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ABSTRACT. Inthis paper we extend an inequality of Littlewood concerning the higher variations
of functions of bounded Fréchet variations of two variables (bimeasures) to a class of functions
that arep-bimeasures, by using the machinery of vector measures. Using random estimates of
Kahane-Salem-Zygmund, we show that the inequality is sharp.
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1. INTRODUCTION

Let . be a set function defined on the produ¢3;) x o(B;) of 2 o-fields, such that it is
a finite complex measure in each coordinate. More precisely, for each dixeds(5;) the
set functionu(A, -) is a complex measure defined ef3;). Similarly for eachB € o(15,),
the set functiornu gives rise to a measure in the first coordinate. Such set functions dubbed
bimeasuredy Morse and Transue were studied extensively by these and other authors (see
[1,12,03,5]6] 7,10, 11, 12]). Itis well known that such set functions need not be extendible to a
measure on the—Algebra generated by(5;) x o(B,). Now suppose thai is a set function
defined orv(B;) x o(Bs), such that it has finiteemi-variation that is,

(1.2) |l o = sup ; X Bi)r; @y, < 00,

[e.9]

wheresup is taken over all measurable partltlo{mj}, {By} of Q; and(,, respectively. Here

{r;} is the usual system of Rademachers, realized as functions on the iriter\jal By a
partition of (2, we mean a finite collection of mutually disjoint measurable sets whose union is
Q. Fin || - || is for Fréchet. Itis clear that a set functiprwith finite semi-variation is also

a bimeasure. It is interesting that the converse also holds. That is, a bimeasure has finite semi-
variation. This follows easily from the machinery of vector measure theory. On the other hand,
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2 NASSERTOWGHI

it is well known that a set function which has finite semi-variation need not have finite total
variation (in the sense of Vitali), hence it may not be extendible to a measure [2, 9]. However,
allis not lost, in his 1930 paper, Littlewood showed that a bimeasure has finite 4/3-variation. To
make this precise we first introduce the notion of mixed variation. dfetp, ¢ > 0, and define

the mixed(p, q)-variation ofy to be

(1.2) Il = sup Z(mejxwp) ,
k J

where thesup is taken over all finite measurable partitiofd,} and{B;} of ©; and(2, re-
spectively. In the case that= g, we simply write||u|,, thatis||u[|, = [|x[l,,. We now state
Littlewood’s 4/3 inequalities.

S0
Q=

1.1. Littlewood'’s Inequalities.

(1.3) ”N||2,1 + H/v‘”m + ||ILLH4/3 <cllullp,

wherec is a fixed universal constant. The result is sharp in the sense that, there.existsch
that |||, and||x[, , , are infinite for allp < 4/3 and for allg < 2. Extension of Littlewood's
inequality to a larger class of functions of two variables is the main result of this paper.

Definition 1.1. A set functionu defined on product of two algebr#k x B; is called a pres-
bimeasure, if it is finitely additive in each coordinate, and for each fikxeel3,, the quantity

BV, (u(A, -)) == sup {Z (A Bm}

is finite, and for each fixeds €B,, BV, (u(-, B)) is finite. Heresup is taken over all finite
measurable partitions 6i,.

If the set function is defined on the product of twealgebras with above properties, then it
is called ap-bimeasure.

Definition 1.2. A pre-p-bimeasure: defined on product of two algebr#s x BB, is said to be
bounded, if there exists a positive constahsuch thatBV,,(1(A, -)) + BV, (u(-, B)) < M, for
all A eB; and for allB €8s.

We prove the following result.
Theorem 1.1. Suppose that either is ap-bimeasure defined an(B;) x o(Bs), or that it is a
bounded pres-bimeasure defined af; x5;. If 1 < p < 2 then
(1.4) lello,p + Natllp + Nl o < 00
In the case thap > 2, then
(15) Il < oo,
Furthermore, the result is sharp, in the sense that, there exigtbimeasure such thafu||, =
0, forall ¢ < %

To prove Theorerp I]1 we collect some definitions and results about vector measures. Much
of the following can be found in Chapter 1 61 [4].

