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Abstract

For subharmonic functions u in RN , of Riesz measure µ, the growth of the
function s 7→ µ(s) =

∫
|ζ|≤s dµ(ζ) (s ≥ 0) is described and compared with the

growth of u. It is also shown that, if
∫

RN u+(x) [−ϕ′(|x|2)] dx < +∞ for some
decreasing C1 function ϕ ≥ 0, then

∫
RN

1
|ζ|2 ϕ(|ζ|2 + 1) dµ(ζ) < +∞. Given two

subharmonic functions u1 and u2, of Riesz measures µ1 and µ2, with a growth
like ui(x) ≤ A + B|x|γ ∀x ∈ RN (i = 1, 2), it is proved that µ1 + µ2 is not
necessarily the Riesz measure of a subharmonic function u with such a growth
as u(x) ≤ A′ + B′|x|γ ∀x ∈ RN (here A > 0, A′ > 0 and 0 < B′ < 2B).

2000 Mathematics Subject Classification: 31A05, 31B05, 26D15, 28A75.
Key words: Subharmonic functions, order of growth, Riesz measure.
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1. Introduction
Let µ be the Riesz measure of some subharmonic functionu in RN (N ∈ N,
N ≥ 2 andu non identically−∞, see [1, p. 104]) andµ(s) =

∫
|ζ|≤s

dµ(ζ)

for any s ≥ 0 (where| · | denotes the Euclidean norm inRN ). The function
s 7→ µ(s) is non–decreasing sinceµ is a positive measure. The order of the
functions 7→ s2−Nµ(s) is known to coincide with the convergence exponent of
µ:

inf

{
c :

∫ +∞

1

s2−N−c dµ(s)

}
= inf

{
c :

∫ +∞

1

s1−N−c µ(s) ds

}
(see [2, p. 66]) and does not exceedγ if u has a growth of the kind:

(1.1) u(x) ≤ A + B|x|γ ∀x ∈ RN

(with constantsA ∈ R, B > 0 andγ > 0). This estimation of the growth of
µ(s) will be examined below, in Sections3 and4.

Definition 1.1. Givenγ > 0 andB > 0, let SH(γ, B) stand for the set of all
subharmonic functionsu in RN which are harmonic in some neighbourhood
of the origin withu(0) = 0 and which satisfy estimate (1.1) for some constant
A ∈ R.

In Proposition5.2 (see Section5), a counterexample is produced to show
that, givenu1 andu2 two functions in this setSH(γ, B) andB′ ∈ ]0, 2B[, the
sum of their respective Riesz measuresµ1 andµ2 is not necessarily the Riesz
measure of a function ofSH(γ, B′).

Of courseµ1+µ2 is the Riesz measure associated withu1+u2 ∈ SH(γ, 2B),
butµ1 +µ2 is also the Riesz measure ofu1 +u2−h for any harmonic functionh
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in RN . This proposition means that there does not necessarily exist a harmonic
functionh such thatu1 + u2 − h ∈ SH(γ, B′).

Let µ denote the Riesz measure of some function ofSH(γ, B) with growth
(1.1). Sections3 and4 are devoted to the growth of the repartition functions 7→
µ(s). For instance, whenN = 2, we obtain the inequality:µ(s) ≤ Beγ sγ e

Aγ
µ(s)

(see Theorem3.1and Corollary3.2).

Notation . WhenN ≥ 3, throughout the paper we setC(γ, N) =
(

γ+N−2
γ

) γ+N−2
N−2

andD(B, γ, N) = γ+N−2
γ

(
Bγ

N−2

) N−2
γ+N−2 , sometimes written merelyD for brevity.

Note that

γ

N − 2
C(γ, N) =

γ

N − 2

(
γ + N − 2

γ

) γ+N−2
N−2

=
γ + N − 2

N − 2

(
1 +

N − 2

γ

) γ
N−2

≤ e
γ + N − 2

N − 2
.

For N ≥ 3, we also obtain inequalities describing the growth ofs 7→ µ(s)
and the constants involved in these estimations are given explicitely in terms of
A, B andγ. For example:

µ(s) ≤ Bγ

N − 2
C(γ, N) sγ+N−2

(
1+

A

D · [µ(s)]
γ

γ+N−2

) γ+N−2
N−2
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(see Theorem3.4and Corollary3.5).
It points out thatlim sups→+∞

µ(s)
sγ+N−2 is not greater thanBeγ (whenN = 2)

or Bγ
N−2

C(γ, N) (whenN ≥ 3). Moreover,lim infs→+∞
µ(s)

sγ+N−2 does not exceed
Bγ (if N = 2) or Bγ

N−2
(if N ≥ 3). This will follow from Theorems4.1and4.3

which assert that the sets:{
s : µ(s) < Bγ sγ e

Aγ
µ(s)

}

and

s : µ(s) <
Bγ

N − 2
sγ+N−2

(
1 +

A

D · [µ(s)]
γ

γ+N−2

) γ+N−2
N−2


are unbounded in the cases whenN = 2 andN ≥ 3 respectively.

