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ABSTRACT. We give error bounds for the trapezoidal rule and Simpson’s rule for “rough” con-
tinuous functions—for instance, functions which are Hölder continuous, of bounded variation, or
which are absolutely continuous and whose derivative is inLp. These differ considerably from
the classical results, which require the functions to have continuous higher derivatives. Further,
we show that our results are sharp, and in many cases precisely characterize the functions for
which equality holds. One consequence of these results is that for rough functions, the error esti-
mates for the trapezoidal rule are better (that is, have smaller constants) than those for Simpson’s
rule.
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1. I NTRODUCTION

1.1. Overview of the Problem. Given a finite intervalI = [a, b] and a continuous function
f : I → R, there are two elementary methods for approximating the integral∫

I

f(x) dx,

the trapezoidal rule and Simpson’s rule. Partition the intervalI into n intervals of equal length
with endpointsxi = a+ i|I|/n, 0 ≤ i ≤ n. Then the trapezoidal rule approximates the integral
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2 D. CRUZ-URIBE AND C.J. NEUGEBAUER

with the sum

(1.1) Tn(f) =
|I|
2n

(
f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)

)
.

Similarly, if we partitionI into 2n intervals, Simpson’s rule approximates the integral with the
sum

(1.2) S2n(f) =
|I|
6n

(
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) · · ·+ 4f(x2n−1) + f(x2n)

)
.

Both approximation methods have well-known error bounds in terms of higher derivatives:

ET
n (f) =

∣∣∣∣Tn(f)−
∫
I

f(x) dx

∣∣∣∣ ≤ |I|3‖f ′′‖∞
12n2

,

ES
2n(f) =

∣∣∣∣S2n(f)−
∫
I

f(x) dx

∣∣∣∣ ≤ |I|5‖f (4)‖∞
180n4

.

(See, for example, Ralston [13].)
Typically, these estimates are derived using polynomial approximation, which leads natu-

rally to the higher derivatives on the righthand sides. However, the assumption thatf is not
only continuous but has continuous higher order derivatives means that we cannot use them to
estimate directly the error when approximating the integral of such a well-behaved function as
f(x) =

√
x on [0, 1]. (It is possible to use them indirectly by approximatingf with a smooth

function; see, for example, Davis and Rabinowitz [3].)
In this paper we consider the problem of approximating the errorET

n (f) andES
2n(f) for

continuous functions which are much rougher. We prove estimates of the form

(1.3) ET
n (f), ES

2n(f) ≤ cn‖f‖;
where the constantscn are independent off , cn → 0 asn → ∞, and‖ · ‖ denotes the norm
in one of several Banach function spaces which are embedded inC(I). In particular, in order
(roughly) of increasing smoothness, we consider functions in the following spaces:

• Λα(I), 0 < α ≤ 1: Hölder continuous functions with norm

‖f‖Λα = sup
x,y∈I

|f(x)− f(y)|
|x− y|α

.

• CBV (I): continuous functions of bounded variation, with norm

‖f‖BV,I = sup
Γ

n∑
i=1

|f(xi)− f(xi−1)|,

wherea = x0 < x1 < · · · < xn = b, and the supremum is taken over all such partitions
Γ = {xi} of I.

• W p
1 (I), 1 ≤ p ≤ ∞: absolutely continuous functions such thatf ′ ∈ Lp(I), with norm

‖f ′‖p,I .
• W pq

1 (I), 1 ≤ p ≤ ∞: absolutely continuous functions such thatf ′ is in the Lorentz
spaceLpq(I), with norm

||f ′||pq,I =

(∫ ∞

0

tq/p−1(f ′)∗q(t)dt

)1/q

=

(
p

q

∫ ∞

0

λf ′(y)
q/pd(yq)

)1/q

.

(For precise definitions, see the proof of Theorem 1.15 in Section 4 below, or see Stein
and Weiss [17].)

• W p
2 (I), 1 ≤ p ≤ ∞: differentiable functions such thatf ′ is absolutely continuous and

f ′′ ∈ Lp(I), with norm‖f ′′‖p,I .
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TRAPEZOIDAL RULE AND SIMPSON’ S RULE 3

(Properly speaking, some of these norms are in fact semi-norms. For our purposes we will
ignore this distinction.)

In order to prove inequalities like (1.3), it is necessary to make some kind of smoothness
assumption, since the supremum norm onC(I) is not adequate to produce this kind of estimate.
For example, consider the family of functions{fn} defined on[0, 1] as follows: on[0, 1/n] let
the graph offn be the trapezoid with vertices(0, 1), (1/n2, 0), (1/n − 1/n2, 0), (1/n, 1), and
extend periodically with period1/n. ThenEn(fn) = 1− 1/n but ||fn||∞,I = 1.

Our proofs generally rely on two simple techniques, albeit applied in a sometimes clever
fashion: integration by parts and elementary inequalities. The idea of applying integration by
parts to this problem is not new, and seems to date back to von Mises [19] and before him
to Peano [11]. (This is described in the introduction to Ghizzetti and Ossicini [7].) But our
results themselves are either new or long-forgotten. After searching the literature, we found
the following papers which contain related results, though often with more difficult proofs and
weaker bounds: Pólya and Szegö [12], Stroud [18], Rozema [15], Rahman and Schmeisser
[14], Büttgenbachet al. [2], and Dragomir [5]. Also, as the final draft of this paper was being
prepared we learned that Dragomir,et al. [4] had independently discovered some of the same
results with similar proofs. (We would like to thank A. Fiorenza for calling our attention to this
paper.)

1.2. Statement of Results.Here we state our main results and make some comments on their
relationship to known results and on their proofs. Hereafter, given a functionf , definefr(x) =
f(x)− rx, r ∈ R, andfs(x) = f(x)− s(x), wheres is any polynomial of degree at most three
such thats(0) = 0. Also, in the statements of the results, the intervalsJi and the pointsci,
1 ≤ i ≤ n, are defined in terms of the partition for the trapezoidal rule, and the intervalsIi and
pointsai andbi are defined in terms of the partition for Simpson’s rule. Precise definitions are
given in Section 2 below.

Theorem 1.1.Letf ∈ Λα(I), 0 < α ≤ 1. Then forn ≥ 1,

(1.4) ET
n (f) ≤ |I|1+α

(1 + α)2αnα
inf
r
‖fr‖Λα ,

and

(1.5) ES
2n(f) ≤ 2(1 + 2α+1)|I|1+α

(1 + α)61+αnα
inf
s
‖fs‖Λα ,

Further, inequality(1.4) is sharp, in the sense that for eachn there exists a functionf such that
equality holds.

Remark 1.2. We conjecture that inequality (1.5) is sharp, but we have been unable to construct
an example which shows this.

Remark 1.3. Inequality (1.4) should be compared to the examples of increasing functions in
Λα, 0 < α < 1, constructed by Dubuc and Topor [6], for whichET

n (f) = O(1/n).

In the special case of Lipschitz functions (i.e., functions inΛ1) Theorem 1.1 can be improved.

Corollary 1.4. Letf ∈ Λ1. Then forn ≥ 1,

|ET
n (f)| ≤ |I|2

8n
(M −m),(1.6)

|ES
2n(f)| ≤ 5|I|2

72n
(M −m),(1.7)
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4 D. CRUZ-URIBE AND C.J. NEUGEBAUER

whereM = supI f
′, m = infI f

′. Furthermore, equality holds in(1.6) if and only iff is such
that its derivative is given by

(1.8) f ′(t) = ±

(
n∑
i=1

(
MχJ+

i
(t) +mχJ−i (t)

))
.