Definition 1.3. A function i from a field B of a set() to a Banach space is called a finitely ad-
ditive vector measure, or simply a vector measure, if whendyamnd A, are disjoint members
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of Bthenu (A | Az) = (A1) + pn(Az). Thevariation of a vector measurg is the extended
nonnegative functiofu| whose value on the sét is given by

[ (A) = sup Y [[u(A)]],

T Aer

where the sup is taken over all partition®f A into a finite number of disjoint members Bt
If || (€2) is finite, thenu will be called a measure dfounded variation.

A different type of variation related to a vector measurs the so calledgemi-variation of
p. More precisely, the semi-variation pfis the extended nonnegative functifpp| .. whose
value on a measurable sétis given by

l12ll - (A) = sup {[2" (@) [(A) : 2™ € X7, |27 < 1},

where|z*(11)| is the variation of the real-valued measure (finitely additive meastifg)). If
||| - (€2) is finite, theny will be called ameasure of bounded semi-variation.

2. PROOF OF THEOREM

We now prove Theorern 1.1. Suppose thatl p < 2. Let X; be the space of finitely
additive set functions defined er{53; ), which have finitep-variations. Similarly letX, be the
set finitely additive functions defined @r{3;) which have finitep-variations. It can be shown
that equipped withp-variation norm,X; and X, are Banach spaces. Létbe theX;-valued
function defined o (B,) as follows: L(A) = u(-, A), whereA € o(B,). Let R be theX,-
valued function defined on(B;) as follows: R(A) = u(A,-), whereA € o(B;). If pis a
p-bimeasure then by the Nikodym Boundedness Theoreml(see [4, Theorem 1, padeain]),
R have finite semi-variations. Ji is a bounded pre-bimeasure then by general properties of
vector measures (see e.q!, [4, Proposition 11, pagé 4nd R have finite semi-variations. Let
{A,} be a finite measurable partition 6% and{ B} be a finite measurable partition ©f,
then

(2.1) oo > ||L]|#(2)

> ||BVy <zﬂ: Tnft(An, -))
>

k

o0

1
p),,

> ra(@)u(An, By) dx)

v

Zrnu(An, By)

n

3 =

> /Olzk:

[N4S]
B =

(Khinchin’s inequality) = > ¢ (Z (Z ‘N(AnaBk)’2>
k n

Similarly,

[SiS]
B =

(2.2) 00 > [|R[[p(fh) = ¢ (Z (Z !u(AmBk)|2>

n k
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) and) imply that] |, , is finite. Applying Minkowski's inequality we obtaifi|, , <
]l < oo. We now show thaﬂuH;Tp is finite. Leta,r = wu(An, Br). Applying Holder’s

inequality with exponents™2 and 22, we obtain
p

(2.3) Y lansl® = > Janil2 a2
n,k n,k
z[zw]

2
+ p+2

IN

]

p
2+p
P

IN

] [ (gwr)

2p

< (Mllap Nl )™ < oo
This proves inequality (1}5). If > 2 thenp/2 > 1, consequently

p\ L
b p

@4 IBlr() > o Z(ZMAH,BR)P)
: <Z (Z |u<An,Bk>|p>>p .

1Ll () 2 (z (z (. B ))

This proves inequality (2] 1).

We now show that the expone};% is sharp. We only consider the cdse p < 2. Sharpness
of Theorenj 1.1 for the cage= 1 is known [9]. Sharpness of Theor¢m|1.1 for 2 is trivial.

We need the following result, which is a consequence of Kahane-Salem-Zygmund estimates
(seell8, Theorem 3, p. 70]).

Lemma?2.1.LetX,, ,, ., beasubnormal collection of independent random variables. Given
complex numbers,, .., . .., where the multi-indexn,, no, ..., n,) satisfiesn,| + |na| + -+ - +
Ins| < N, then

Vv

Similarly

.....

ei(nltl“l‘"'nsts)

n1,n2,..nsCnyna,.. s

1
> [SZ [ n.|” log N] 2}

27
< N2

-----

where(C' is an independent constant.

