)

Remark 4.1. If $s \mapsto \mu(s)$ is continuous on some interval $[a, +\infty[$ with $a \ge 0$, then $\nu(I) = c-b$ for any interval I with bounds b and c ($c > b > \mu(a)$).

4.2. The case N = 2. Up to the end of Section 4, μ stands for the Riesz measure associated with a function of $SH(\gamma, B)$ with growth (1.1).

Theorem 4.2. If N = 2 and $A > \frac{2}{\gamma}$, then the set of those s > 0 which satisfy $\mu(s) < B\gamma s^{\gamma} e^{\frac{A\gamma}{\mu(s)}}$ is unbounded.

A proof is required only in the case where $\lim_{s\to+\infty} \mu(s) = +\infty$ (otherwise, Theorem 4.2 is obvious). When the function $s \mapsto \mu(s)$ is continuous, at least on some interval $[a, +\infty[$ with a > 0, there is a direct proof which is quoted below in Subsection 4.3. In this case, the assumption $A > \frac{2}{\gamma}$ is no longer required. The proof in the general case is the subject of Subsection 4.5.

4.3. Proof of Theorem 4.2 in the case of a continuous repartition function.

Proof. Let us suppose that the set $\left\{s > 0 : \mu(s) < B\gamma s^{\gamma} e^{\frac{A\gamma}{\mu(s)}}\right\}$ is bounded and let s_0 be one of its majorants, chosen in such a way that $s \mapsto \mu(s)$ is continuous on some neighbourhood of $[s_0, +\infty[$.

Thus $\mu(s) \ge B\gamma s^{\gamma} e^{\frac{A\gamma}{\mu(s)}}$ for all $s \ge s_0$, that is: $\log s \le \frac{1}{\gamma} \log \left(\frac{\mu(s)}{B\gamma}\right) - \frac{A}{\mu(s)}$, such that:

$$\begin{split} \int_{s_0 \le |\zeta| \le s} \log |\zeta| \, d\mu(\zeta) &\le \int_{s_0 \le |\zeta| \le s} \left(\frac{1}{\gamma} \log \left(\frac{\mu(|\zeta|)}{B\gamma} \right) - \frac{A}{\mu(|\zeta|)} \right) \, d\mu(\zeta) \\ &= \int_{\mu(s_0)}^{\mu(s)} \left(\frac{1}{\gamma} \log \left(\frac{t}{B\gamma} \right) - \frac{A}{t} \right) \, d\nu(t) \\ &= \int_{\mu(s_0)}^{\mu(s)} \left(\frac{1}{\gamma} \log \left(\frac{t}{B\gamma} \right) - \frac{A}{t} \right) \, dt \\ &= B \left[x \log \left(\frac{x}{e} \right) \right]_{\mu(s_0)/B\gamma}^{\mu(s)/B\gamma} - A \left[\log t \right]_{\mu(s_0)}^{\mu(s)} \\ &= \frac{\mu(s)}{\gamma} \log \left(\frac{\mu(s)}{Be\gamma} \right) - A \log \mu(s) + K(s_0), \end{split}$$

where $K(s_0)$ stands for $A \log \mu(s_0) - \frac{\mu(s_0)}{\gamma} \log \left(\frac{\mu(s_0)}{Be\gamma}\right)$. It follows from Theorem 3.1 that:

$$\frac{\mu(s)}{\gamma} \log\left(\frac{\mu(s)}{Be\gamma}\right) \le A + \int_{|\zeta| < s_0} \log|\zeta| \, d\mu(\zeta) + \frac{\mu(s)}{\gamma} \log\left(\frac{\mu(s)}{Be\gamma}\right) - A \, \log\mu(s) + K(s_0).$$

Finally: $A \log \mu(s) \leq A + K(s_0) + \mu(s_0) \log s_0$ for all $s \geq s_0$. When s tends to $+\infty$, a contradiction arises.

4.4. Splitting measure μ . Now, in order to prove Theorem 4.2 in the general case, we will introduce some notations which will also be useful in proving Theorem 4.5 (where $N \ge 3$). That is why these notations are already given in \mathbb{R}^N for any $N \in \mathbb{N}$, $N \ge 2$.

It is still assumed that $\lim_{s\to+\infty} \mu(s) = +\infty$. Let $(s_n)_n$ be the non-decreasing sequence defined by: $s_n = \inf\{s > 0 : \mu(s) \ge n\}$. As the function $s \mapsto \mu(s)$ is right-continuous, we have $\mu(s_n) \ge n$ for all $n \in \mathbb{N}$. If this function is continuous at some point s_n , then $\mu(s_n) = n$.

