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ABSTRACT. This paper deals with the second order boundary value problem with integral bound-
ary conditions on a half-line:

(p(6)a' (1))’ + 9(0)f (1. (t)) = 0, ae. in(0, c0),
20) = [ atslgds, Jim ple)s' () = p0)2'0)

A new result on the existence of positive solutions is obtained. The interesting points are: firstly,
the boundary value problem involved in the integral boundary condition on unbounded domains;
secondly, we employ a new tool — the recent Leggett-Williams norm-type theorem for coinci-
dences and obtain positive solutions. Also, an example is constructed to illustrate that our result
here is valid.
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1. INTRODUCTION

In this paper, we study the existence of positive solutions to the following boundary value
problem at resonance:

(1.1) (p(t)2'(t)) + g(t) f(t,z(t)) =0, a.e.in(0,00),
(1.2 o0) = [ ate)g(e)ds, i p0' (1) = p(0)2' 0,

whereg € L'[0,00) with g(t) > 0 on[0,00) and [;° g(s)ds = 1, p € C[0,00) N C*(0, 0),
5 € L'0,00), 57 5imdt < Landp(t) > 00on|0, c0).
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Second-order boundary value problems (in short: BVPS) on infinite intervals, arising from the
study of radially symmetric solutions of nonlinear elliptic equations and models of gas pressure
in a semi-infinite porous mediurn [10], have received much attention, to identify a few, we refer
the readers ta [9] -+ [11] and references therein. For examplg] in [9], Lian and Ge studied the
following second-order BVPs on a half-line

(1.3) "(t) = f(t,z(t),2' (), 0<t<oo,
(1.4) 2(0) = a(n), lima'(t) =0

and

(1.5) 2"(t) = f(t,z(t),2'(t)) + e(t), 0<t< oo,
(1.6) 2(0) = 2(n),  lim 2'(t) = 0,

By using Mawhin’s continuity theorem, they obtained the existence results.
N. Kosmanov in[[11] considered the second-order nonlinear differential equation at resonance

(1.7) (p)u'(t))" = f(t u(t),w'(t), a.e.in(0,00)
with two sets of boundary conditions:

(1.8) ' (0) = 0, Z riw(T3) = Jim u({)
and -

(1.9) u(0) =0, Z pi(T;) = Jim u().

The author established existence theorems by the coincidence degree theorem of Mawhin under
the condition thad """ | x; = 1.

Although the existing literature on solutions of BVPs is quite wide, to the best of our knowl-
edge, only a few papers deal with the existence of positive solutions to BVPs at resonance. In
particular, there has been no work done for the boundary value problems with integral bound-
ary conditions on a half-line, such as the BYP [1.1) —|(1.2). Moreover, our main approach is
different from the existing ones and our main ingredient is the Leggett-Williams norm-type the-
orem for coincidences obtained by O’Regan and Zima [4], which is a new tool used to study
the existence of positive solutions for nonlocal BVPs at resonance. An example is constructed
to illustrate that our result here is valid and almost sharp.

2. RELATED LEMMAS

For the convenience of the reader, we review some standard facts on Fredholm operators
and cones in Banach spaces. LétY be real Banach spaces. Consider a linear mapping
L :dom L C X — Y and a nonlinear operatdy : X — Y. Assume that
1° L is a Fredholm operator of index zero, i.bn L is closed andlim Ker . = codim Im L <
Q.
The assumption“limplies that there exist continuous projectidis X — X and@ : Y —
Y such thalm P = Ker L andKer @ = Im L. Moreover, sincelim Im () = codim Im L, there
exists an isomorphisnt : Im () — Ker L. Denote byL, the restriction of_ to Ker P Ndom L.
Clearly, L, is an isomorphism fronkKer P N dom L to Im L, we denote its inverse bi, :
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ImL — Ker P Ndom L. Itis known (seel[3]) that the coincidence equation = Nz is
equivalent to

r=(P+JQN)x+ Kp(I —Q)Nzx.

Let C' be a cone inX such that
() px € Cforallx € C'andp > 0,
(il) z, —x € C'impliesz = 0.
It is well known thatC' induces a partial order iX by

x =y ifandonlyif y—xeC.
The following property is valid for every cone in a Banach space

Lemma 2.1([[7]). LetC' be a cone inX. Then for every. € C' \ {0} there exists a positive
numbero(u) such that

||z + ul|| > o(u)||z|| forall zeC.

Lety : X — C be a retraction, that is, a continuous mapping such+fat = z for all
x e C. Set

UV:=P+JQN+K,(I —Q)N and VU, :=Von.
In order to prove the existence result, we present here a definition.