Similarly, equality holds in(1.7) if and only if

(1.9) f ′(t) = ±

(
n∑
i=1

(
mχI1i (t) +MχI2i (t) +mχI3i (t) +MχI4i (t)

))
.

Remark 1.5. Inequality (1.6) was first proved by Kim and Neugebauer [9] as a corollary to a
theorem on integral means.

Theorem 1.6.Letf ∈ CBV (I). Then forn ≥ 1,

(1.10) ET
n (f) ≤ |I|

2n
inf
r
‖fr‖BV,I ,

and

(1.11) ES
2n(f) ≤ |I|

3n
inf
r
‖fr‖BV,I .

Both inequalities are sharp, in the sense that for eachn there exists a sequence of functions
which show that the given constant is the best possible. Further, in each equality holds if and
only if both sides are equal to zero.

Remark 1.7. Pölya and Szegö [12] proved an inequality analogous to (1.10) for rectangular
approximations. However, they do not show that their result is sharp.

Theorem 1.8.Letf ∈ W p
1 (I), 1 ≤ p ≤ ∞. Then for alln ≥ 1,

(1.12) ET
n (f) ≤ |I|1+1/p′

2n(p′ + 1)1/p′
inf
r
‖f ′r‖p,I ,

and

(1.13) ES
n (f) ≤ 21/p′(1 + 2p

′+1)1/p′|I|1+1/p′

(p′ + 1)1/p′61+1/p′n
inf
s
‖f ′s‖p,I .

Inequality(1.12)is sharp, and when1 < p <∞, equality holds if and only if

(1.14) f ′(t) = d1

n∑
i=1

(
(t− ci)

p′−1χJ+
i
(t)− (ci − t)p

′−1χJ−i (t)
)

+ d2,

whered1, d2 ∈ R. Similarly, inequality(1.13)is sharp, and when1 < p <∞, equality holds if
and only if

(1.15) f ′(t) = d1

n∑
i=1

(
(t− ai)

p′−1χI2i (t) + (t− bi)
p′−1χI4i (t)

− (ai − t)p
′−1χI1i (t)− (bi − t)p

′−1χI3i (t)
)

+ d2t
2 + d3t+ d4,

wheredi ∈ R, 1 ≤ i ≤ 4.

Remark 1.9. Whenp = 1, p′ = ∞, and we interpret(1+p′)1/p′ and(1+2p
′+1)1/p′ in the limiting

sense as equaling1 and2 respectively. In this case Theorem 1.8 is a special case of Theorem
1.6 since iff is absolutely continuous it is of bounded variation, and‖f ′‖1,I = ‖f‖BV,I .
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TRAPEZOIDAL RULE AND SIMPSON’ S RULE 5

Remark 1.10. When1 < p <∞ we can restate Theorem 1.8 in a form analogous to Theorem
1.6. We define the spaceBVp of functions of boundedp-variation by

‖f‖BVp,I = sup
Γ

n∑
i=1

|f(xi)− f(xi−1)|p

|xi − xi−1|p−1
<∞,

where the supremum is taken over all partitionsΓ = {xi} of I. Thenf ∈ BVp if and only if it
is absolutely continuous andf ′ ∈ Lp(I), and‖f‖BVp,I = ||f ′||p,I . This characterization is due
to F. Riesz; see, for example, Natanson [10].

Remark 1.11. Whenp = ∞, Theorem 1.8 is equivalent to Theorem 1.1 withα = 1, since
f ∈ W∞

1 (I) if and only if f ∈ Λ1(I), and‖f ′‖∞,I = ‖f‖Λ1,I . (See, for example, Natanson
[10].)

Remark 1.12. Inequality (1.12), withr = 0 andp > 1 was independently proved by Dragomir
[5] as a corollary to a rather lengthy general theorem. Very recently, we learned that Dragomir
et al. [4] gave a direct proof similar to ours for (1.12) for allp but still with r = 0. Neither
paper considers the question of sharpness.

While inequalities (1.12) and (1.13) are sharp in the sense that for a givenn equality holds
for a given function,ET

n (f) andES
2n(f) go to zero more quickly than1/n.

Theorem 1.13.Letf ∈ W p
1 (I), 1 ≤ p ≤ ∞. Then

lim
n→∞

n · ET
n (f) = 0(1.16)

lim
n→∞

n · ES
2n(f) = 0.(1.17)

Further, these limits are sharp in the sense that the factor ofn cannot be replaced byna for any
a > 1.

Remark 1.14. Unlike most of our proofs, the proof of Theorem 1.13 requires that we approxi-
matef by smooth functions. It would be of interest to find a proof of this result which avoided
this.

Theorem 1.15.Letf ∈ W pq
1 (I), 1 ≤ p, q ≤ ∞. Then forn ≥ 1,

(1.18) ET
n (f) ≤ B(q′/p′, q′ + 1)1/q′ |I|1+1/p′

2n
inf
r
‖f ′r‖pq,I ,

whereB is the Beta function,

B(u, v) =

∫ 1

0

xu−1(1− x)v−1 dx, u, v > 0.

Similarly,

(1.19) ES
2n(f) ≤ C(q′/p′, q′ + 1)1/q′ |I|1+1/p′

n
inf
s
‖f ′s‖pq,I ,

where

C(u, v) =

∫ 1/3

0

tu−1

(
1

3
− t

2

)v−1

dt+

∫ 1

1/3

tu−1

(
1

4
− t

4

)v−1

dt.

Remark 1.16. Whenp = q then Theorem 1.15 reduces to Theorem 1.8.

Remark 1.17. Theorem (1.15) is sharp; when1 ≤ q < p the condition for equality to hold
is straightforward (f is constant), but whenq ≥ p it is more technical, and so we defer the
statement until after the proof, when we have made the requisite definitions.
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6 D. CRUZ-URIBE AND C.J. NEUGEBAUER

Remark 1.18. The constant in (1.19) is considerably more complicated than that in (1.18); the
functionC(u, v) can be rewritten in terms of the Beta function and the hypergeometric function
2F1, but the resulting expression is no simpler. (Details are left to the reader.) However it is easy
to show thatC(q′/p′, p′ + 1) ≤ B(q′/p′, p′ + 1)/3q

′
, so that we have the weaker but somewhat

more tractable estimate

ES
2n(f) ≤ B(q′/p′, q′ + 1)1/q′ |I|1+1/p′

3n
inf
s
‖f ′s‖pq,I .

Theorem 1.19.Letf ∈ W p
2 (I), 1 ≤ p ≤ ∞. Then forn ≥ 1,

(1.20) ET
n (f) ≤ B(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

2n2
‖f ′′‖p,I

and

(1.21) ES
2n(f) ≤ D(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

21/p32+1/p′n2
inf
s
‖f ′′s ‖p,I ,

where

D(u, v) =

∫ 3/2

0

tu−1|1− t|v−1 dt.