If $s_n < s_{n+1}$, then $\mu(s_n) < n+1$. There are infinitely many integers n such that $s_n < s_{n+1}$ because the measure $d\mu$ is finite on compact subsets of \mathbb{R}^N (see [1, p. 81]).

For any s > 0, let $\mu^{-}(s) = \int_{|\zeta| < s} d\mu(\zeta)$. The discontinuity points of $s \mapsto \mu(s)$ are thus characterized by $\mu(s) > \mu^{-}(s)$. For every $n \in \mathbb{N}$, let $c_n = 0$ if the function $s \mapsto \mu(s)$ is continuous at point s_n , and $c_n = \frac{\mu(s_n) - n}{\mu(s_n) - \mu^{-}(s_n)}$ if this function is discontinuous at s_n . Note that $1 - c_n = \frac{n - \mu^{-}(s_n)}{\mu(s_n) - \mu^{-}(s_n)}$ in case of discontinuity at s_n .

For all 0 < t < s, let I_t and $I_{t,s}$ be defined in \mathbb{R}^N by:

$$I_t(\zeta) = \begin{cases} 1 \text{ if } |\zeta| = t \\ 0 \text{ otherwise} \end{cases} \qquad I_{t,s}(\zeta) = \begin{cases} 1 \text{ if } t < |\zeta| < s \\ 0 \text{ otherwise} \end{cases}$$

Let us write $\mu = \mu_1 + \mu_2 + \cdots + \mu_n + \cdots$, where measures μ_k are defined such that

$$\int_{\mathbb{R}^N} d\mu_k(\zeta) = \int_{s_{k-1} \le |\zeta| \le s_k} d\mu_k(\zeta) = 1$$

in the following way:

$$d\mu_k = \left(c_{k-1} I_{s_{k-1}} + I_{s_{k-1}, s_k} + (1 - c_k) I_{s_k}\right) d\mu \qquad \text{if } s_{k-1} < s_k$$
$$d\mu_k = \frac{1}{\mu(s_k) - \mu^-(s_k)} I_{s_k} d\mu \qquad \text{if } s_{k-1} = s_k.$$

Remark 4.3. If $s_{k-1} < s_k = s_{k+1} = \cdots = s_{k+l} < s_{k+l+1}$, then $\mu^-(s_k) \le k < k+l \le \mu(s_k)$ and it is easy to check that

$$(1-c_k) I_{s_k} + \sum_{j=k+1}^{k+l} \frac{1}{\mu(s_j) - \mu^-(s_j)} I_{s_j} + c_{k+l} I_{s_{k+l}} = I_{s_k}.$$

In addition, notice that $\sum_{k=1}^{n} \mu_k(s) = \min[n, \mu(s)]$ and that, for any integrable function $h \ge 0$:

$$\int_{|\zeta| \le s_n} h(\zeta) \, d\mu \ge \sum_{k=1}^n \int h(\zeta) \, d\mu_k$$
$$\int_{|\zeta| \le s_n} h(\zeta) \, d\mu \le \sum_{k=1}^{n+1} \int h(\zeta) \, d\mu_k \qquad \text{if } s_n < s_{n+1}$$

4.5. A reformulation of Theorem 4.2.

Proposition 4.4. If N = 2 and $A > \frac{2}{\gamma}$, then $n < B\gamma(s_n)^{\gamma}e^{\frac{A\gamma}{n}}$ for infinitely many $n \in \mathbb{N}^*$.

Proof. Suppose that there exists some integer $m \in \mathbb{N}^*$ such that $n \geq B\gamma(s_n)^{\gamma}e^{\frac{A\gamma}{n}}$ for each $n \geq m$. It may be assumed that $s_m > s_{m-1} \geq 1$. For any $n \geq m$ satisfying $s_n < s_{n+1}$, we have:

$$\int_{s_m \le |\zeta| \le s_n} \log |\zeta| \, d\mu(\zeta) \le \sum_{k=m}^{n+1} \int \log |\zeta| \, d\mu_k(\zeta)$$

$$\le \sum_{k=m}^{n+1} \log s_k$$

$$\le \sum_{k=m}^{n+1} \left(\frac{1}{\gamma} \log \left(\frac{k}{B\gamma}\right) - \frac{A}{k}\right)$$