The last section studies subharmonic functionsu in RN (harmonic in some
neighbourhood of the origin withu(0) = 0) such that the subharmonic function
u+ (defined byu+(x) = max(u(x), 0) ∀x ∈ RN ) satisfies aL1 condition, for
example in Theorem6.1:∫

RN u+(x) [−ϕ′(|x|2)] dx < +∞ (see Section6.1 for more details on the de-
creasing functionϕ). The Riesz measureµ of u is then proved to verify:∫

RN

ϕ(|ζ|2+1)
|ζ|2 dµ(ζ) < +∞. Propositions6.2and6.3provide similar results un-

der differentL1 conditions.
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2. Some Preliminaries
Lemma 2.1. If N = 2, then∫

|ζ|≤s

log
r

|ζ|
dµ(ζ) ≤

∫
|ζ|≤r

log
r

|ζ|
dµ(ζ)

for eachr > 0 and eachs > 0.

Proof. If r ≤ s, thenhr(ζ) := log r
|ζ| ≤ 0 for r < |ζ| ≤ s, so that∫

|ζ|≤s

hr(ζ) dµ(ζ) =

∫
|ζ|≤r

hr(ζ) dµ(ζ)+

∫
r<|ζ|≤s

hr(ζ) dµ(ζ)︸ ︷︷ ︸
≤0

≤
∫
|ζ|≤r

hr(ζ) dµ(ζ).

If s < r, thenhr(ζ) ≥ 0 for |ζ| ≤ r, hence∫
|ζ|≤r

hr(ζ) dµ(ζ) =

∫
|ζ|≤s

hr(ζ) dµ(ζ)+

∫
s<|ζ|≤r

hr(ζ) dµ(ζ)︸ ︷︷ ︸
≥0

≥
∫
|ζ|≤s

hr(ζ) dµ(ζ).

Lemma 2.2. WhenN ≥ 3, the following majoration is valid for allr > 0 and
s > 0:∫

|ζ|≤s

(
1

|ζ|N−2
− 1

rN−2

)
dµ(ζ) ≤

∫
|ζ|≤r

(
1

|ζ|N−2
− 1

rN−2

)
dµ(ζ).
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Proof. As in the previous proof, withhr(ζ) = 1
|ζ|N−2 − 1

rN−2 instead oflog r
|ζ| .

Lemma 2.3. If N = 2, then:∫ r

0

µ(t)

t
dt =

∫
|ζ|≤r

log
r

|ζ|
dµ(ζ),

for anyr > 0.

Proof. It follows from Fubini’s theorem that:∫ r

0

µ(t)

t
dt =

∫ r

0

1

t

(∫
|ζ|≤t

dµ(ζ)

)
dt

=

∫
|ζ|≤r

(∫ r

|ζ|

dt

t

)
dµ(ζ)

=

∫
|ζ|≤r

log
r

|ζ|
dµ(ζ).

Lemma 2.4. WhenN ≥ 3, then

(N − 2)

∫ r

0

µ(t)

tN−1
dt =

∫
|ζ|≤r

(
1

|ζ|N−2
− 1

rN−2

)
dµ(ζ),

for anyr > 0
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Proof. As in the previous proof:

(N − 2)

∫ r

0

µ(t)

tN−1
dt =

∫ r

0

N−2

tN−1

(∫
|ζ|≤t

dµ(ζ)

)
dt

=

∫
|ζ|≤r

(∫ r

|ζ|

N − 2

tN−1
dt

)
dµ(ζ)

=

∫
|ζ|≤r

[
−1

tN−2

]r

|ζ|
dµ(ζ)

=

∫
|ζ|≤r

(
1

|ζ|N−2
− 1

rN−2

)
dµ(ζ).
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3. Estimations of the Riesz Measure

3.1. Jensen–Privalov formula.

For any functionu, subharmonic inRN , harmonic in some neighbourhood of
the origin, the Jensen–Privalov formula (see [2, p. 44]) holds for everyr > 0:

1

2π

∫ 2π

0

u(r eiθ) dθ =

∫ r

0

µ(t)

t
dt + u(0) if N = 2

1

σN

∫
SN

u(rx) dσx = (N − 2)

∫ r

0

µ(t)

tN−1
dt + u(0) if N ≥ 3

with SN the unit sphere inRN , dσ the area element onSN andσN =
∫

SN
dσ =

2 πN/2

Γ(N/2)
(see [1, p. 29]). In all statements of both Sections3 and4, it will be

assumed thatu ∈ SH(γ, B) and that its growth is indicated by (1.1).

3.2. The caseN = 2

Theorem 3.1.WhenN = 2, the following inequality holds for eachs > 0:

µ(s)

γ
log

(
µ(s)

Beγ

)
≤ A +

∫
|ζ|≤s

log |ζ| dµ(ζ).

Proof. For eachr > 0 and eachs > 0, it follows from Lemmas2.1and2.3that∫
|ζ|≤s

log
r

|ζ|
dµ(ζ) ≤ 1

2π

∫ 2π

0

u(r eiθ) dθ ≤ A + B rγ,

http://jipam.vu.edu.au/
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so that∫
|ζ|≤s

log
1

|ζ|
dµ(ζ) ≤ A + B rγ − µ(s) log r = A +

µ(s)

γ

(
Bγ

µ(s)
rγ − log rγ

)
:= ϕ(r).