To apply Lemmd 2Z]1, we will need to construct an appropriate sequence of independent
subnormal random variables. We will construct a Radamacher type of system, which we will
call the 4-level Radamacher system.
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2.1. 4-level Radamacher System4-level Radamacher system is the sequence of independent
random variables{w;(z)}%,, defined on the unit intervdl, 1], such that eachy; takes on
4 discrete valueg$2, —2,1, —1}, each with probabilityi. Such a system can be constructed
similar to the usual Radamacher system. Observe tlhat;level Radamacher system generate
4M distinct vectors of lengtfi/. On the other hand the sgt, 2, ..., M} has2M distinct subsets.

By Lemm, forj,k = 1,..., M, there exists a vectar= (t1,t,) and choice of scalers
{b;x}._, (approximately as many gd — ) 4*° — 2M°), such that;, € {2,-2,1,—1},
and for any subset of {1,2,..., M},

(2.6) > bjreltEIR)| < C4M log(2M))7,
jeA
and
(2.7) > " bjelthHi) | < CAM log(2M))2.
keA
Let
1(Jt1 2 M
(2.8) (a) = {aji}ie = {bjre Gtk )}j,k:1 :

Let A, B C {1,2,..., M} and define

(2.9) a(A,B)=) Y ap.

jeA keB

then by virtue of inequalitie$ (2.7) and (R.8),
(2.10) llall» < C,M7*5\/log(2M).
On the other hand for any> 0,

M M % )
(2.11) mm:b}SWMIZM«

. 4
We see that if < ]?1’2

(2.12) lim =00
This shows tha}fgii2 is sharp. The proof for the case tha a bounded-pre-bimeasure is similar.

3. FUNCTIONS OF BOUNDED p-VARIATIONS AND RELATED FUNCTION SPACES
Letp > 1 andf be a function defined off), 1]%. Let
1/p
V2(f,00,1%) = (supZIAZ}’”f!”) :
1,72 ij

Herem = {0 =29 < 21, < -+ < xp, = 1},andm = {0 = yo < 1, < -+ < y,, = 1}, are
partitions of|0, 1] and

AT = Fayy) = foi,yi—1) = fl@ima, yy) + f(ie,y5-1)-
Let W2 ([0,1)2) = W,* denote the class of functiorfson [0, 1]2 such that,
[1fllwg = V2 (£, 10,1%) + V2 (£(0,),0,1]) + VIV (£(-,0),[0,1]) +|£(0,0,0)] < o0
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Let? = (z1,22), ¥ = (y1,v2) € [0,1]?, andf be a function defined o, 1]. Let
[3(@) = f@1,22) — f(@1,92) — f(yr, 22) + f(y1, 92)-

We say thatf is aLipschitz function of ordet of first type,if there exists a constant such
that for all# andy in [0, 1]2,

(3.1) 1f(&) = f(@)] < ClIZ = 9I3-
Here|| - ||2 refers to the usudb-norm. The class of Lipschitz functions of ordeof first type

is denoted by\! (2). We say thatf is aLipschitz function of order of second typeif there
exists a constan’ such that for allz andy in [0, 1,

(3.2) |[f7(@)| < CllZ = a1l5-
The class of Lipschitz functions of orderof second type is denoted bV (2). If f € AL(2)
then

|f5(Z)] < 4Cmin{|z; —y;|" -1 <j <2} < Gf|7 - 4]I5}-
Therefore AL (2) C A%(2). Using Theorerh 1]1 we obtain

Corollary 3.1. Let f be a function defined off), 1)>. Suppose that for any < j < n and for
any fixed partitionsr; and, of the intervall0, 1], we have

1/p
S IATTAP| +sup

%,J

1/p
(3.3) sup Z |Az’jﬁ2f|p] <M < 0,

i,J

thenf e Wﬁ.

24p
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