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ABSTRACT. In this paper we extend an inequality of Littlewood concerning the higher variations
of functions of bounded Fréchet variations of two variables (bimeasures) to a class of functions
that arep-bimeasures, by using the machinery of vector measures. Using random estimates of
Kahane-Salem-Zygmund, we show that the inequality is sharp.
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1. I NTRODUCTION

Let µ be a set function defined on the productσ(B1) × σ(B2) of 2 σ-fields, such that it is
a finite complex measure in each coordinate. More precisely, for each fixedA ∈ σ(B1) the
set functionµ(A, ·) is a complex measure defined onσ(B2). Similarly for eachB ∈ σ(B2),
the set functionµ gives rise to a measure in the first coordinate. Such set functions dubbed
bimeasuresby Morse and Transue were studied extensively by these and other authors (see
[1, 2, 3, 5, 6, 7, 10, 11, 12]). It is well known that such set functions need not be extendible to a
measure on theσ−Algebra generated byσ(B1) × σ(B2). Now suppose thatµ is a set function
defined onσ(B1)× σ(B2), such that it has finitesemi-variation; that is,

(1.1) ‖µ‖F = sup


∥∥∥∥∥∑

j,k

µ(Aj ×Bk)rj ⊗ rk

∥∥∥∥∥
∞

 < ∞,

wheresup is taken over all measurable partitions{Aj}, {Bk} of Ω1 andΩ2, respectively. Here
{rj} is the usual system of Rademachers, realized as functions on the interval[0, 1]. By a
partition ofΩ, we mean a finite collection of mutually disjoint measurable sets whose union is
Ω. F in || · ||F is for Fréchet. It is clear that a set functionµ with finite semi-variation is also
a bimeasure. It is interesting that the converse also holds. That is, a bimeasure has finite semi-
variation. This follows easily from the machinery of vector measure theory. On the other hand,
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2 NASSERTOWGHI

it is well known that a set function which has finite semi-variation need not have finite total
variation (in the sense of Vitali), hence it may not be extendible to a measure [2, 9]. However,
all is not lost, in his 1930 paper, Littlewood showed that a bimeasure has finite 4/3-variation. To
make this precise we first introduce the notion of mixed variation ofµ. Let p, q > 0, and define
the mixed(p, q)-variation ofµ to be

(1.2) ‖µ‖p,q = sup


∑

k

(∑
j

|µ(Aj ×Bk)|p
) q

p

 1
q

 ,

where thesup is taken over all finite measurable partitions{Aj} and{Bk} of Ω1 andΩ2 re-
spectively. In the case thatp = q, we simply write‖µ‖p, that is‖µ‖p = ‖µ‖p,p. We now state
Littlewood’s4/3 inequalities.

1.1. Littlewood’s Inequalities.

(1.3) ‖µ‖2,1 + ‖µ‖1,2 + ‖µ‖4/3 ≤ c ‖µ‖F ,

wherec is a fixed universal constant. The result is sharp in the sense that, there existsµ ∈ such
that‖µ‖p and‖µ‖q,1/q are infinite for allp < 4/3 and for allq < 2. Extension of Littlewood’s
inequality to a larger class of functions of two variables is the main result of this paper.

Definition 1.1. A set functionµ defined on product of two algebrasB1×B2 is called a pre-p-
bimeasure, if it is finitely additive in each coordinate, and for each fixedA ∈B1, the quantity

BVp(µ(A, ·)) := sup

{∑
k

|µ(A×Bk|p
}

is finite, and for each fixedB ∈B2, BVp(µ(·, B)) is finite. Heresup is taken over all finite
measurable partitions ofΩ2.

If the set function is defined on the product of twoσ-algebras with above properties, then it
is called ap-bimeasure.

Definition 1.2. A pre-p-bimeasureµ defined on product of two algebrasB1×B2, is said to be
bounded, if there exists a positive constantM such thatBVp(µ(A, ·))+BVp(µ(·, B)) ≤ M , for
all A ∈B1 and for allB ∈B2.

We prove the following result.

Theorem 1.1. Suppose that eitherµ is ap-bimeasure defined onσ(B1)× σ(B2), or that it is a
bounded pre-p-bimeasure defined onB1×B2. If 1 ≤ p ≤ 2 then

(1.4) ‖µ‖2,p + ‖µ‖p,2 + ‖µ‖ 4p
2+p

< ∞.

In the case thatp ≥ 2, then

(1.5) ‖µ‖p < ∞.

Furthermore, the result is sharp, in the sense that, there exists ap-bimeasure such that‖µ‖q =

∞, for all q < 4p
2+p

.

To prove Theorem 1.1 we collect some definitions and results about vector measures. Much
of the following can be found in Chapter 1 of [4].

Definition 1.3. A functionµ from a fieldB of a setΩ to a Banach space is called a finitely ad-
ditive vector measure, or simply a vector measure, if wheneverA1 andA2 are disjoint members
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L ITTLEWOOD’ S INEQUALITY 3

of B thenµ (A1

⋃
A2) = µ(A1) + µ(A2). Thevariation of a vector measureµ is the extended

nonnegative function|µ| whose value on the setE is given by

|µ|(A) = sup
π

∑
A∈π

||µ(A)||,

where the sup is taken over all partitionsπ of A into a finite number of disjoint members ofB.
If |µ|(Ω) is finite, thenµ will be called a measure ofbounded variation.