Considers constant, the minimum ofϕ is attained whenBγ rγ = µ(s), since
ϕ′(r) = 1

r
(Bγ rγ − µ(s)). Finally, for eachs > 0:∫

|ζ|≤s

log
1

|ζ|
dµ(ζ) ≤ A +

µ(s)

γ

[
1− log

(
µ(s)

Bγ

)]
= A− µ(s)

γ
log

(
µ(s)

Beγ

)

In Corollaries3.2, 3.3and3.5, we setε > 0 such thatµ(s) > 0 ∀s > ε.

Corollary 3.2. If N = 2, thenµ(s) ≤ Beγ sγ e
Aγ
µ(s) for anys > ε.

Proof. Theorem3.1may be rewritten as:

(3.1) log

(
µ(s)

Beγ

)
≤ Aγ

µ(s)
+

∫
|ζ|≤s

log(|ζ|γ) dµ(ζ)

µ(s)
.

The previous integral being≤ log sγ, Corollary3.2results.

Corollary 3.3. WhenN = 2, we have for everys > ε:

[µ(s)]2 ≤ Beγ exp

(
Aγ

µ(s)

)∫
|ζ|≤s

|ζ|γ dµ(ζ).

http://jipam.vu.edu.au/
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Proof. Jensen’s inequality applies to (3.1) since
∫
|ζ|≤s

dµ(ζ)
µ(s)

= 1, hence:

µ(s)

Beγ
≤ exp

(
Aγ

µ(s)

)
· exp

(∫
|ζ|≤s

log(|ζ|γ) dµ(ζ)

µ(s)

)
≤ exp

(
Aγ

µ(s)

)∫
|ζ|≤s

|ζ|γ dµ(ζ)

µ(s)
.

3.3. The caseN ≥ 3

Theorem 3.4.WhenN ≥ 3, the following estimation is valid for eachs > 0:∫
|ζ|≤s

1

|ζ|N−2
dµ(ζ) ≤ A + D [µ(s)]

γ
γ+N−2 .

Proof. For all r > 0 ands > 0, Lemmas2.2and2.4 lead to:∫
|ζ|≤s

(
1

|ζ|N−2
− 1

rN−2

)
dµ(ζ) ≤ 1

σN

∫
SN

u(rx) dσx ≤ A + B rγ,

that is ∫
|ζ|≤s

1

|ζ|N−2
dµ(ζ) ≤ A + B rγ +

µ(s)

rN−2

whose minimum (withs constant) is attained whenBγ rγ = (N − 2) µ(s)
rN−2 . In

other words, this minimum isA+
(

N−2
γ

+ 1
)

µ(s)
rN−2 with 1

rN−2 =
(

Bγ
N−2

1
µ(s)

) N−2
γ+N−2

.
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Finally:∫
|ζ|≤s

1

|ζ|N−2
dµ(ζ) ≤ A +

(
N−2

γ
+ 1

)(
Bγ

N − 2

) N−2
γ+N−2

(µ(s))
γ

γ+N−2 .

Corollary 3.5. WhenN ≥ 3, the following estimation holds for everys > ε:

µ(s) ≤ Bγ

N − 2
C(γ, N) sγ+N−2

(
1 +

A

D · [µ(s)]
γ

γ+N−2

) γ+N−2
N−2

.

Proof. Let α = N−2
γ+N−2

. According to Theorem3.4, for anys > ε we have

1

sN−2
≤ 1

µ(s)

∫
|ζ|≤s

1

|ζ|N−2
dµ(ζ) ≤ A

µ(s)
+

D

µ(s)α
=

D

µ(s)α

(
1 +

A

D

µ(s)α

µ(s)

)
.

Hence

[µ(s)]α ≤ D sN−2

(
1 +

A

D

1

[µ(s)]1−α

)
.

Now, it is obvious that1− α = γ
γ+N−2

andD1/α = Bγ
N−2

C(γ, N).

Corollary 3.6. With N ≥ 3 and α = N−2
γ+N−2

, the following holds for each
s > 0:

µ(s) log

(
µ(s)α

D

)
− A

D
µ(s)α ≤ (N − 2)

∫
|ζ|≤s

log |ζ| dµ(ζ)
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Proof. It follows from Jensen’s inequality that:

exp

(∫
|ζ|≤s

(
log

1

|ζ|N−2

)
dµ(ζ)

µ(s)

)
≤

∫
|ζ|≤s

exp

(
log

1

|ζ|N−2

)
dµ(ζ)

µ(s)

=

∫
|ζ|≤s

1

|ζ|N−2

dµ(ζ)

µ(s)

≤ A

µ(s)
+

D

µ(s)α
,

so that:

−(N − 2)

∫
|ζ|≤s

log |ζ| dµ(ζ)

µ(s)
≤ log

(
A

µ(s)
+

D

µ(s)α

)
≤ log

(
D

µ(s)α

)
+

A

D

µ(s)α

µ(s)
.
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4. Growth of the Repartition Function
4.1. A measure on[0, +∞[, image ofµ

Let Φ : RN → [0, +∞[ be the measurable map defined byΦ(ζ) = µ(|ζ|) (the
functions 7→ µ(s) is increasing hence measurable on[0, +∞[). Letν = Φ∗µ =
µ ◦ Φ−1 denote the measure image ofµ underΦ (see [3, p. 80]):∫ +∞

0

f(t) dν(t) =

∫
RN

f(Φ(ζ)) dµ(ζ)

holds for any nonnegative measurable functionf on [0, +∞[ (and for anyν-
integrablef )

Remark 4.1. If s 7→ µ(s) is continuous on some interval[a, +∞[ with a ≥ 0,
thenν(I) = c− b for any intervalI with boundsb andc (c > b > µ(a)).