Inequality(1.20)is sharp, and when1 < p <∞ equality holds if and only if

(1.22) f ′′(t) = d
n∑
i=1

(
|Ji|2

4
− (t− ci)

2

)p′−1

χJi
(t),

whered ∈ R. Similarly, inequality(1.21) is sharp, and when1 < p < ∞ equality holds if and
only if

(1.23) f ′′(t) = d1

n∑
i=1

((
|Ii|2

36
− (t− ai)

2

)p′−1

χĨ1i (t) −
(

(t− ai)
2 − |Ii|2

36

)p′−1

χĨ2i (t)

+

(
|Ii|2

36
− (t− bi)

2

)p′−1

χĨ3i (t)

−
(

(t− bi)
2 − |Ii|2

36

)p′−1

χĨ4i (t)

)
+ d2t+ d3,

wheredi ∈ R, 1 ≤ i ≤ 3, and the intervals̃Iji , 1 ≤ j ≤ 4, defined in(5.2)below, are such that
the corresponding functions are positive.

Remark 1.20. Whenp = 1, p′ = ∞, and we interpretB(p′ + 1, p′ + 1)1/p′ as the limiting
value1/4. This follows immediately from the identityB(u, v) = Γ(u)Γ(v)/Γ(u+ v) and from
Stirling’s formula. (See, for instance, Whittaker and Watson [20].)

Remark 1.21. Whenp = ∞, (1.20) reduces to the classical estimate given above.

Remark 1.22.Like the functionC(u, v) in Theorem 1.15, the functionD(u, v) can be rewritten
in terms of the Beta function and the hypergeometric function2F1. However, the resulting
expression does not seem significantly better, and details are left to the reader.

Prior to Theorem 1.19, each of our results shows that for rough functions, the trapezoidal
rule is better than Simpson’s rule. More precisely, the constants in the sharp error bounds for
ET

2n(f) are less than or equal to the constants in the sharp error bounds forES
2n(f). (We use

ET
2n(f) instead ofET

n (f) since we want to compare numerical approximations with the same
number of data points.)
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TRAPEZOIDAL RULE AND SIMPSON’ S RULE 7

This is no longer the case for twice differentiable functions. Numerical calculations show
that, for instance, whenp = 10/9, the constant in (1.20) is smaller, but whenp = 10, (1.21)
has the smaller constant. Furthermore, the following analogue of Theorem 1.13 shows that
though the constants in Theorem 1.19 are sharp, Simpson’s rule is asymptotically better than
the trapezoidal rule.
Theorem 1.23.Givenf ∈ W p

2 (I), 1 ≤ p ≤ ∞,

(1.24) lim
n→∞

n2ET
n (f) =

∣∣∣∣ |I|212

∫
I

f ′′(t) dt

∣∣∣∣ ,
but

(1.25) lim
n→∞

n2ES
2n(f) = 0.

Remark 1.24. (Added in proof.) Given Theorems 1.13 and 1.23, it would be interesting to
compare the asymptotic behavior ofET

n (f) andES
2n(f) for extremely rough functions, say

those inΛα(I) andCBV (I). We suspect that in these cases their behavior is the same, but we
have no evidence for this. (We want to thank the referee for raising this question with us.)

1.3. Organization of the Paper. The remainder of this paper is organized as follows. In Sec-
tion 2 we make some preliminary observations and define notation that will be used in all of our
proofs. In Section 3 we prove Theorems 1.1 and 1.6 and Corollary 1.4. In Section 4 we prove
Theorems 1.8, 1.13 and 1.15. In Section 5 we prove Theorems 1.19 and 1.23.

Throughout this paper all notation is standard or will be defined when needed. Given an
interval I, |I| will denote its length. Givenp, 1 ≤ p ≤ ∞, p′ will denote the conjugate
exponent:1/p+ 1/p′ = 1.

2. PRELIMINARY REMARKS

In this section we establish notation and make some observations which will be used in the
subsequent proofs.

2.1. Estimating the Error. Given an intervalI = [a, b], for the trapezoidal rule we will always
have an equally spaced partition ofn + 1 points,xi = a + i|I|/n. Define the intervalsJi =
[xi−1, xi], 1 ≤ i ≤ n; then|Ji| = |I|/n.

For eachi, 1 ≤ i ≤ n, define

(2.1) Li =
|Ji|
2

(
f(xi−1) + f(xi)

)
−
∫
Ji

f(t) dt.

If we divide eachJi into two intervalsJ−i andJ+
i of equal length, then (2.1) can be rewritten as

(2.2) Li =

∫
J−i

(
f(xi−1)− f(t)

)
dt+

∫
J+

i

(
f(xi)− f(t)

)
dt.

Alternatively, if f is absolutely continuous, then we can apply integration by parts to (2.1) to
get that

(2.3) Li =

∫
Ji

(t− ci)f
′(t) dt,

whereci = (xi−1 +xi)/2 is the midpoint ofJi. If f ′ is absolutely continuous, then we can apply
integration by parts again to get

(2.4) Li =
1

2

∫
Ji

(
|Ji|2

4
− (t− ci)

2

)
f ′′(t) dt.
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8 D. CRUZ-URIBE AND C.J. NEUGEBAUER

From the definition of the trapezoidal rule (1.1) it follows immediately that

(2.5) ET
n (f) =

∣∣∣∣∣
n∑
i=1

Li

∣∣∣∣∣ ≤
n∑
i=1

|Li|,

and our principal problem will be to estimate|Li|.
We make similar definitions for Simpson’s rule. GivenI, we form a partition with2n + 1

points,xj = a+ j|I|/2n, 0 ≤ j ≤ 2n, and form the intervalsIi = [x2i−2, x2i], 1 ≤ i ≤ n. Then
|Ii| = |I|/n.

For eachi, 1 ≤ i ≤ n, define

(2.6) Ki =
|I|
6n

(
f(x2i−2) + 4f(x2i−1) + f(x2i)

)
−
∫
Ii

f(t) dt.

To get an identity analogous to (2.2), we need to partitionIi into four intervals of different
lengths. Define

ai =
2x2i−2 + x2i−1

3
bi =

2x2i + x2i−1

3
,

and let
I1
i = [x2i−2, ai], I2

i = [ai, x2i−1], I3
i = [x2i−1, bi], I4

i = [bi, x2i].

Then|I1
i | = |I4

i | = |I|/6n and|I2
i | = |I3

i | = |I|/3n, and we can rewrite (2.6) as

(2.7) Ki =

∫
I1i

(
f(x2i−2)− f(t)

)
dt+

∫
I2i

(
f(x2i−1)− f(t)

)
dt

+

∫
I3i

(
f(x2i−1)− f(t)

)
dt+

∫
I4i

(
f(x2i)− f(t)

)
dt.

If f is absolutely continuous we can apply integration by parts to (2.6) to get

(2.8) Ki =

∫
I−i

(t− ai)f
′(t) dt+

∫
I+i

(t− bi)f
′(t) dt.

If f ′ is absolutely continuous we can integrate by parts again to get

(2.9) Ki =
1

2

∫
I−i

(
|Ii|2

36
− (t− ai)

2

)
f ′′(t) dt+

1

2

∫
I+i

(
|Ii|2

36
− (t− bi)

2

)
f ′′(t) dt.

Whichever expression we use, it follows from the definition of Simpson’s rule (1.2) that

(2.10) ES
2n(f) =

∣∣∣∣∣
n∑
i=1

Ki

∣∣∣∣∣ ≤
n∑
i=1

|Ki|.