$$\le \int_m^{n+2} \left(\frac{1}{\gamma} \log \left(\frac{t}{B\gamma}\right) - \frac{A}{t}\right) dt$$

$$= \frac{n+2}{\gamma} \log \left(\frac{n+2}{Be\gamma}\right) - A \log(n+2) + K_m$$

with a constant K_m independent from n. Since $\mu(s_n) \ge n$, Theorem 3.1 leads to:

$$\frac{n}{\gamma} \log\left(\frac{n}{Be\gamma}\right) \le A + (\log s_m)\mu(s_m) + \frac{n+2}{\gamma} \log\left(\frac{n+2}{Be\gamma}\right) - A \log(n+2) + K_m$$

hence

$$\left(A - \frac{2}{\gamma}\right)\log(n+2) \le A + \underbrace{\frac{n}{\gamma}\log\left(\frac{n+2}{n}\right)}_{\le \frac{2}{\gamma}} - \frac{2}{\gamma}\log(Be\gamma) + K_m + (\log s_m)\mu(s_m)$$

The contradiction stems from the fact that there exists infinitely many n > m with $s_n < s_{n+1}$.

Proof of Theorem 4.2 in the general case. Obviously, function $s \mapsto B\gamma s^{\gamma}$ is increasing. Thus, for any n such that $n e^{-\frac{A\gamma}{n}} < B\gamma(s_n)^{\gamma}$, there exists an open non-empty interval J_n (with upper bound s_n) such that $n e^{-\frac{A\gamma}{n}} < B\gamma s^{\gamma} < B\gamma(s_n)^{\gamma} \forall s \in J_n$. Moreover $\mu(s) e^{-\frac{A\gamma}{\mu(s)}} < n e^{-\frac{A\gamma}{n}} \forall s \in J_n$ (because $\mu(s) < n$ for every $s < s_n$). Hence Theorem 4.2.

4.6. The case $N \ge 3$.

Theorem 4.5. When $N \ge 3$, the set of those s > 0 such that

(4.1)
$$\mu(s) < \frac{B\gamma}{N-2} s^{\gamma+N-2} \left(1 + \frac{A}{D \cdot [\mu(s)]^{\frac{\gamma}{\gamma+N-2}}}\right)^{\frac{\gamma+N-2}{N-2}}$$

is unbounded.

Inequalities (4.1) and (4.2) are equivalent, with

(4.2)
$$\frac{1}{s^{N-2}} < \frac{\gamma}{\gamma+N-2} \left(\frac{A}{\mu(s)} + \frac{D}{\mu(s)^{\alpha}}\right)$$

and $\alpha = \frac{N-2}{\gamma+N-2}$ as in Section 3.3. Indeed, (4.2) may be rewritten

$$\mu(s)^{\alpha} < s^{N-2} \frac{\gamma D}{\gamma + N - 2} \left(1 + \frac{A}{D[\mu(s)]^{1-\alpha}} \right).$$

Now $\frac{\gamma D}{\gamma + N - 2} = \left(\frac{B\gamma}{N - 2}\right)^{\alpha}$ so that formula (4.1) arises.

To prove Theorem 4.5, we can still assume $\lim_{s\to+\infty} \mu(s) = +\infty$. The case where function $s \mapsto \mu(s)$ is continuous (at least on some interval $[a, +\infty)$ with a > 0) is proved in Subsection 4.7 and the general case is proved in Subsection 4.8.

4.7. Proof of Theorem 4.5 in the case of a continuous repartition function.

Proof. Let us assume that there exists some $s_0 > 0$ such that $s \mapsto \mu(s)$ is continuous on some neighbourhood of $[s_0, +\infty[$ and that

$$\begin{split} \frac{1}{s^{N-2}} &\geq \frac{\gamma}{\gamma+N-2} \left(\frac{A}{\mu(s)} + \frac{D}{\mu(s)^{\alpha}} \right) \text{ for all } s \geq s_0. \text{ It follows that:} \\ &\int_{|\zeta| \leq s} \frac{d\mu(\zeta)}{|\zeta|^{N-2}} \geq \int_{s_0 \leq |\zeta| \leq s} \frac{d\mu(\zeta)}{|\zeta|^{N-2}} \\ &\geq \frac{\gamma}{\gamma+N-2} \int_{s_0 \leq |\zeta| \leq s} \left(\frac{A}{\mu(|\zeta|)} + \frac{D}{\mu(|\zeta|)^{\alpha}} \right) d\mu(\zeta) \\ &= \frac{\gamma}{\gamma+N-2} \int_{\mu(s_0)}^{\mu(s)} \left(\frac{A}{t} + \frac{D}{t^{\alpha}} \right) d\nu(t) \\ &= \frac{\gamma}{\gamma+N-2} \int_{\mu(s_0)}^{\mu(s)} \left(\frac{A}{t} + \frac{D}{t^{\alpha}} \right) dt \\ &= \frac{\gamma}{\gamma+N-2} \left[A \log t + \frac{D}{1-\alpha} t^{1-\alpha} \right]_{\mu(s_0)}^{\mu(s)} \\ &= \frac{A\gamma \log \mu(s)}{\gamma+N-2} + D \, \mu(s)^{1-\alpha} - K'(s_0), \end{split}$$