A different type of variation related to a vector measureµ is the so calledsemi-variation of
µ. More precisely, the semi-variation ofµ is the extended nonnegative function‖µ‖F whose
value on a measurable setA is given by

‖µ‖F (A) = sup {|x∗(µ)|(A) : x∗ ∈ X∗, ‖x∗‖ ≤ 1} ,

where|x∗(µ)| is the variation of the real-valued measure (finitely additive measure)x∗(µ). If
‖µ‖F (Ω) is finite, thenµ will be called ameasure of bounded semi-variation.

2. PROOF OF THEOREM 1.1

We now prove Theorem 1.1. Suppose that1 ≤ p < 2. Let X1 be the space of finitely
additive set functions defined onσ(B1), which have finitep-variations. Similarly letX2 be the
set finitely additive functions defined onσ(B2) which have finitep-variations. It can be shown
that equipped withp-variation norm,X1 andX2 are Banach spaces. LetL be theX1-valued
function defined onσ(B2) as follows:L(A) = µ(·, A), whereA ∈ σ(B2). Let R be theX2-
valued function defined onσ(B1) as follows: R(A) = µ(A, ·), whereA ∈ σ(B1). If µ is a
p-bimeasure then by the Nikodym Boundedness Theorem (see [4, Theorem 1, page 14]),L and
R have finite semi-variations. Ifµ is a bounded pre-p-bimeasure then by general properties of
vector measures (see e.g., [4, Proposition 11, page 4]),L andR have finite semi-variations. Let
{An} be a finite measurable partition ofΩ2 and{Bk} be a finite measurable partition ofΩ1,
then

∞ > ||L||F (Ω2)(2.1)

≥

∥∥∥∥∥BVp

(∑
n

rnµ(An, ·)

)∥∥∥∥∥
∞

≥

∥∥∥∥∥∥
(∑

k

∣∣∣∣∣∑
n

rnµ(An, Bk)

∣∣∣∣∣
p) 1

p

∥∥∥∥∥∥
∞

≥

(∫ 1

0

∑
k

∣∣∣∣∣∑
n

rn(x)µ(An, Bk)

∣∣∣∣∣
p

dx

) 1
p

(Khinchin’s inequality) ⇒ ≥ c

∑
k

(∑
n

|µ(An, Bk)|2
) p

2

 1
p

.

Similarly,

(2.2) ∞ > ||R||F (Ω1) ≥ c

∑
n

(∑
k

|µ(An, Bk)|2
) p

2

 1
p

.
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(2.2) and (2.3) imply that,‖µ‖2,p is finite. Applying Minkowski’s inequality we obtain‖µ‖p,2 ≤
‖µ‖2,p < ∞. We now show that‖µ‖ 4p

2+p
is finite. Letan,k = µ(An, Bk). Applying Hölder’s

inequality with exponents2+p
p

and 2+p
2

, we obtain∑
n,k

|an,k|
4p

2+p =
∑
n,k

|an,k|
2p

2+p |an,k|
2p

2+p(2.3)

≤
∑

n

[∑
k

|an,k|2
] p

2+p
[∑

k

|an,k|p
] 2

p+2

≤

[∑
n

(
∑

k

|an,k|2)
p
2

] 2
2+p

∑
n

(∑
k

|an,k|p
) 2

p


p

2+p

≤
(
‖µ‖2,p ‖µ‖p,2

) 2p
p+2

< ∞.

This proves inequality (1.5). Ifp ≥ 2 thenp/2 ≥ 1, consequently

||R||F (Ω1) ≥ c

∑
n

(∑
k

|µ(An, Bk)|2
) p

2

 1
p

(2.4)

≥ c

(∑
k

(∑
n

|µ(An, Bk)|p
)) 1

p

.

Similarly

||L||F (Ω2) ≥ c

(∑
k

(∑
n

|µ(An, Bk)|p
)) 1

p

.

This proves inequality (2.1).
We now show that the exponent4p

p+2
is sharp. We only consider the case1 < p < 2. Sharpness

of Theorem 1.1 for the casep = 1 is known [9]. Sharpness of Theorem 1.1 forp ≥ 2 is trivial.
We need the following result, which is a consequence of Kahane-Salem-Zygmund estimates

(see [8, Theorem 3, p. 70]).

Lemma 2.1. LetXn1,n2,...ns be a subnormal collection of independent random variables. Given
complex numberscn1,n2,...,ns , where the multi-index(n1, n2, ..., ns) satisfies|n1| + |n2| + · · · +
|ns| ≤ N , then

(2.5) Pr

{
sup

t1,...,ts

∣∣∣∑Xn1,n2,...nscn1,n2,...,nse
i(n1t1+···nsts)

∣∣∣ ≥ C
[
s
∑

|cn1,n2,...,ns |2 log N
] 1

2

}
≤ N−2e−s,

whereC is an independent constant.