Finally, we want to note that there is a connection between Simpson’s rule and the trapezoidal
rule: it follows from the definitions (1.1) and (1.2) that

(2.11) S2n(f) =
4

3
T2n(f)− 1

3
Tn(f).

2.2. Modifying the Norm. In all of our results, we estimate the error in the trapezoidal rule
with an expression of the form

inf
r
‖fr‖,

where the infimum is taken over allr ∈ R. It will be enough to prove the various inequalities
with ‖f‖ on the righthand side: since the trapezoidal rule is exact on linear functions,ET

n (fr) =
ET
n (f) for all f andr. Further, we note that for eachf , there existsr0 ∈ R such that

‖fr0‖ = inf
r
‖fr‖.
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This follows since the norm is continuous inr and tends to infinity as|r| → ∞.
Similarly, in our estimates forES

2n(f), it will suffice to prove the inequalities with‖f‖ on the
righthand side instead ofinfs ‖fs‖: because Simpson’s rule is exact for polynomials of degree
3 or less,ES

n (f) = ET
n (fs), for s(x) = ax3 + bx2 + cx. Again the infimum is attained, since

the norm is continuous in the coefficients ofs and tends to infinity as|a|+ |b|+ |c| → ∞.
(The exactness of the Trapezoidal rule and Simpson’s rule is well-known; see, for example,

Ralston [13].)

3. FUNCTIONS IN Λα(I), 0 < α ≤ 1, AND CBV (I)

Proof of Theorem1.1. We first prove inequality (1.4). By (2.2), for eachi, 1 ≤ i ≤ n,

|Li| ≤
∫
J−i

|f(xi−1)− f(t)|dt+

∫
J+

i

|f(xi)− f(t)|dt

≤ ‖f‖Λα

∫
J−i

|xi−1 − t|α dt+ ‖f‖Λα

∫
J−i

|xi − t|α dt;

by translation and reflection,

= 2‖f‖Λα

∫
J−i

(t− xi−1)
α dt

= 2‖f‖Λα

|J−i |1+α

1 + α

=
|I|1+α‖f‖Λα

(1 + α)2αn1+α
.

Therefore, by (2.5)

(3.1) ET
n (f) ≤ |I|1+α‖f‖Λα

(1 + α)2αnα
,

and by the observation in Section 2.2 we get (1.4).
The proof of inequality (1.5) is almost identical to the proof of (1.4): we begin with inequality

(2.7) and argue as before to get

|Ki| ≤
2(1 + 2α+1)|I|1+α‖f‖Λα

(1 + α)61+αn1+α
,

which in turn implies (1.5).
To see that inequality (1.4) is sharp, fixn ≥ 1 and define the functionf as follows: on

[0, 1/n] let

f(x) =


xα, 0 ≤ x ≤ 1

2n∣∣∣∣x− 1

n

∣∣∣∣α , 1

2n
≤ x ≤ 1

n
.

Now extendf to the interval[0, 1] as a periodic function with period1/n. It is clear that
‖f‖Λα = 1, and it is immediate from the definition thatTn(f) = 0. Therefore,

ET
n (f) =

∫ 1

0

f(x) dx = 2n

∫ 1/2n

0

xα dx =
1

(1 + α)2αnα
,

which is precisely the righthand side of (3.1). �
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10 D. CRUZ-URIBE AND C.J. NEUGEBAUER

Proof of Corollary1.4. Inequalities (1.6) and (1.7) follow immediately from (1.4) and (1.5).
Recall that iff ∈ Λ1(I), thenf is differentiable almost everywhere,f ′ ∈ L∞(I) and‖f‖Λ1 =
‖f ′‖∞. (See, for example, Natanson [10].) Letr = (M +m)/2; then

‖f − rx‖Λ1 = ‖f ′ − r‖∞ =
M −m

2
.

We now show that (1.6) is sharp and that equality holds exactly when (1.8) holds. First note
that if (1.8) holds, then by (2.3),

Li =

∫
J+

i

(t− ci)M dt+

∫
J−i

(t− ci)mdt = ±|I|
2

8n2
(M −m),

and it follows at once from (2.5) that equality holds in (1.6).
To prove that (1.8) is necessary for (1.6) to hold, we consider two cases.

Case 1.M > 0 andm = −M . In this case,

ET
n (f) =

|I|2

4n
M.

Again by (2.3),

ET
n (f) ≤

∣∣∣∣∣
n∑
i=1

∫
Ji

(t− ci)f
′(t) dt

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣
∫
J−i

(t− ci)f
′(t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫
J+

i

(t− ci)f
′(t) dt

∣∣∣∣∣
≤ |I|2

8n2

n∑
i=1

(
‖f ′‖∞,J−i

+ ‖f ′‖∞,J+
i

)
≤ |I|2

8n
M +

|I|2

8n
M,

and since the first and last terms are equal, equality must hold throughout. Therefore, we must
have that

(3.2) |L−i | = ‖f ′‖∞,J−i

∫
J−i

(ci − t) dt, |L+
i | = ‖f ′‖∞,J+

i

∫
J+

i

(t− ci) dt,

and

(3.3)
|I|2

8n2

n∑
i=1

‖f ′‖∞,J+
i

=
|I|2

8n2

n∑
i=1

‖f ′‖∞,J−i
=
|I|2

8n
M.

Hence, by (3.2), onJi
f ′(t) = αiχJ+

i
(t)− βiχJ−i (t),

with eitherαi, βi > 0 for all i, orαi, βi < 0 for all i. Without loss of generality we assume that
αi, βi > 0.

Further, we must have thatM = sup{αi : 1 ≤ i ≤ n}, so it follows from (3.3) thatαi = M
for all i. Similarly, we must have thatβi = M , 1 ≤ i ≤ n. This completes the proof of Case 1.

Case 2.The general case:m < M . Let r = (M +m)/2; then

ET
n (f) =

|I|2

8n
(M −m) = ET

n (fr).
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Since Case 1 applies tofr, we have that

f ′r(t) =
M −m

2

n∑
i=1

(
χJ+

i
(t)− χJ−i (t)

)
.

This completes the proof sincef ′ = f ′r + r.

The proof that (1.7) is sharp and equality holds if and only if (1.9) holds is essentially the
same as the above argument, and we omit the details. �

Proof of Theorem1.6. We first prove (1.10). By (2.2) and the definition of the norm inCBV (I),
for eachi, 1 ≤ i ≤ n,

|Li| ≤
∫
J−i

|f(xi−1)− f(t)|dt+

∫
J+

i

|f(xi)− f(t)|dt

≤ ‖f‖BV,J−i |J
−
i |+ ‖f‖BV,J+

i
|J+
i |

=
1

2n
‖f‖BV,Ji

.

If we sum overi, we get

ET
n (f) ≤ 1

2n

n∑
i=1

‖f‖BV,Ji
=

1

2n
‖f‖BV,I ;

inequality (1.10) now follows from the remark in Section 2.2.
To show that inequality (1.10) is sharp, fixn ≥ 1 and fork ≥ 1 defineak = 4−k/n. We now

define the functionfk on I = [0, 1] as follows: on[0, 1/n] let

fk(x) =



1− x

an
0 ≤ x ≤ an

0 an ≤ x ≤ 1

n
− an

1 +

(
x− 1

n

)
an

1

n
− an ≤ x ≤ 1

n
.

Extendfk to [0, 1] periodically with period1/n. It follows at once from the definition that
‖fk‖BV,[0,1] = 2n. Furthermore,

ET
n (fk) =

∣∣∣∣Tn(fk)− ∫ 1

0

fk(t) dt

∣∣∣∣ = 1− akn = 1− 4−k.