with

$$K'(s_0) = \frac{A\gamma}{\gamma + N - 2} \log \mu(s_0) + D \,\mu(s_0)^{1 - \alpha}$$

The majoration of $\int_{|\zeta| \le s} \frac{1}{|\zeta|^{N-2}} d\mu(\zeta)$ (Theorem 3.4) leads, after cancellation of $D \mu(s)^{1-\alpha} = D \mu(s)^{\frac{\gamma}{\gamma+N-2}}$, to: $\frac{A\gamma \log \mu(s)}{\gamma+N-2} \le A + K'(s_0)$ for any $s \ge s_0$. A contradiction arises as $s \to +\infty$.

4.8. A reformulation of Theorem 4.5.

Proposition 4.6. With $N \ge 3$ and $\alpha = \frac{N-2}{\gamma+N-2}$, infinitely many $n \in \mathbb{N}^*$ satisfy:

(4.3)
$$\frac{1}{s_n^{N-2}} < \frac{\gamma}{\gamma + N - 2} \left(\frac{A}{n} + \frac{D}{n^{\alpha}}\right).$$

Proof. Suppose that there exists some $m \in \mathbb{N}$ such that $\frac{1}{s_n^{N-2}} \ge \frac{\gamma}{\gamma+N-2} \left(\frac{A}{n} + \frac{D}{n^{\alpha}}\right) \forall n > m$. It then follows for all n > m:

$$\int_{s_m \le |\zeta| \le s_n} \frac{1}{|\zeta|^{N-2}} d\mu(\zeta) \ge \sum_{k=m+1}^n \int \frac{1}{|\zeta|^{N-2}} d\mu_k(\zeta)$$

$$\ge \sum_{k=m+1}^n \frac{1}{s_k^{N-2}}$$

$$\ge \frac{\gamma}{\gamma+N-2} \sum_{k=m+1}^n \left(\frac{A}{k} + \frac{D}{k^{\alpha}}\right)$$

$$\ge \frac{\gamma}{\gamma+N-2} \int_{m+1}^{n+1} \left(\frac{A}{t} + \frac{D}{t^{\alpha}}\right) dt$$

$$= \frac{\gamma A \log(n+1)}{\gamma+N-2} + D(n+1)^{1-\alpha} - K'_n$$

where the constant K'_m does not depend on n. For those n > m such that $s_n < s_{n+1}$ we have $\mu(s_n) < n+1$ and Theorem 3.4 provides us with:

$$\int_{s_m \le |\zeta| \le s_n} \frac{1}{|\zeta|^{N-2}} \, d\mu(\zeta) \le \int_{|\zeta| \le s_n} \frac{1}{|\zeta|^{N-2}} \, d\mu(\zeta) \le A + D(n+1)^{1-\alpha}$$

hence $\frac{\gamma A \log(n+1)}{\gamma + N - 2} \leq A + K'_m$. A contradiction arises as $n \to +\infty$.

Proof of Theorem 4.5 in the general case. Since the function $s \mapsto \frac{1}{s^{N-2}}$ is decreasing, for each $n \in \mathbb{N}^*$ satisfying (4.3) there exists an open interval $J_n \neq \emptyset$ (with right bound s_n) where

$$\frac{1}{s_n^{N-2}} < \frac{1}{s^{N-2}} < \frac{\gamma}{\gamma+N-2} \left(\frac{A}{n} + \frac{D}{n^{\alpha}}\right) \quad (\forall s \in J_n).$$

Now, $\mu(s) < n$ for each $s < s_n$, so that $\frac{A}{n} + \frac{D}{n^{\alpha}} < \frac{A}{\mu(s)} + \frac{D}{\mu(s)^{\alpha}}$. Hence $\frac{1}{s^{N-2}} < \frac{\gamma}{\gamma+N-2} \left(\frac{A}{\mu(s)} + \frac{D}{\mu(s)^{\alpha}} \right)$ $\forall s \in J_n$ and Theorem 4.5 follows.