4.2. The caseN = 2

Up to the end of Section4, µ stands for the Riesz measure associated with a
function ofSH(γ, B) with growth (1.1).

Theorem 4.1. If N = 2 andA > 2
γ
, then the set of thoses > 0 which satisfy

µ(s) < Bγ sγ e
Aγ
µ(s) is unbounded.

A proof is required only in the case wherelims→+∞ µ(s) = +∞ (otherwise,
Theorem4.1is obvious). When the functions 7→ µ(s) is continuous, at least on
some interval[a, +∞[ with a > 0, there is a direct proof which is quoted below
in Subsection4.3. In this case, the assumptionA > 2

γ
is no longer required.

The proof in the general case is the subject of Subsection4.5.
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4.3. Proof of Theorem 4.1 in the case of a continuous repar-
tition function

Proof. Let us suppose that the set
{

s > 0 : µ(s) < Bγ sγe
Aγ
µ(s)

}
is bounded and

let s0 be one of its majorants, chosen in such a way thats 7→ µ(s) is continuous
on some neighbourhood of[s0, +∞[.

Thusµ(s) ≥ Bγ sγe
Aγ
µ(s) for all s ≥ s0, that is:log s ≤ 1

γ
log
(

µ(s)
Bγ

)
− A

µ(s)
,

such that:∫
s0≤|ζ|≤s

log |ζ| dµ(ζ) ≤
∫

s0≤|ζ|≤s

(
1

γ
log

(
µ(|ζ|)
Bγ

)
− A

µ(|ζ|)

)
dµ(ζ)

=

∫ µ(s)

µ(s0)

(
1

γ
log

(
t

Bγ

)
− A

t

)
dν(t)

=

∫ µ(s)

µ(s0)

(
1

γ
log

(
t

Bγ

)
− A

t

)
dt

= B
[
x log

(x

e

)]µ(s)/Bγ

µ(s0)/Bγ
− A [log t]

µ(s)
µ(s0)

=
µ(s)

γ
log

(
µ(s)

Beγ

)
− A log µ(s) + K(s0),

whereK(s0) stands forA log µ(s0)− µ(s0)
γ

log
(

µ(s0)
Beγ

)
. It follows from Theo-

http://jipam.vu.edu.au/
mailto:supper@math.u-strasbg.fr
http://jipam.vu.edu.au/


Subharmonic Functions and
their Riesz Measure

Raphaele Supper

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 33

J. Ineq. Pure and Appl. Math. 2(2) Art. 16, 2001

http://jipam.vu.edu.au

rem3.1that:

µ(s)

γ
log

(
µ(s)

Beγ

)
≤ A +

∫
|ζ|<s0

log |ζ| dµ(ζ)

+
µ(s)

γ
log

(
µ(s)

Beγ

)
− A log µ(s) + K(s0).

Finally: A log µ(s) ≤ A + K(s0) + µ(s0) log s0 for all s ≥ s0. Whens tends
to +∞, a contradiction arises.

4.4. Splitting measureµ

Now, in order to prove Theorem4.1in the general case, we will introduce some
notations which will also be useful in proving Theorem4.3 (whereN ≥ 3).
That is why these notations are already given inRN for anyN ∈ N, N ≥ 2.

It is still assumed thatlims→+∞ µ(s) = +∞. Let(sn)n be the non–decreasing
sequence defined by:sn = inf{s > 0 : µ(s) ≥ n}. As the functions 7→ µ(s)
is right–continuous, we haveµ(sn) ≥ n for all n ∈ N. If this function is
continuous at some pointsn, thenµ(sn) = n.

If sn < sn+1, thenµ(sn) < n + 1. There are infinitely many integersn such
thatsn < sn+1 because the measuredµ is finite on compact subsets ofRN (see
[1, p. 81]).

For anys > 0, let µ−(s) =
∫
|ζ|<s

dµ(ζ). The discontinuity points ofs 7→
µ(s) are thus characterized byµ(s) > µ−(s). For everyn ∈ N, let cn = 0

if the functions 7→ µ(s) is continuous at pointsn, andcn = µ(sn)−n
µ(sn)−µ−(sn)

if
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this function is discontinuous atsn. Note that1 − cn = n−µ−(sn)
µ(sn)−µ−(sn)

in case of
discontinuity atsn.

For all0 < t < s, let It andIt,s be defined inRN by:

It(ζ) =

{
It,s(ζ) =

{
1 if |ζ| = t 1 if t < |ζ| < s
0 otherwise 0 otherwise

Let us writeµ = µ1 + µ2 + · · · + µn + . . . , where measuresµk are defined
such that ∫

RN

dµk(ζ) =

∫
sk−1≤|ζ|≤sk

dµk(ζ) = 1

in the following way:

dµk = ( ck−1 Isk−1
+ Isk−1,sk

+ (1− ck) Isk
) dµ if sk−1 < sk

dµk =
1

µ(sk)− µ−(sk)
Isk

dµ if sk−1 = sk.