Definition 2.1. f : [0,00) x R — R is called ag-Carattéodory function if

(Al) for eachu € R, the mapping — f(¢,u) is Lebesgue measurable inoco),

(A2) fora.e.t € [0,00), the mapping: — f(¢,u) is continuous ofR,

(A3) for eachl > 0 andg € L'[0,00), there existsy; : [0,00) — [0,00) satisfying
15~ 9(s)au(s)ds < oo such that

lul <1 implies |f(t,u)| < o(t) fora.e. te€|0,00).
We make use of the following result due to O’Regan and Zima.

Theorem 2.2([4]). Let C' be a cone inX and let);, {2, be open bounded subsets.%fwith
Q; C QyandC N (2 )\ 1) # 0. Assume that® and the following conditions hold.

2° N is L-compact, thatisQ N : X — Y is continuous and bounded add,(/ — Q)N :
X — X is compact on every bounded subsekof

3° Lz # ANz forallz € CnoQ,NImLandX € (0,1),
4° ~ maps subsets 61, into bounded subsets 6f,

5° degp{[l — (P + JON)¥]|kerr, Ker L N Qy,0} # 0, wheredeg ; denotes the Brouwer
degree,

6° there exists,, € C \ {0} such that||z|| < o(uo)||Vz|| for z € C(ug) N 082, where
C(up) = {zx € C : pug < = forsomeu > 0} ando (ug) such that|z+ug|| > o(uo)]||z||
for everyz € C,

7° (P4 JQN)v(08%) C C,
8 U (2)\ ) CC.
Then the equatiodz = Nz has a solution in the set N (2, \ Q).
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For simplicity of notation, we set

2.1) e /OOO (/O ]%ch) o(s)ds

and

- fooo ;ﬁ f r)dr fo dT]

+1+ oth ()drdT—f dT 0<s<t< oo,

G(t, s) = p(T)
% JﬁdT [f:o ﬁ f:o (r)drdr
L f g(r)dr fo dT’dT]
\ —|—1—|—f0p fo r)drdr, 0<t<s<o0.

Note thatG(¢,s) > 0 fort,s € [0, 1], and set

1

sup G(t,s)
t,s€[0,00)

(2.2) 0 <k <min{ 1,

3. MAIN RESULT

We work in the Banach spaces

(3.1) X = {x € C0,00) : tlirgox(t) exists}

and

32 v {0~ w: [ °°g<t>|y<t>|dt <o0]

with the normg|z||x = tes[gp | lz(t)| and||y|ly = [;° g(t)|y(t)|dt, respectively.

Define the linear operatdr : dom L € X — Y and the nonlinear operatd¥ : X — Y
with

(3.3) domL = {x €X: tlim p(t)z'(t) exists, z,px’ € AC|0,0)
and g, (pr') € L10,00).2(0) = [ a(s)g(s)ds
0

and  lim p(t)a’(r) = p(0)2'(0) }
by Lx(t) = —ﬁ(p(t)x’(t))' andNz(t) = f(t,z(t)), t € [0,00), respectively. Then
KerL ={x €domL:z(t)=c on|0,00)}

ImL = {yGY: / g(s)y(s)ds:O}.
0
Next, define the projection8 : X — X by (Pz)(t) = [~ g s)dsand@ : Y — Y by

(Qu)(t) = / oog(S)y(s)ds.

and
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Clearly,Im P = Ker L andKer Q = Im L. SodimKer L = 1 = dimIm @ = codim Im L.
Notice thatlm L is closed,L is a Fredholm operator of index zero.
Note that the invers&’, : Im L — dom L N Ker P of L, is given by

(F)(8) = / " k(e $)g()y(s)ds,

where

LI tdr [ JT sydrg(rydr — [! Jsdr, 0<s << oo,
(3.4) k(t,s) := e s

wJo de fs fs mdrg(T)dT7 0 S t S S < Q.

Itis easy to see thak(t, s)| < 2 [[* ~ds.

In order to apply Theorein 3.2, we have to prove tNais L-compact, that isQ N is con-
tinuous and bounded anfd,(I — Q)N is compact on every bounded subsetdof Since the
Arzela-Ascoli theorem fails in the noncompact interval case, we will use the following criterion.

Theorem 3.1([10]). LetM C {a: € C[0,00) : 1tlim x(t) exists}. Then) is relatively compact
if the following conditions hold:
(B1) all functions fromM are uniformly bounded,

(B2) all functions fromA/ are equicontinuous on any compact interval®@fx),
(B3) all functions fromA/ are equiconvergent at infinity, that is, for any given- 0, there
exists al' = T'(¢) > 0 such that f(t) — f(oo)| < eforallt > T and f € M.
Lemma 3.2.1f f: [0,00) x R — R is ag-Carathéodory function, thel is L-compact.