To apply Lemma 2.1, we will need to construct an appropriate sequence of independent
subnormal random variables. We will construct a Radamacher type of system, which we will
call the 4-level Radamacher system.
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2.1. 4-level Radamacher System.4-level Radamacher system is the sequence of independent
random variables,{wj(x)}∞j=1, defined on the unit interval[0, 1], such that eachwj takes on
4 discrete values{2,−2, 1,−1}, each with probability1

4
. Such a system can be constructed

similar to the usual Radamacher system. Observe that,M 4-level Radamacher system generate
4M distinct vectors of lengthM . On the other hand the set{1, 2, ...,M} has2M distinct subsets.

By Lemma 2.1, forj, k = 1, ...,M , there exists a vector~t = (t1, t2) and choice of scalers
{bjk}M

j,k=1 (approximately as many as
(
1− 1

M2

)
4M2 − 2M2

), such thatbjk ∈ {2,−2, 1,−1},
and for any subsetA of {1, 2, ...,M},

(2.6)

∣∣∣∣∣∑
j∈A

bjke
i(kt1+jt2)

∣∣∣∣∣ ≤ C[4M log(2M)]
1
2 ,

and

(2.7)

∣∣∣∣∣∑
k∈A

bjke
i(kt1+jt2)

∣∣∣∣∣ ≤ C[4M log(2M)]
1
2 .

Let

(2.8) (a) = {ajk}j,k =
{
bjke

i(jt1+kt2)
}M

j,k=1
.

Let A, B ⊂ {1, 2, ...,M} and define

(2.9) a(A, B) =
∑
j∈A

∑
k∈B

ajk,

then by virtue of inequalities (2.7) and (2.8),

(2.10) ||a||F ≤ CpM
1
2
+ 1

p

√
log(2M).

On the other hand for anyr > 0,

(2.11) ||a||r =

[
M∑

j=1

M∑
k=1

|ajk|r
] 1

r

≥ M
2
r .

We see that ifr < 4p
p+2

,

(2.12) lim
M→∞

||a||r
||a||F

= ∞.

This shows that4p
p+2

is sharp. The proof for the case thatµ is a bounded-pre-bimeasure is similar.

3. FUNCTIONS OF BOUNDED p-VARIATIONS AND RELATED FUNCTION SPACES

Let p ≥ 1 andf be a function defined on[0, 1]2. Let

V (2)
p (f, [0, 1]2) =

(
sup
π1,π2

∑
i,j

|∆π1,π2

i,j f |p
)1/p

.

Hereπ1 = {0 = x0 < x1, < · · · < xm = 1}, andπ2 = {0 = y0 < y1, < · · · < yn = 1}, are
partitions of[0, 1] and

∆π1,π2

i,j (f) = f(xi, yj)− f(xi, yj−1)− f(xi−1, yj) + f(xi−1, yj−1).

Let W (2)
p ([0, 1]2) = W

(2)
p denote the class of functionsf on [0, 1]2 such that,

||f ||W 2
p

= V (2)
p (f, [0, 1]2) + V (2)

p (f(0, ·), [0, 1]) + V (1)
p (f(·, 0), [0, 1]) + |f(0, 0, 0)| < ∞.

J. Inequal. Pure and Appl. Math., 3(2) Art. 19, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 NASSERTOWGHI

Let ~x = (x1, x2), ~y = (y1, y2) ∈ [0, 1]2, andf be a function defined on[0, 1]2. Let

f~y(~x) = f(x1, x2)− f(x1, y2)− f(y1, x2) + f(y1, y2).

We say thatf is aLipschitz function of orderα of first type,if there exists a constantC such
that for all~x and~y in [0, 1]2,

(3.1) |f(~x)− f(~y)| ≤ C||~x− ~y||α2 .

Here|| · ||2 refers to the usuall2-norm. The class of Lipschitz functions of orderα of first type
is denoted byΛ1

α(2). We say thatf is a Lipschitz function of orderα of second type,if there
exists a constantC such that for all~x and~y in [0, 1]2,

(3.2) |f~y(~x)| ≤ C||~x− ~y||α2 .

The class of Lipschitz functions of orderα of second type is denoted byΛ2
α(2). If f ∈ Λ1

α(2)
then

|f~y(~x)| ≤ 4C min{|xj − yj|α : 1 ≤ j ≤ 2} ≤ C2||~x− ~y||α2}.
Therefore,Λ1

α(2) ⊂ Λ2
α(2). Using Theorem 1.1 we obtain

Corollary 3.1. Let f be a function defined on[0, 1]2. Suppose that for any1 ≤ j ≤ n and for
any fixed partitionsπ1 andπ2 of the interval[0, 1], we have

(3.3) sup
π

[∑
i,j

|∆π1,π
i,j f |p

]1/p

+ sup
π

[∑
i,j

|∆π,π2

i,j f |p
]1/p

≤ M < ∞,

thenf ∈ W
(2)
4p

2+p

.
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