5. SUM OF TWO RIESZ MEASURES

Lemma 5.1. Given $\gamma > 0$, B > 0 and $\varepsilon \in]0, 1[$, let u_{ε} be defined in \mathbb{R}^N by :

 $u_{\varepsilon}(x) = \max\{0, \varphi_{\varepsilon}(|x|)\} \qquad \forall x \in \mathbb{R}^{N}$

with $\varphi_{\varepsilon}(r) = B r^{\gamma} - B \varepsilon^{\gamma} \forall r \ge 0$. Then $u_{\varepsilon} \in SH(\gamma, B)$. Let μ_{ε} denote its Riesz measure, then: $\mu_{\varepsilon}(s) = \frac{B\gamma}{\tau_N} s^{\gamma+N-2} + k_{\varepsilon} \forall s \ge 1$, where $\tau_N = \max(1, N-2)$ and k_{ε} is a constant depending only on B, γ , N and ε .

Proof. Subharmonicity of $u_{\varepsilon} = \max(u_1, u_2)$ will follow (see [1, p. 41]) from the subharmonicity of both functions u_1 and u_2 defined in \mathbb{R}^N by $u_1(x) = \varphi_{\varepsilon}(|x|)$ and $u_2(x) \equiv 0$: it is easy to verify that $\Delta u_1(x) = \varphi_{\varepsilon}''(r) + \frac{N-1}{r}\varphi_{\varepsilon}'(r) = B\gamma r^{\gamma-2}(\gamma + N - 2) \ge 0$ (see [1, p. 26]). Obviously, u_{ε} has a growth of the kind (1.1), $u_{\varepsilon}(0) = 0$ and u_{ε} is harmonic in the neighbourhood $\{x \in \mathbb{R}^N : |x| < \varepsilon\}$ of the origin. \Box Let $\theta_N = (N-2)\sigma_N$ when $N \ge 3$ and $\theta_2 = 2\pi$ (see [2, p. 43]), since $d\mu_{\varepsilon} = \frac{1}{\theta_N}\Delta u_{\varepsilon} dx = \frac{1}{\theta_N}\Delta u_{\varepsilon} r^{N-1} dr d\sigma$, it is possible for all $s \ge 1$ to compute

$$\mu_{\varepsilon}(s) = \mu_{\varepsilon}(1) + \int_{1}^{s} \frac{\sigma_{N}}{\theta_{N}} B\gamma(\gamma + N - 2) r^{\gamma + N - 3} dr = \mu_{\varepsilon}(1) + \frac{1}{\tau_{N}} B\gamma \left[r^{\gamma + N - 2} \right]_{1}^{s}$$

Proposition 5.2. Given $\gamma > 0$, B > 0 and 0 < B' < 2B, let μ_1 and μ_2 be the Riesz measures of two functions, respectively u_1 and u_2 , belonging to $SH(\gamma, B)$. Then $\mu_1 + \mu_2$ is not necessarily the Riesz measure associated with a function of $SH(\gamma, B')$.

Proof. Given ε_1 and $\varepsilon_2 \in]0, 1[$, let u_{ε_1} and $u_{\varepsilon_2} \in SH(\gamma, B)$ be defined as in the previous lemma and $\mu = \mu_{\varepsilon_1} + \mu_{\varepsilon_2}$ be the sum of their Riesz measures. Thus $\mu(s) = \frac{2B\gamma}{\tau_N}s^{\gamma+N-2} + k_{\varepsilon_1} + k_{\varepsilon_2}$ $\forall s \ge 1$. Note that $\lim_{s \to +\infty} \frac{\mu(s)}{s^{\gamma+N-2}} = \frac{2B\gamma}{\tau_N}$.

Suppose that μ is the Riesz measure of some function $u \in SH(\gamma, B')$ with an estimate such as: $u(x) \leq A + B'|x|^{\gamma}$ ($\forall x \in \mathbb{R}^N$) for some constant $A \in \mathbb{R}$. In Theorems 4.2 and 4.5, one asserts that $\liminf_{s \to +\infty} \frac{\mu(s)}{s^{\gamma+N-2}} \leq \frac{B'\gamma}{\tau_N}$, which leads to $2B \leq B'$, hence a contradiction.