Thus the constant1/2n in (1.10) is the best possible.
We now consider when equality can hold in (1.10). Iff(t) = mt + b, then we have equality

since both sides are zero.
For the converse implication we first show that iff ∈ CBV (I) is not constant onI, then

(3.4) ET
n (f) <

|I|
2n
‖f‖BV,I .

By the above argument, it will suffice to show that for somei,

|Li| <
|I|
2n
‖f‖BV,Ji

.

Sincef is non-constant, choosei such thatf is not constant onJi. Sincef is continuous, the
function |f(xi−1) + f(xi) − 2f(t)| achieves its maximum at somet ∈ Ji, and, again because
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12 D. CRUZ-URIBE AND C.J. NEUGEBAUER

f is non-constant, it must be strictly smaller than its maximum on a set of positive measure.
Hence on a set of positive measure,|f(xi−1) + f(xi)− 2f(t)| < ‖f‖BV,Ji

, and so (3.4) follows
from (2.1), since we can rewrite this as

Li =
1

2

∫
Ji

(
f(xi−1) + f(xi)− 2f(t)

)
dt.

To finish the proof, note that as we observed in Section 2.2, there existsr0 such that‖fr0‖BV,I =
infr ‖fr‖BV,I . Hence, we would have that

ET
n (f) = ET

n (fr0) ≤
|I|
2n
‖fr0‖BV,I .

If f(t) were not of the formmt + b, so thatfr0 could not be a constant function, then by (3.4),
the inequality would be strict. Hence equality can only hold iff is linear.

The proof that inequality (1.11) holds is almost identical to the proof of (1.10): we begin with
inequality (2.7) and argue exactly as we did above.

The proof that inequality (1.11) is sharp requires a small modification to the example given
above. Fixn ≥ 1 and, as before, letak = 4−k/n. Define the functionfk on I = [0, 1] as
follows: on[0, 1/n] let

fk(x) =



0 0 ≤ x ≤ 1

2n
− an

1 +

(
x− 1

2n

)
an

1

2n
− an ≤ x ≤ 1

2n

1 +

(
1
2n
− x
)

an

1

2n
≤ x ≤ 1

2n
+ an

0
1

2n
+ an ≤ x ≤ 1

n
.

Extendfk to [0, 1] periodically with period1/n. Then we again have‖fk‖BV,[0,1] = 2n; further-
more,

ES
2n(fk) =

∣∣∣∣S2n(fk)−
∫ 1

0

fk(t) dt

∣∣∣∣ =
2

3
− akn =

2

3
− 4−k.

Thus the constant1/3n in (1.11) is the best possible.
The proof that equality holds in (1.11) only when both sides are zero is again very similar to

the above argument, replacingLi byKi and using (2.6) instead of (2.1). �

4. FUNCTIONS IN W p
1 (I) AND W pq

1 (I), 1 ≤ p, q ≤ ∞

Proof of Theorem1.8. As we noted in Remarks 1.9 and 1.11, it suffices to consider the case
1 < p <∞.

We first prove inequality (1.12). If we apply Hölder’s inequality to (2.3), then for alli,
1 ≤ i ≤ n,

|Li| ≤ ‖f ′‖p,Ji

(∫
Ji

|t− ci|p
′
dt

)1/p′

.

An elementary calculation shows that∫
Ji

|t− ci|p
′
dt =

|Ji|p
′+1

(p′ + 1)2p′
.
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Hence, by (2.5) and by Hölder’s inequality for series,

ET
n (f) ≤ |I|1+1/p′

2(p′ + 11/p′)n1+1/p′

n∑
i=1

(∫
Ji

|f ′(t)|p dt
)1/p

≤ |I|1+1/p′

2(p′ + 1)1/p′n1+1/p′

(∫
I

|f ′(t)|p dt
)1/p

n1/p′

=
|I|1+1/p′

2(p′ + 1)1/p′n
‖f ′‖p,I .

Inequality (1.12) now follows from the observation in Section 2.2.
The proof of inequality (1.13) is essentially the same as the proof of inequality (1.12), begin-

ning instead with (2.8) and using the fact that∫
I−i

|t− ai|p
′
dt+

∫
I+i

|t− bi|p
′
dt =

2(1 + 2p
′+1)|I|p′+1

(p′ + 1)6p′+1np′+1
.

We will now show that inequality (1.12) is sharp. We writeLi = L+
i + L−i , where

(4.1) L+
i =

∫
J+

i

(t− ci)f
′(t)dt, L−i =

∫
J−i

(t− ci)f
′(t)dt.

Also note that ∫
J+

i

(t− ci)
p′dt =

∫
J−i

(ci − t)p
′
dt =

|I|p′+1

(p′ + 1)(2n)p′+1
.

We first assume thatf ′ has the desired form. A pair of calculations shows that

ET
n (f) = 2|d1|

|I|p′+1n

(p′ + 1)(2n)p′+1
, ‖f ′ − d2‖p,I = |d1|

|I|(p′+1)/p(2n)1/p

(p′ + 1)1/p(2n)(p′+1)/p
,

and since
p′ + 1

p
= p′ − 1

p′
, and

2n

(2n)p′
=

1

(2n)p′−1
,

we have the desired equality.
To show the converse, we first consider when equality holds withr = 0. Observe that by the

above argument,

ET
n (f) =

∣∣∣∣∣
n∑
i=1

Li

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(L+
i + L−i )

∣∣∣∣∣
≤

n∑
i=1

|L+
i |+

n∑
i=1

|L−i |

≤ |I|1+1/p′

(p′ + 1)1/p′(2n)1+1/p′

n∑
i=1

(
‖f ′‖p,J+

i
+ ‖f ′‖p,J−i

)
≤ |I|1+p′

(p′ + 1)1/p′(2n)1+1/p′
‖f ′‖p,I(2n)1/p′

=
|I|1+p′

(p′ + 1)1/p′2n
‖f ′‖p,I .
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Since the first and last terms are equal, each inequality must be an equality. Hence allL+
i and

L−i have the same sign; without loss of generality we may assume they are all positive. By the
criterion for equality in Hölder’s inequality onJi (see, for example, Rudin [16, p. 63]),

f ′(t) = αi(t− ci)
p′−1χJ+

i
(t)− βi(ci − t)p

′−1χJ−i (t),

whereαi, βi > 0. (Here we used the assumption thatL+
i , L

−
i > 0.)

Next we claim thatα1 = β1 = · · · = αn = βn. To see this, first note that

ET
n (f) =

n∑
i=1

(∫
J+

i

(t− ci)f
′(t)dt+

∫
J−i

(ci − t)f ′(t)dt

)

=
n∑
i=1

(αi + βi)
|I|p′+1

(p′ + 1)(2n)p′+1
,

and this equals

|I|1+1/p′

(p′ + 1)1/p′
‖f ′‖p,I =

|I|1+1/p′

(p′ + 1)1/p′2n

(
n∑
i=1

(αpi + βpi )
|I|p′+1

(p′ + 1)(2n)p′+1

)1/p

=

(
n∑
i=1

(αpi + βpi )

)1/p
|I|1+1/p′+(p′+1)/p

(p′ + 1)(2n)1+(p′+1)/p
.