Remark 4.2. If sk−1 < sk = sk+1 = · · · = sk+l < sk+l+1, thenµ−(sk) ≤ k <
k + l ≤ µ(sk) and it is easy to check that

(1− ck) Isk
+

k+l∑
j=k+1

1

µ(sj)− µ−(sj)
Isj

+ ck+l Isk+l
= Isk

.

In addition, notice that
∑n

k=1 µk(s) = min[n, µ(s)] and that, for any integrable
functionh ≥ 0: ∫

|ζ|≤sn

h(ζ) dµ ≥
n∑

k=1

∫
h(ζ) dµk
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∫
|ζ|≤sn

h(ζ) dµ ≤
n+1∑
k=1

∫
h(ζ) dµk if sn < sn+1

4.5. A reformulation of Theorem 4.1

Proposition 4.2. If N = 2 and A > 2
γ
, thenn < Bγ(sn)γe

Aγ
n for infinitely

manyn ∈ N∗.

Proof. Suppose that there exists some integerm ∈ N∗ such thatn ≥ Bγ(sn)γe
Aγ
n

for eachn ≥ m. It may be assumed thatsm > sm−1 ≥ 1. For anyn ≥ m satis-
fying sn < sn+1, we have:∫

sm≤|ζ|≤sn

log |ζ| dµ(ζ) ≤
n+1∑
k=m

∫
log |ζ| dµk(ζ)

≤
n+1∑
k=m

log sk

≤
n+1∑
k=m

(
1

γ
log

(
k

Bγ

)
− A

k

)
≤

∫ n+2

m

(
1

γ
log

(
t

Bγ

)
− A

t

)
dt

=
n + 2

γ
log

(
n + 2

Beγ

)
− A log(n + 2) + Km
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with a constantKm independent fromn. Sinceµ(sn) ≥ n, Theorem3.1 leads
to:

n

γ
log

(
n

Beγ

)
≤ A+(log sm)µ(sm)+

n + 2

γ
log

(
n + 2

Beγ

)
−A log(n+2)+Km

hence(
A− 2

γ

)
log(n+2) ≤ A+

n

γ
log

(
n + 2

n

)
︸ ︷︷ ︸

≤ 2
γ

−2

γ
log(Beγ)+Km+(log sm)µ(sm)

The contradiction stems from the fact that there exists infinitely manyn > m
with sn < sn+1.

Proof of Theorem4.1 in the general case.Obviously, functions 7→ Bγ sγ is
increasing. Thus, for anyn such thatn e−

Aγ
n < Bγ(sn)γ, there exists an open

non–empty intervalJn (with upper boundsn) such thatn e−
Aγ
n < Bγ sγ <

Bγ(sn)γ ∀s ∈ Jn. Moreoverµ(s) e−
Aγ
µ(s) < n e−

Aγ
n ∀s ∈ Jn (becauseµ(s) < n

for everys < sn). Hence Theorem4.1.

4.6. The caseN ≥ 3

Theorem 4.3.WhenN ≥ 3, the set of thoses > 0 such that

(4.1) µ(s) <
Bγ

N − 2
sγ+N−2

(
1 +

A

D · [µ(s)]
γ

γ+N−2

) γ+N−2
N−2

is unbounded.
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Inequalities (4.1) and (4.2) are equivalent, with

(4.2)
1

sN−2
<

γ

γ + N − 2

(
A

µ(s)
+

D

µ(s)α

)
andα = N−2

γ+N−2
as in Section3.3. Indeed, (4.2) may be rewritten

µ(s)α < sN−2 γ D

γ + N − 2

(
1 +

A

D[µ(s)]1−α

)
.

Now γ D
γ+N−2

=
(

Bγ
N−2

)α
so that formula (4.1) arises.

To prove Theorem4.3, we can still assumelims→+∞ µ(s) = +∞. The case
where functions 7→ µ(s) is continuous (at least on some interval[a, +∞[ with
a > 0) is proved in Subsection4.7and the general case is proved in Subsection
4.8.

4.7. Proof of Theorem 4.3 in the case of a continuous repar-
tition function

Proof. Let us assume that there exists somes0 > 0 such thats 7→ µ(s) is
continuous on some neighbourhood of[s0, +∞[ and that

1

sN−2
≥ γ

γ + N − 2

(
A

µ(s)
+

D

µ(s)α

)
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for all s ≥ s0. It follows that:∫
|ζ|≤s

dµ(ζ)

|ζ|N−2
≥

∫
s0≤|ζ|≤s

dµ(ζ)

|ζ|N−2

≥ γ

γ + N − 2

∫
s0≤|ζ|≤s

(
A

µ(|ζ|)
+

D

µ(|ζ|)α

)
dµ(ζ)

=
γ

γ + N − 2

∫ µ(s)

µ(s0)

(
A

t
+

D

tα

)
dν(t)

=
γ

γ + N − 2

∫ µ(s)

µ(s0)

(
A

t
+

D

tα

)
dt

=
γ

γ + N − 2

[
A log t +

D

1− α
t1−α

]µ(s)

µ(s0)

=
Aγ log µ(s)

γ + N − 2
+ D µ(s)1−α −K ′(s0),

with

K ′(s0) =
Aγ

γ + N − 2
log µ(s0) + D µ(s0)

1−α.