6. SUBHARMONIC FUNCTIONS SUBJECT TO CONDITIONS OF L^1 Type

6.1. A weighted integral condition for subharmonic functions.

Theorem 6.1. Given $N \in \mathbb{N}$ $(N \ge 2)$ and a positive non-increasing C^1 function φ on $[0, +\infty[$ such that $\lim_{s\to+\infty} (\log s)\varphi(s) = 0$ (when N = 2) or $\lim_{s\to+\infty} s^{\frac{N}{2}-1}\varphi(s) = 0$ (when $N \ge 3$), let u be a subharmonic function in \mathbb{R}^N , harmonic in some neighbourhood of the origin with u(0) = 0, such that:

$$\int_{\mathbb{R}^N} u^+(x) \left[-\varphi'(|x|^2)\right] dx < +\infty$$

where the subharmonic function u^+ is defined by $u^+(x) = \max(u(x), 0) \ \forall x \in \mathbb{R}^N$. Then the Riesz measure μ of u verifies:

$$\int_{\mathbb{R}^N} \frac{\varphi(|\zeta|^2 + 1)}{|\zeta|^2} \, d\mu(\zeta) < +\infty.$$

Example 6.1. With $N \ge 2$, $\beta > 0$ and φ defined by $\varphi(s) = e^{-\beta s} \forall s > 0$, obviously

$$\lim_{s \to +\infty} (\log s)\varphi(s) = \lim_{s \to +\infty} s^{\frac{N}{2}-1}\varphi(s) = 0.$$

If a subharmonic function u in \mathbb{R}^N (harmonic in some neighbourhood of the origin, with u(0) = 0) satisfies $\int_{\mathbb{R}^N} u^+(x) e^{-\beta |x|^2} dx < +\infty$ then its Riesz measure μ verifies $\int_{\mathbb{R}^N} \frac{e^{-\beta |\zeta|^2}}{|\zeta|^2} d\mu(\zeta) < +\infty$. One thus encounters a result of [4, p. 88] for holomorphic functions in \mathbb{C} .

6.2. Proof of Theorem 6.1 in the case N = 2.

Proof. Abiding by Jensen's formula (Subsection 3.1) and by Lemma 2.3:

$$\int_{|\zeta| \le r} \log \frac{r}{|\zeta|} d\mu(\zeta) \le \frac{1}{2\pi} \int_0^{2\pi} u^+(r e^{i\theta}) d\theta \qquad \forall r > 0.$$

Since $-\varphi'(r^2) \ge 0$, it follows that:

$$\int_0^{+\infty} \left(\int_{|\zeta| \le r} \log \frac{r}{|\zeta|} \, d\mu(\zeta) \right) \, \left[-\varphi'(r^2) \right] r \, dr \, < +\infty.$$

Fubini's theorem transforms the above integral into:

$$\int_{\mathbb{R}^2} \underbrace{\left(\int_{|\zeta|}^{+\infty} \log \frac{r}{|\zeta|} \left[-\varphi'(r^2) \right] r \, dr \right)}_{:=I(\zeta) \ge 0} d\mu(\zeta).$$

Now,

$$I(\zeta) = \frac{1}{4} \int_{|\zeta|^2}^{+\infty} \log \frac{s}{|\zeta|^2} [-\varphi'(s)] \, ds$$

for any $\zeta \in \mathbb{R}^2$ and an integration by parts leads to: $4I(\zeta) = \int_{|\zeta|^2}^{+\infty} \frac{\varphi(s)}{s} ds$ since $\lim_{s \to +\infty} (\log s) \varphi(s) = 0$ and $\lim_{s \to +\infty} \varphi(s) = 0$ as well. The positive function $f: s \mapsto \frac{\varphi(s)}{s}$ decreases for s > 0 so that $\int_{b}^{+\infty} f(s) ds \ge f(b+1)$ for all b > 0, hence: $4I(\zeta) \ge \frac{\varphi(|\zeta|^2+1)}{|\zeta|^2+1}$ for all $\zeta \in \mathbb{R}^2$. If $|\zeta| \ge 1$, then $\frac{1}{|\zeta|^2+1} \ge \frac{1}{2|\zeta|^2}$ and $8I(\zeta) \ge \frac{\varphi(|\zeta|^2+1)}{|\zeta|^2} \ge 0$. Because of the harmonicity of u in a neighbourhood of the origin, $\int_{|\zeta|<1} \frac{\varphi(|\zeta|^2+1)}{|\zeta|^2} d\mu(\zeta) < +\infty$. The conclusion follows from $\int_{|\zeta|\ge1} I(\zeta) d\mu(\zeta) < +\infty$.