Since1 + 1/p′ + (p′ + 1)/p = p′ + 1 and2n(2n)(p′+1)/p = (2n)p
′+1−1/p′, it follows that

n∑
i=1

(αi + βi) =

(
n∑
i=1

(αpi + βpi )

)1/p

(2n)1/p′ .

This is equality in Hölder’s inequality for series, which occurs precisely when all theαi’s and
βi’s are equal. (See, for example, Hardy, Littlewood and Pólya [8, p. 22].) This establishes
when equality holds whenr = 0.

Finally, as we observed in Section 2.2,infr ‖f ′r‖p,I = ‖f ′r0‖p,I for somer0 ∈ R. Since
En(f) = En(fr0) we conclude that (1.12) holds if and only if (1.14) holds.

The proof that (1.13) is sharp and that equality holds if and only if (1.15) holds is essentially
the same as the above argument and we omit the details. �

Proof of Theorem1.13. We first prove the limit (1.16) forf ∈ C1(I). DefineL−i andL+
i as in

(4.1), and define the four valuesM±
i = max{f ′(t) : t ∈ J±i }, m±

i = min{f ′(t) : t ∈ J±i }.
Then, since ∫

J+
i

(t− ci)dt =
1

8

|I|2

n2
=

∫
J−i

(ci − t)dt,

we have that

m+
i

|I|2

8n2
≤ L+

i ≤M+
i

|I|2

8n2
, −M−

i

|I|2

8n2
≤ L−i ≤ −m−

i

|I|2

8n2
.

Hence,
|I|2

8n
(m+

i −M−
i ) ≤ nLi ≤

|I|2

8n
(M+

i −m−
i );

this in turn implies that

(4.2)
|I|
8

n∑
i=1

|I|
n

(m+
i −M−

i ) ≤ n

n∑
i=1

Li ≤
|I|
8

n∑
i=1

|I|
n

(M+
i −m−

i ).
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Sincef ′ ∈ C(I),

lim
n→∞

n∑
i=1

|I|
n

(M+
i −m−

i ) =

∫
I

f ′(t) dt−
∫
I

f ′(t) dt = 0.

Similarly, the left side of (4.2) converges to 0 asn→∞. This yields (1.16) iff ∈ C1(I).
We will now show that (1.16) holds in general. If1 < p ≤ ∞, W p

1 (I) ⊂ W 1
1 (I), so we

may assume without loss of generality thatp = 1. Fix ε > 0 and chooseg ∈ C1(I) such that
‖f ′ − g′‖1,I ≤ 2ε/|I|. Then

(4.3) ET
n (f) ≤ ET

n (g) + ET
n (f − g).

If we let

(4.4) φn(t) =
n∑
i=1

(t− ci)χJi
(t),

then

ET
n (f − g) =

∣∣∣∣∫
I

φn(t)(f
′ − g′)(t)dt

∣∣∣∣ .
Hence,

|nET
n (f − g)| ≤ n‖f ′ − g′‖1,I‖φn‖∞,I ≤ ε.

Therefore, by (4.3) and the special case above,

0 ≤ lim sup
n→∞

nET
n (f) ≤ ε;

sinceε > 0 is arbitrary, we get that (1.16) holds.
We can prove (1.17) in essentially the same way, beginning by rewriting (2.8) as

Ki =

∫
I1i

(ai − t)f ′(t) dt+

∫
I2i

(t− ai)f
′(t) dt+

∫
I3i

(bi − t)f ′(t) dt+

∫
I4i

(t− bi)f
′(t) dt,

where the intervalsIj, 1 ≤ j ≤ 4, are defined as in (2.7). Alternatively, it follows from the
identity (2.11), the triangle inequality, and (1.16):

ES
2n(f) =

∣∣∣∣S2n(f)−
∫
I

f(t) dt

∣∣∣∣
≤ 4

3

∣∣∣∣T2n(f)−
∫
I

f(t) dt

∣∣∣∣+ 1

3

∣∣∣∣Tn(f)−
∫
I

f(t) dt

∣∣∣∣
=

4

3
ET

2n(f) +
1

3
ET
n (f).

To see that (1.16) is sharp, fixa > 1; without loss of generality we may assumea = 1 + r,
0 < r < 1.

We define a functionf on [0, 1] as follows: forj ≥ 1 define the intervalsIj = (2−j, 2−j+1].
Define the function

g(t) =
∞∑
j=1

2(1−r)jχIj .

It follows immediately thatg ∈ Lp[0, 1] if 1 ≤ p < 1/(1− r). Now definef by

f(t) =

∫ t

0

g(s) ds;

thenf ∈ W p
1 [0, 1] for p in the same range.
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Fix k > 1 and letn = 2k. Then, sincef is linear on each intervalIj, f(0) = 0, and since the
trapezoidal rule is exact on linear functions,

(4.5) ET
n (f) =

∣∣∣∣∣2−k−1f(2−k)−
∫ 2−k

0

f(t) dt

∣∣∣∣∣ .
Again sincef is linear on eachIj,∫ 2−k

0

f(t) dt =
∞∑

j=k+1

∫
Ij

f(t) dt =
∞∑

j=k+1

2−j−1
(
f(2−j) + f(2−j+1)

)
Furthermore, for allj,

f(2−j) =

∫ 2−j

0

g(t) dt =
∞∑

i=j+1

2−ri =
2r

2r − 1
· 2−r(j+1) =

2−rj

2r − 1
.

Hence,

2−k−1f(2−k) =
n−a

2(2r − 1)
,

∞∑
j=k+1

2−j−1f(2−j) =
n−a

2(2r − 1)(2a − 1)
,

∞∑
j=k+1

2−j−1f(2−j+1) =
2rn−a

2(2r − 1)(2a − 1)
.

If we combine these three identities with (4.5) we get that

ET
n (f) =

n−a

2(2r − 1)

∣∣∣∣1− 1 + 2r

2a − 1

∣∣∣∣ .
The quantity in absolute values is positive if0 < r < 1; hencenaET

n (f) cannot converge to
zero asn→∞.

This example also shows that (1.17) is sharp. Fixn = 2k and fixa > 1 as before. Then

ES
2n(f) =

∣∣∣∣∣2−k+2f(2−k−1) + 2−kf(2−k)

3
−
∫ 2−k

0

f(t) dt

∣∣∣∣∣ ,
and the computation proceeds exactly as it did after (4.5). Alternatively, we can again argue
using (2.11):

naES
2n(f) ≥ 4na

3
ET

2n(f)− na

3
ET
n (f),

and if1 < a < 2 the limit of the righthand side asn→∞ is positive. �

Proof of Theorem1.15. We begin by recalling two definitions. For more information, see Stein
and Weiss [17]. Given a functionf on an intervalI, defineλf , the distribution function off , by

λf (y) = |{x ∈ I : |f(x)| > y}|,

and definef ∗, the non-increasing rearrangement off , on [0, |I|] by

f ∗(t) = inf{y : λf (y) ≤ t}.
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TRAPEZOIDAL RULE AND SIMPSON’ S RULE 17

We can now prove that (1.18) holds. Fixn and defineφn as in (4.4). It follows at once that

λφn(y) =


0, y ≥ |I|

2n

|I| − 2ny, 0 < y <
|I|
2n
,

which in turn implies thatφ∗n(t) = (|I| − t)/(2n). Hence, by an inequality of Hardy and
Littlewood (see, for example Bennett and Sharpley [1, p. 44]) and Hölder’s inequality,

ET
n (f) =

∣∣∣∣∫
I

φn(t)f
′(t) dt

∣∣∣∣
≤
∫ |I|

0

φ∗n(t)(f
′)∗(t) dt

=

∫ |I|

0

t1/p−1/q(f ′)∗(t)t1/q−1/pφ∗n(t) dt

≤ ||f ′||pq,I

(∫ |I|

0

t(1/q−1/p)q′φ∗n(t)
q′dt

)1/q′

= ||f ′||pq,I

(
1

(2n)q′

∫ |I|

0

tq
′/p′−1(|I| − t)q

′
dt

)1/q′

= ||f ′||pq,I
|I|(1+1/p′)

2n
B

(
q′

p′
, q′ + 1

)1/q′

.