The majoration of
∫
|ζ|≤s

1
|ζ|N−2 dµ(ζ) (Theorem3.4) leads, after cancellation of

D µ(s)1−α = D µ(s)
γ

γ+N−2 , to: Aγ log µ(s)
γ+N−2

≤ A + K ′(s0) for any s ≥ s0. A
contradiction arises ass → +∞.
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4.8. A reformulation of Theorem 4.3

Proposition 4.4. WithN ≥ 3 andα = N−2
γ+N−2

, infinitely manyn ∈ N∗ satisfy:

(4.3)
1

sN−2
n

<
γ

γ + N − 2

(
A

n
+

D

nα

)
.

Proof. Suppose that there exists somem ∈ N such that 1

sN−2
n

≥ γ
γ+N−2

(
A
n

+ D
nα

)
∀n > m. It then follows for alln > m:∫

sm≤|ζ|≤sn

1

|ζ|N−2
dµ(ζ) ≥

n∑
k=m+1

∫
1

|ζ|N−2
dµk(ζ)

≥
n∑

k=m+1

1

sN−2
k

≥ γ

γ + N − 2

n∑
k=m+1

(
A

k
+

D

kα

)
≥ γ

γ + N − 2

∫ n+1

m+1

(
A

t
+

D

tα

)
dt

=
γA log(n + 1)

γ + N − 2
+ D(n + 1)1−α −K ′

m

where the constantK ′
m does not depend onn. For thosen > m such that

sn < sn+1 we haveµ(sn) < n + 1 and Theorem3.4provides us with:∫
sm≤|ζ|≤sn

1

|ζ|N−2
dµ(ζ) ≤

∫
|ζ|≤sn

1

|ζ|N−2
dµ(ζ) ≤ A + D(n + 1)1−α
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henceγA log(n+1)
γ+N−2

≤ A + K ′
m. A contradiction arises asn → +∞.

Proof of Theorem4.3 in the general case.Since the functions 7→ 1
sN−2 is de-

creasing, for eachn ∈ N∗ satisfying (4.3) there exists an open intervalJn 6= ∅
(with right boundsn) where

1

sN−2
n

<
1

sN−2
<

γ

γ + N − 2

(
A

n
+

D

nα

)
(∀s ∈ Jn).

Now, µ(s) < n for eachs < sn, so thatA
n

+ D
nα < A

µ(s)
+ D

µ(s)α . Hence
1

sN−2 < γ
γ+N−2

(
A

µ(s)
+ D

µ(s)α

)
∀s ∈ Jn and Theorem4.3follows.
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5. Sum of Two Riesz Measures
Lemma 5.1. Givenγ > 0, B > 0 andε ∈ ]0, 1[, let uε be defined inRN by :

uε(x) = max{0, ϕε(|x|)} ∀x ∈ RN

with ϕε(r) = B rγ−B εγ ∀r ≥ 0. Thenuε ∈ SH(γ, B). Letµε denote its Riesz
measure, then:µε(s) = Bγ

τN
sγ+N−2 + kε ∀s ≥ 1, whereτN = max(1, N − 2)

andkε is a constant depending only onB, γ, N andε.

Proof. Subharmonicity ofuε = max(u1, u2) will follow (see [1, p. 41]) from
the subharmonicity of both functionsu1 and u2 defined in RN by u1(x) =
ϕε(|x|) andu2(x) ≡ 0: it is easy to verify that∆u1(x) = ϕ′′ε(r) + N−1

r
ϕ′ε(r) =

Bγrγ−2(γ +N−2) ≥ 0 (see [1, p. 26]). Obviously,uε has a growth of the kind
(1.1), uε(0) = 0 anduε is harmonic in the neighbourhood{x ∈ RN : |x| < ε}
of the origin.

Let θN = (N − 2)σN whenN ≥ 3 andθ2 = 2π (see [2, p. 43]), since
dµε = 1

θN
∆uε dx = 1

θN
∆uε rN−1 dr dσ, it is possible for alls ≥ 1 to compute

µε(s) = µε(1)+

∫ s

1

σN

θN

Bγ(γ +N − 2)rγ+N−3dr = µε(1)+
1

τN

Bγ
[
rγ+N−2

]s
1

Proposition 5.2. Given γ > 0, B > 0 and 0 < B′ < 2B, let µ1 and µ2

be the Riesz measures of two functions, respectivelyu1 and u2, belonging to
SH(γ, B). Thenµ1 + µ2 is not necessarily the Riesz measure associated with
a function ofSH(γ, B′).

http://jipam.vu.edu.au/
mailto:supper@math.u-strasbg.fr
http://jipam.vu.edu.au/


Subharmonic Functions and
their Riesz Measure

Raphaele Supper

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 26 of 33

J. Ineq. Pure and Appl. Math. 2(2) Art. 16, 2001

http://jipam.vu.edu.au

Proof. Givenε1 andε2 ∈]0, 1[, let uε1 anduε2 ∈ SH(γ, B) be defined as in the
previous lemma andµ = µε1 + µε2 be the sum of their Riesz measures. Thus
µ(s) = 2Bγ

τN
sγ+N−2 + kε1 + kε2 ∀s ≥ 1. Note thatlims→+∞

µ(s)
sγ+N−2 = 2Bγ

τN
.