6.3. Proof of Theorem 6.1 in the case $N \ge 3$.

Proof. Jensen-Privalov formula together with Lemma 2.4 lead to:

$$\int_{|\zeta| \le r} \left(\frac{1}{|\zeta|^{N-2}} - \frac{1}{r^{N-2}} \right) d\mu(\zeta) \le \frac{1}{\sigma_N} \int_{S_N} u(rx) d\sigma_x \quad \forall r > 0.$$

Hence:

$$\int_0^{+\infty} \left(\int_{|\zeta| \le r} \left(\frac{1}{|\zeta|^{N-2}} - \frac{1}{r^{N-2}} \right) \, d\mu(\zeta) \right) \, \left[-\varphi'(r^2) \right] r^{N-1} \, dr \, < +\infty.$$

Taking Fubini's theorem into account, this integral becomes:

$$\int_{\mathbb{R}^N} \underbrace{\left(\int_{|\zeta|}^{+\infty} \left(\frac{1}{|\zeta|^{N-2}} - \frac{1}{r^{N-2}} \right) \left[-\varphi'(r^2) \right] r^{N-1} dr \right)}_{:=J(\zeta)} d\mu(\zeta).$$

Now, for any $\zeta \in \mathbb{R}^N$:

$$0 \le J(\zeta) = \int_{|\zeta|}^{+\infty} \left(\frac{r^{N-2}}{|\zeta|^{N-2}} - 1\right) \left[-\varphi'(r^2)\right] r \, dr = \frac{1}{2} \int_{|\zeta|^2}^{+\infty} \left(\frac{s^{\frac{N}{2}-1}}{|\zeta|^{N-2}} - 1\right) \left[-\varphi'(s)\right] ds.$$

Since $\lim_{s\to+\infty} \left(s^{\frac{N}{2}-1} - |\zeta|^{N-2}\right) \varphi(s) = 0$, an integration by parts leads to:

$$2 J(\zeta) = \frac{N-2}{2} \int_{|\zeta|^2}^{+\infty} \frac{s^{\frac{N}{2}-2}}{|\zeta|^{N-2}} \varphi(s) \, ds.$$

Obviously, $s^{\frac{N}{2}-2} \ge |\zeta|^{N-4}$ for all $s \ge |\zeta|^2$, so that:

$$\frac{4}{N-2}J(\zeta) \ge \frac{1}{|\zeta|^2} \int_{|\zeta|^2}^{+\infty} \varphi(s) \, ds \ge \frac{\varphi(|\zeta|^2+1)}{|\zeta|^2} \ge 0$$

Propositions 6.2 and 6.3 will be proved by using the same method.

Proposition 6.2. Let φ be a positive C^1 non-increasing function on $[0, +\infty]$ such that $\lim_{r\to+\infty} r \varphi(r) \log r = 0$. If a subharmonic function u in \mathbb{R}^2 (harmonic in some neighbourhood of the origin with u(0) = 0 verifies:

$$\int_{\mathbb{R}^2} u^+(x) \left[-\varphi'(|x|)\right] dx < +\infty$$

then its Riesz measure μ satisfies: $\int_{\mathbb{R}^2} \varphi(|\zeta|+1) d\mu(\zeta) < +\infty$ and

$$\int_{|\zeta| \ge 1} \varphi(|\zeta|^{\alpha} + 1) \, \log |\zeta| \, d\mu(\zeta) < +\infty$$

holds for each $\alpha > 1$ *.*

Proof. As in Section 6.2: $\int_{\mathbb{R}^2} I(\zeta) d\mu(\zeta) < +\infty$, here with

$$I(\zeta) = \int_{|\zeta|}^{+\infty} r \, \log \frac{r}{|\zeta|} \left[-\varphi'(r) \right] dr$$

which turns into $I(\zeta) = \int_{|\zeta|}^{+\infty} \varphi(r) \log \frac{er}{|\zeta|} dr$ after an integration by parts which uses $\lim_{r \to +\infty} r \varphi(r) \log r = 0 \text{ (this garantees that } \lim_{r \to +\infty} r \varphi(r) = 0 \text{ as well). Since } \varphi \text{ is non-increasing and } \log \frac{er}{|\zeta|} \ge 1 \text{ for each } r \ge |\zeta|, \text{ it follows that } I(\zeta) \ge \varphi(|\zeta| + 1) \forall \zeta \in \mathbb{R}^2.$