By the observation in Section 2.2, (1.18) now follows at once.
The proof of (1.19) is similar and we sketch the details. Define

ψn(t) =
n∑
i=1

(
(t− ai)χI−i (t) + (t− bi)χI+i (t)

)
.

Then

λψn(y) =


|I| − 4ny 0 ≤ y ≤ |I|

6n

2|I|
3

− 2ny
|I|
6n

≤ y ≤ |I|
3n
,

and

ψ∗n(t) =


|I|
3n

− t

2n
0 ≤ t ≤ |I|

3

|I|
4n

− t

4n

|I|
3
≤ t ≤ |I|.

We now argue as above:

ES
2n(f) ≤

∫ |I|

0

ψ∗n(t)(f
′)∗(t) dt

≤ ||f ′||pq,I

(∫ |I|

0

tq
′/p′−1ψ∗n(t)

q′ dt

)1/q′

.
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18 D. CRUZ-URIBE AND C.J. NEUGEBAUER

The last integral naturally divides into two integrals on[0, |I|/3] and[|I|/3, |I|], and by a change
of variables we get that it equals

|I|q′/p′+q′

nq′
C

(
q′

p′
, q′ + 1

)
.

Inequality (1.19) then follows at once.
We now consider the question of when equality holds in (1.18). Examining the proof above,

we see that if the first and last terms are equal, then equality must hold in Hölder’s inequality
and in the inequality of Hardy and Littlewood. In particular, we must have that for somec ∈ R,

t1/p−1/q(f ′)∗(t) = c
(
t1/q−1/p(|I| − t)

)q′−1
,

or equivalently,

(4.6) (f ′)∗(t) = ctq
′/p′−1(|I| − t)q

′−1,

and

(4.7)

∣∣∣∣∫
I

φn(t)f
′(t) dt

∣∣∣∣ =

∫ |I|

0

φ∗n(t)(f
′)∗(t) dt.

Note that when1 ≤ q < p then q′ > p′, so (4.6) implies that(f ′)∗(0) = 0. Hencef ′

is identically zero sof must be constant. For a discussion of when equality (4.7) holds, see
Bennett and Sharpley [1].

When q ≥ p, these two conditions are sufficient for equality to hold in (1.18). Given a
functionf with these properties, we have that

ET
n (f) =

c

2n

∫ |I|

0

tq
′/p′−1(|I| − t)q

′
dt =

c

2n
|I|(1+1/p′)q′B

(
q′

p′
, q′ + 1

)
.

Similarly, we have that

‖f ′‖qpq,I = cq
∫ |I|

0

tq/p−1t(q
′/p′−1)q(|I| − t)q

′
dt.

Since
q

p
− 1 +

(
q′

p′
− 1

)
q = q

(
1

p
− 1

)
− 1 +

q′q

p′
=

(q′ − 1)q

p′
− 1 =

q′

p′
− 1,

we get

‖f‖qpq,I = cq|I|(1+1/p′)q′B

(
q′

p′
, q′ + 1

)
.

Hence, sinceq′/q + 1 = q′,

B

(
q′

p′
, q′ + 1

)1/q′ |I|1+1/p′

2n
‖f ′‖pq,I =

c

2n
B

(
q′

p′
, q′ + 1

)
|I|(1+1/p′)(q′/q+1) = ET

n (f).

A similar argument shows that equality holds in (1.19) if and only if∣∣∣∣∫
I

ψn(t)f
′(t) dt

∣∣∣∣ =

∫ |I|

0

φ∗n(t)(f
′)∗(t) dt,

and for somec ∈ R,

t1/p−1/q(f ′)∗(t) = c
(
t1/q−1/pψ∗n(t)

)q′−1
.

Again, when1 ≤ q < p this implies thatf ′ is identically zero, so equality holds only whenf is
constant. �
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5. FUNCTIONS IN W p
2 (I), 1 ≤ p ≤ ∞

Proof of Theorem1.19. We first prove inequality (1.20). When1 < p ≤ ∞ we apply Hölder’s
inequality to (2.4) to get

(5.1) |Li| ≤
1

2
‖f ′′‖p,Ji

(∫
Ji

(
|Ji|2

4
− (t− ci)

2

)p′
dt

)1/p′

.

We evaluate the integral on the righthand side. By translation and a change of variables, if
x = |I|/n, we have that∫

Ji

(
|Ji|2

4
− (t− ci)

2

)p′
dt =

∫ x

0

(
x2

4
−
(
t− x

2

)2
)p′

dt

=

∫ x

0

(xt− t2)p
′
dt

= x2p′+1

∫ 1

0

sp
′
(1− s)p

′
ds

= B(p′ + 1, p′ + 1)
|I|2p′+1

n2p′+1
.

If we combine this with (5.1) and apply Hölder’s inequality for series we get

ET
n (f) ≤

n∑
i=1

|Li|

≤
n∑
i=1

B(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

2n2+1/p′
‖f ′′‖p,Ji

≤ B(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

2n2
‖f ′′‖p,I ,

and this is inequality (1.20).
Whenp = 1 andp′ = ∞, a nearly identical argument again yields (1.20).
The proof of (1.21) is very similar to that of (1.20). We begin by applying Hölder’s inequality

to (2.9):

|Ki| ≤
1

2
‖f ′′‖p,I−i

(∫
I−i

∣∣∣∣ |Ii|236
− (t− ai)

2

∣∣∣∣p′ dt
)1/p′

+
1

2
‖f ′′‖p,I+i

(∫
I+i

∣∣∣∣ |Ii|236
− (t− bi)

2

∣∣∣∣p′ dt
)1/p′

,

we estimate each integral in turn. If we letx = |I|/n, then by translation and a change of
variables we have that∫

I−i

∣∣∣∣ |Ii|236
− (t− ai)

2

∣∣∣∣p′ dt =

∫ x/2

0

∣∣∣∣x2

36
−
(
t− x

6

)2
∣∣∣∣p′ dt

=

∫ x/2

0

tp
′
∣∣∣x
3
− t
∣∣∣p′ dt
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20 D. CRUZ-URIBE AND C.J. NEUGEBAUER

=
(x

3

)2p′+1
∫ 3/2

0

sp
′|1− s|p′ds

=

(
|I|
3n

)2p′+1

D(p′ + 1, p′ + 1).

A similar argument shows that∫
I+i

∣∣∣∣ |Ii|236
− (t− bi)

2

∣∣∣∣p′ dt =

(
|I|
3n

)2p′+1

D(p′ + 1, p′ + 1).