Suppose thatµ is the Riesz measure of some functionu ∈ SH(γ, B′) with
an estimate such as:u(x) ≤ A + B′|x|γ (∀x ∈ RN ) for some constantA ∈ R.
In Theorems4.1 and4.3, one asserts thatlim infs→+∞

µ(s)
sγ+N−2 ≤ B′γ

τN
, which

leads to2B ≤ B′, hence a contradiction.
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6. Subharmonic Functions Subject to Conditions
of L1 Type

6.1. A weighted integral condition for subharmonic functions.

Theorem 6.1. Given N ∈ N (N ≥ 2) and a positive non–increasingC1

functionϕ on [0, +∞[ such thatlims→+∞(log s)ϕ(s) = 0 (whenN = 2) or
lims→+∞ s

N
2
−1ϕ(s) = 0 (whenN ≥ 3), letu be a subharmonic function inRN ,

harmonic in some neighbourhood of the origin withu(0) = 0, such that:∫
RN

u+(x) [−ϕ′(|x|2)] dx < +∞

where the subharmonic functionu+ is defined byu+(x) = max(u(x), 0) ∀x ∈
RN . Then the Riesz measureµ of u verifies:∫

RN

ϕ(|ζ|2 + 1)

|ζ|2
dµ(ζ) < +∞.

Example 1. With N ≥ 2, β > 0 and ϕ defined byϕ(s) = e−βs ∀s > 0,
obviously

lim
s→+∞

(log s)ϕ(s) = lim
s→+∞

s
N
2
−1ϕ(s) = 0.

If a subharmonic functionu in RN (harmonic in some neighbourhood of the
origin, with u(0) = 0) satisfies

∫
RN u+(x) e−β|x|2 dx < +∞ then its Riesz mea-

sureµ verifies
∫

RN
e−β|ζ|2

|ζ|2 dµ(ζ) < +∞. One thus encounters a result of [4, p.
88] for holomorphic functions inC.
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6.2. Proof of Theorem6.1 in the caseN = 2

Proof. Abiding by Jensen’s formula (Subsection3.1) and by Lemma2.3:∫
|ζ|≤r

log
r

|ζ|
dµ(ζ) ≤ 1

2π

∫ 2π

0

u+(r eiθ) dθ ∀r > 0.

Since−ϕ′(r2) ≥ 0, it follows that:∫ +∞

0

(∫
|ζ|≤r

log
r

|ζ|
dµ(ζ)

)
[−ϕ′(r2)] r dr < +∞.

Fubini’s theorem transforms the above integral into:∫
R2

(∫ +∞

|ζ|
log

r

|ζ|
[−ϕ′(r2)] r dr

)
︸ ︷︷ ︸

:=I(ζ)≥0

dµ(ζ).

Now,

I(ζ) =
1

4

∫ +∞

|ζ|2
log

s

|ζ|2
[−ϕ′(s)] ds

for anyζ ∈ R2 and an integration by parts leads to:4 I(ζ) =
∫ +∞
|ζ|2

ϕ(s)
s

ds since
lims→+∞(log s) ϕ(s) = 0 and lims→+∞ ϕ(s) = 0 as well. The positive func-
tion f : s 7→ ϕ(s)

s
decreases fors > 0 so that

∫ +∞
b

f(s) ds ≥ f(b + 1) for all

b > 0, hence:4 I(ζ) ≥ ϕ(|ζ|2+1)
|ζ|2+1

for all ζ ∈ R2. If |ζ| ≥ 1, then 1
|ζ|2+1

≥ 1
2 |ζ|2

and8 I(ζ) ≥ ϕ(|ζ|2+1)
|ζ|2 ≥ 0. Because of the harmonicity ofu in a neighbour-

hood of the origin,
∫
|ζ|<1

ϕ(|ζ|2+1)
|ζ|2 dµ(ζ) < +∞. The conclusion follows from∫

|ζ|≥1
I(ζ) dµ(ζ) < +∞.
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6.3. Proof of Theorem6.1 in the caseN ≥ 3

Proof. Jensen–Privalov formula together with Lemma2.4 lead to:∫
|ζ|≤r

(
1

|ζ|N−2
− 1

rN−2

)
dµ(ζ) ≤ 1

σN

∫
SN

u(rx) dσx ∀r > 0.

Hence:∫ +∞

0

(∫
|ζ|≤r

(
1

|ζ|N−2
− 1

rN−2

)
dµ(ζ)

)
[−ϕ′(r2)] rN−1 dr < +∞.

Taking Fubini’s theorem into account, this integral becomes:∫
IRN

(∫ +∞

|ζ|

(
1

|ζ|N−2
− 1

rN−2

)
[−ϕ′(r2)] rN−1 dr

)
︸ ︷︷ ︸

:=J(ζ)

dµ(ζ).