Given $\alpha > 1$, obviously $|\zeta|^{\alpha} \ge |\zeta|$ as soon as $|\zeta| \ge 1$, so that

$$I(\zeta) \ge \int_{|\zeta|^{\alpha}}^{+\infty} \varphi(r) \log \frac{er}{|\zeta|} dr \ge (\alpha - 1) \int_{|\zeta|^{\alpha}}^{+\infty} \varphi(r) \log |\zeta| dr \ge (\alpha - 1)\varphi(|\zeta|^{\alpha} + 1) \log |\zeta| \ge 0.$$

The conclusion proceeds from $\int_{|\zeta|^{\alpha}} I(\zeta) d\mu(\zeta) < +\infty.$

The conclusion proceeds from $\int_{|\zeta|>1} I(\zeta) d\mu(\zeta) < +\infty$.

Proposition 6.3. Given $N \in \mathbb{N}$, $N \geq 3$, let φ be a positive non-increasing C^1 function in $[0, +\infty[$ such that $\lim_{r\to+\infty} r^{N-1}\varphi(r) = 0$. If a subharmonic function u in \mathbb{R}^N (harmonic in some neighbourhood of the origin with u(0) = 0) verifies:

$$\int_{\mathbb{R}^N} u^+(x) \left[-\varphi'(|x|)\right] dx < +\infty$$

then its Riesz measure μ satisfies

$$\int_{\mathbb{R}^N} \varphi(|\zeta|^{\alpha} + 1) \, |\zeta|^{(\alpha - 1)(N - 2)} \, d\mu(\zeta) < +\infty$$

for any $\alpha \geq 1$.

Remark 6.4. When $\alpha = 1$, we encounter $\int_{\mathbb{R}^N} \varphi(|\zeta| + 1) d\mu(\zeta) < +\infty$ again.

Proof. As in Section 6.3: $\int_{\mathbb{R}^N} J(\zeta) d\mu(\zeta) < +\infty$, here with

$$J(\zeta) = \int_{|\zeta|}^{+\infty} \left(\frac{r^{N-1}}{|\zeta|^{N-2}} - r \right) \left[-\varphi'(r) \right] dr = \int_{|\zeta|}^{+\infty} \left((N-1) \frac{r^{N-2}}{|\zeta|^{N-2}} - 1 \right) \varphi(r) dr$$

after an integration by parts. Obviously, $\frac{r^{N-2}}{|\zeta|^{N-2}} \ge 1$ for every $r \ge |\zeta|$, so that:

$$(N-1)\frac{r^{N-2}}{|\zeta|^{N-2}} - 1 \ge (N-2)\frac{r^{N-2}}{|\zeta|^{N-2}}$$

and

$$J(\zeta) \ge (N-2) \int_{|\zeta|}^{+\infty} \frac{r^{N-2}}{|\zeta|^{N-2}} \varphi(r) \, dr \qquad \forall \zeta \in \mathbb{R}^N$$

If $|\zeta| \ge 1$, then $|\zeta|^{\alpha} \ge |\zeta|$ since $\alpha \ge 1$, hence

$$J(\zeta) \geq (N-2) \int_{|\zeta|^{\alpha}}^{+\infty} \frac{r^{N-2}}{|\zeta|^{N-2}} \varphi(r) dr$$

$$\geq (N-2) |\zeta|^{(\alpha-1)(N-2)} \int_{|\zeta|^{\alpha}}^{+\infty} \varphi(r) dr$$

$$\geq (N-2) |\zeta|^{(\alpha-1)(N-2)} \varphi(|\zeta|^{\alpha} + 1).$$

REFERENCES

- [1] W.K. HAYMAN AND P.B. KENNEDY, Subharmonic functions. Vol. I, London Mathematical Society Monographs, No. 9. Academic Press, London–New York, 1976.
- [2] L.I. RONKIN, Functions of completely regular growth, *Mathematics and its Applications* (Soviet Series), **81**. Kluwer Academic Publishers' Group, Dordrecht, 1992.
- [3] D.W. STROOCK, A Concise Introduction to the Theory of Integration, Third edition, Birkhäuser Boston, Inc., Boston, MA, 1999.
- [4] K.H. ZHU, Zeros of functions in Fock spaces, *Complex Variables, Theory Appl.*, **21**(1–2) (1993), 87–98.