Therefore, by Hölder’s inequality for series, we have that

ES
2n(f) ≤

n∑
i=1

|Ki|

≤ D(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

2(3n)2+1/p′

n∑
i=1

(
‖f ′′‖p,I−i + ‖f ′′‖p,I+i

)
≤ D(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

21/p32+1/p′n2
‖f ′′‖p,I .

If we now apply the observation in Section 2.2 we get (1.21).
The proofs that (1.20) holds if and only if (1.22) holds, and that (1.22) holds if and only if

(1.23) holds, are essentially the same as the proof of sharpness in Theorem 1.8 and we omit the
details, except to note that in (1.23) we define the intervalsĨki , 1 ≤ k ≤ 4, as follows. Let

ãi =
ai + x2i−1

2
, b̃i =

bi + x2i−1

2
,

and define

(5.2) Ĩ1
i = [x2i−2, ãi], Ĩ2

i = [ãi, x2i−1], Ĩ3
i = [x2i−1, b̃i], Ĩ4

i = [b̃i, x2i].

�

Proof of Theorem1.23. We first prove that (1.24) holds iff ∈ C2(I). DefineMi = max{f ′′(i) :
t ∈ Ji} andmi = min{f ′′(t) : t ∈ Ji}. Since∫

Ji

(
|Ji|2

4
− (t− ci)

2

)
dt =

|I|3

6n3
,

it follows from (2.4) that
|I|3

12n3
mi ≤ Li ≤

|I|3

12n3
Mi.

If we sum overi we get that

|I|2

12

∑
i

|I|
n
mi ≤ n2

n∑
i=1

Li ≤
|I|2

12

∑
i

|I|
n
Mi.

Sincef ′′ is continuous, the left and righthand sides converge to

|I|2

12

∫
I

f ′′(t) dt,

and (1.24) follows at once.

J. Inequal. Pure and Appl. Math., 3(4) Art. 49, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


TRAPEZOIDAL RULE AND SIMPSON’ S RULE 21

We will now show that (1.24) holds in general. SinceW p
2 (I) ⊂ W 1

2 (I) if p > 1, we may
assume without loss of generality thatp = 1. Fix ε > 0 and chooseg ∈ C2(I) such that

‖f ′′ − g′′‖1,I <
4ε

3|I|2
.

In particular, this implies that∣∣∣∣ |I|212

∫
I

f ′′(t) dt− |I|2

12

∫
I

g′′(t) dt

∣∣∣∣ < ε

3
,

By inequality (1.20) this also implies that

n2ET
n (f − g) <

ε

3
.

Further, by the special case above, if we choosen sufficiently large,∣∣∣∣n2ET
n (g)−

∣∣∣∣ |I|212

∫
I

g′′(t) dt

∣∣∣∣∣∣∣∣ < ε

3
.

Therefore, since

n2ET
n (g)− n2ET

n (f − g) ≤ n2ET
n (f) ≤ n2ET

n (g) + n2ET
n (f − g),

it follows that ∣∣∣∣n2EnT (f)−
∣∣∣∣ |I|212

∫
I

f ′′(t) dt

∣∣∣∣∣∣∣∣ < ε.

Sinceε > 0 is arbitrary, we have shown (1.24) holds in general.
Finally, to show (1.25) we first note that the above argument proves the slightly stronger

result that

lim
n→∞

n2

(
Tn(f)−

∫
I

f(t) dt

)
=
|I|2

12

∫
I

f ′′(t) dt.

Then by the identity (2.11),

n2ES
2n(f) =

∣∣∣∣(2n)2

(
1

3
T2n(f)− 1

3

∫
I

f(t) dt

)
− n2

(
1

3
Tn(f)− 1

3

∫
I

f(t) dt

)∣∣∣∣ ,
and (1.25) follows immediately. �
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[4] S.S. DRAGOMIR, C. BUŞE, M.V. BOLDEAAND L. BRAESCU, A generalization of the
trapezoidal rule for the Riemann-Stieltjes integral and applications,Nonlinear Analysis Fo-
rum, 6(2) (2001), 337–351.RGMIA Res. Rep. Coll., 3(4) (2000), Article 2. [ONLINE:
http://rgmia.vu.edu.au/v3n4.html ]

[5] S.S. DRAGOMIR, A generalization of the Ostrowski integral inequality for mappings whose
derivatives belong toLp([a, b]) and applications to numerical integration,J. Math. Anal. Appl.,
255(2001), 605–626.

[6] S. DUBUC AND F. TODOR, La règle du trapèze appliquée à quelques fonctions sans dérivées,
Canad. Math. Bull.,26 (1983), 425–429.

J. Inequal. Pure and Appl. Math., 3(4) Art. 49, 2002 http://jipam.vu.edu.au/

http://rgmia.vu.edu.au/v3n4.html
http://jipam.vu.edu.au/


22 D. CRUZ-URIBE AND C.J. NEUGEBAUER

[7] A. GHIZZETTI AND A. OSSICINI,Quadrature Formulae, Academic Press, New York, 1970.

[8] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge University Press,
Cambridge, 1952.

[9] M. KIM AND C.J. NEUGEBAUER, Sharp bounds for integral means,J. Math. Anal. Appl., to
appear.

[10] I. P. NATANSON,Theorie der Funktionen einer reellen Veränderlichen, Akademie-Verlag, Berlin,
1954.

[11] G. PEANO, Resto nelle formule di quadratura espresso con un integrale definito,Atti Accad. naz.
Lincei, Rend., Cl. sci. fis. mat. nat., (5) 22-I (1913), 562-9.

[12] G. PÓLYA AND G. SZEGÖ,Problems and Theorems in Analysis, Vol. 1, Translated from the
German by D. Aeppli, Grundlehren der Mathematischen Wissenschaften 193, Springer-Verlag,
New York, 1972.

[13] A. RALSTON,A First Course in Numerical Analysis, McGraw-Hill, New York, 1965.

[14] Q. RAHMAN AND G. SCHMEISSER, Characterization of the speed of convergence of the trape-
zoidal rule,Numer. Math., 57 (1990), 123–138.

[15] E. ROZEMA, Estimating the error in the trapezoidal rule,Amer. Math. Monthly,87 (1980), 124–
128.

[16] W. RUDIN, Real and Complex Analysis,Third Ed., McGraw-Hill, New York, 1987.

[17] E. STEINAND G. WEISS,Introduction to Fourier Analysis in Euclidean Spaces, Princeton Univ.
Press, Princeton, 1971.

[18] A.H. STROUD, Estimating quadrature errors for functions with low continuity,SIAM J. Numer.
Anal., 3 (1966), 420–424.

[19] R. VON MISES, Über allgemeine quadraturformeln,J. Reine Angew. Math., 174 (1935), 56–67;
reprinted in,Selected Papers of Richard von Mises, Vol. 1, 559–574, American Mathematical So-
ciety, Providence, 1963.

[20] E.T. WHITTAKER AND G.N. WATSON,A Course of Modern Analysis, Cambridge University
Press, Cambridge, 1965.

J. Inequal. Pure and Appl. Math., 3(4) Art. 49, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	1.1. Overview of the Problem
	1.2. Statement of Results
	1.3. Organization of the Paper

	2. Preliminary Remarks
	2.1. Estimating the Error
	2.2. Modifying the Norm

	3. Functions in (I), 0<1, and CBV(I)
	4. Functions in W1p(I) and W1pq(I), 1p,q
	5. Functions in W2p(I), 1p
	References