Now, for anyζ ∈ RN :

0 ≤ J(ζ)

=

∫ +∞

|ζ|

(
rN−2

|ζ|N−2
− 1

)
[−ϕ′(r2)] r dr

=
1

2

∫ +∞

|ζ|2

(
s

N
2
−1

|ζ|N−2
− 1

)
[−ϕ′(s)] ds.

Sincelims→+∞

(
s

N
2
−1 − |ζ|N−2

)
ϕ(s) = 0, an integration by parts leads to:

2 J(ζ) =
N − 2

2

∫ +∞

|ζ|2

s
N
2
−2

|ζ|N−2
ϕ(s) ds.
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Obviously,s
N
2
−2 ≥ |ζ|N−4 for all s ≥ |ζ|2, so that:

4

N − 2
J(ζ) ≥ 1

|ζ|2

∫ +∞

|ζ|2
ϕ(s) ds ≥ ϕ(|ζ|2 + 1)

|ζ|2
≥ 0.

Propositions6.2and6.3will be proved by using the same method.

Proposition 6.2. Let ϕ be a positiveC1 non–increasing function on[0, +∞[
such that
limr→+∞ r ϕ(r) log r = 0. If a subharmonic functionu in R2 (harmonic in
some neighbourhood of the origin withu(0) = 0) verifies:∫

R2

u+(x) [−ϕ′(|x|)] dx < +∞

then its Riesz measureµ satisfies:
∫

R2 ϕ(|ζ|+ 1) dµ(ζ) < +∞ and∫
|ζ|≥1

ϕ(|ζ|α + 1) log |ζ| dµ(ζ) < +∞

holds for eachα > 1.

Proof. As in Section6.2:
∫

R2 I(ζ) dµ(ζ) < +∞, here with

I(ζ) =

∫ +∞

|ζ|
r log

r

|ζ|
[−ϕ′(r)] dr
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which turns intoI(ζ) =
∫ +∞
|ζ| ϕ(r) log er

|ζ| dr after an integration by parts which
uses
limr→+∞ r ϕ(r) log r = 0 (this garantees thatlimr→+∞ r ϕ(r) = 0 as well).
Sinceϕ is non–increasing andlog er

|ζ| ≥ 1 for eachr ≥ |ζ|, it follows that
I(ζ) ≥ ϕ(|ζ|+ 1) ∀ζ ∈ R2.

Givenα > 1, obviously|ζ|α ≥ |ζ| as soon as|ζ| ≥ 1, so that

I(ζ) ≥
∫ +∞

|ζ|α
ϕ(r) log

er

|ζ|
dr

≥ (α− 1)

∫ +∞

|ζ|α
ϕ(r) log |ζ| dr ≥ (α− 1)ϕ(|ζ|α + 1) log |ζ|

≥ 0.

The conclusion proceeds from
∫
|ζ|≥1

I(ζ) dµ(ζ) < +∞.

Proposition 6.3. GivenN ∈ N, N ≥ 3, let ϕ be a positive non–increasing
C1 function in [0, +∞[ such thatlimr→+∞ rN−1 ϕ(r) = 0. If a subharmonic
functionu in RN (harmonic in some neighbourhood of the origin withu(0) = 0)
verifies: ∫

RN

u+(x) [−ϕ′(|x|)] dx < +∞

then its Riesz measureµ satisfies∫
RN

ϕ(|ζ|α + 1) |ζ|(α−1)(N−2) dµ(ζ) < +∞

for anyα ≥ 1.

http://jipam.vu.edu.au/
mailto:supper@math.u-strasbg.fr
http://jipam.vu.edu.au/


Subharmonic Functions and
their Riesz Measure

Raphaele Supper

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 32 of 33

J. Ineq. Pure and Appl. Math. 2(2) Art. 16, 2001

http://jipam.vu.edu.au

Remark 6.1. Whenα = 1, we encounter
∫

RN ϕ(|ζ|+ 1) dµ(ζ) < +∞ again.

Proof. As in Section6.3:
∫

RN J(ζ) dµ(ζ) < +∞, here with

J(ζ) =

∫ +∞

|ζ|

(
rN−1

|ζ|N−2
− r

)
[−ϕ′(r)] dr

=

∫ +∞

|ζ|

(
(N − 1)

rN−2

|ζ|N−2
− 1

)
ϕ(r) dr

after an integration by parts. Obviously,rN−2

|ζ|N−2 ≥ 1 for everyr ≥ |ζ|, so that:

(N − 1)
rN−2

|ζ|N−2
− 1 ≥ (N − 2)

rN−2

|ζ|N−2

and

J(ζ) ≥ (N − 2)

∫ +∞

|ζ|

rN−2

|ζ|N−2
ϕ(r) dr ∀ζ ∈ RN .

If |ζ| ≥ 1, then|ζ|α ≥ |ζ| sinceα ≥ 1, hence

J(ζ) ≥ (N − 2)

∫ +∞

|ζ|α

rN−2

|ζ|N−2
ϕ(r) dr

≥ (N − 2) |ζ|(α−1)(N−2)

∫ +∞

|ζ|α
ϕ(r) dr

≥ (N − 2) |ζ|(α−1)(N−2)ϕ(|ζ|α + 1).
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