Proof. Suppose tha® C X is a bounded set. Then there exists 0 such that|x||x < [ for
r € Q. Sincef is ag-Carathéodory function, there exists € L'[0, co) satisfyinga;(t) > 0,
t € (0,00) and [;° g(s)au(s)ds < oo such that for a.et € [0,00), | f(t,z(t))] < au(t) for
x € Q. Then forz € Q,

1QNa|ly = / o)

/0 " () (s, 2(5))ds

dt < / g(s)ay(s)ds < o0,
0

which implies that) N is bounded oif.

Next, we show that<,(/ — Q)N is compact, i.e.K,(I — Q)N maps bounded sets into
relatively compact ones. Furthermore, denkite; = Kp(I — Q)N (seel[9], [11]). Forr € Q,
one gets

(Krgool < [ ]k(t, a(s) [ﬂs,x(s)) - Oogmf(mm)m] s

<o [ —Lar [ | st ias

p(7)

+ [T o) [T aistratrylaras

< 4/000 ]%dr /OOO g(s)ay(s)ds < oo,
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that is, Kp(f2) is uniformly bounded. Meanwhile, for any,t, € [0, 7] with T a positive
constant,

(Kpqr)(t) — (Kpgw)(ts)|

2 st dw()[f( #(s)

x(T ))d’?’} ds/t2 de

- [ s
{[ / —drg(s) | £6s.a(s) = [ o) ety as

/t2 dTg [ (s,2(s)) — /Ooog(T)f(T,:U(T))dT} ds}‘
< 5 l/o 9(5)/0 ]%/0 g(M)|f(r,z(r))|drdrds +/Ooog(7)|f(7-7x(7—))‘d7-
'/0009(5) /OS ) /OT (r)drdrds] - /: ]%dT

1
p(r
+ i (1)

/:]%S) [/ g(7 If(w(ﬂ)ldw/osg(r) /Ooog(r)|f(r,x(r))|drdr} ds

< {/Ooog(r)]f(r,x(r))\dr—l-/Omg(T)‘f(Tax(T))’dT‘/Ooog@")dr} /: ]%C”
w2 [ gttt | [
< 4/000 g(8)au(s)ds - /tt1 I%T)dr — 0, uniformly as|t; — t,| — 0,

which means thak(» (1) is equicontinuous. In addition, we claim thét o (f2) is equicon-
vergent at infinity. In fact,

|(Kpgr)(00) = (Kpou)(t)|

<L [ / /T(Ldrg Arg(s) [fsa(eDl + [ o] ds [T ar

+/t mds UO g(m)|f (7, 2(7 )IdT+/OSg(T) /Ooog(r>|f(r,x(r))|drdr] ds

o <1 .
< 4/ g(s)ay(s)ds - / ——dr — 0, uniformly ast — oo.
0 ¢ p(7)

Hence, Theorel.llmplles that, (I — Q)N (Q) is relatively compact. Furthermore, sinfe
satisfieg-Carathéodory conditions, the continuity@ andK,(I — Q)N on {2 follows from
the Lebesgue dominated convergence theorem. This completes the proof. O

Now, we state our main result on the existence of positive solutions for the[BVP (1.1) - (1.2).

Theorem 3.3. Assume that
(H1) f:[0,00) x R — Ris ag-Carathéodory function,

J. Inequal. Pure and Appl. Mathl0(1) (2009), Art. 9, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

POSITIVE SOLUTIONS FORBVP AT RESONANCE ON AHALF-LINE 7

(H2) there exist positive constarts b, bs, ¢1, c2, B with

(3.5) B>C—2+2(%+@)/ L
C1 b101 b1 0 p(S)
such that
—kx < f(t, z),

ft,x) < —cr1z + ca,
f(t,l’) S _bl|f(t7x)| + bQCE + b3
fort € [0,00), z € [0, B,

(H3) there exisb € (0, B), ty € [0,00), p € (0,1] andd € (0, 1). For eacht € [0, o0), f(lff)
is non-increasing or € (0, b] with

(3.6) /000 G(to,s)g(s)f(? b>d8 > 15_/)5.

Then theBVP (1.1) - [1.2) has at least one positive solution[0ro).
Proof. Consider the cone
C={zeX:z(t)>0 on [0,00)}.
Let
O ={ze X :i||z|]|lx <|zt)]<b on [0,00)}
and
Oy ={z e X :||z|]|lx < B}.
Clearly,2; and(), are bounded and open sets and
Q= {rc X :d||z||x <|z(t)|<b on [0,00)} CQ

(seel[4]). MoreoverC N (2, \ ) # 0. LetJ = I and(yz)(t) = |=(¢)| for € X. Theny is
a retraction and maps subsetdBfinto bounded subsets 6f, which means that°4holds.

In order to prove 3 suppose that there exist € 02 N"C'Ndom L and), € (0, 1) such that
Lxy = MNNxg, then(p(t)z((t)) + Xog(t) f(t, zo(t)) = 0forall t € [0,00). In view of (H2), we

have

1 ' r 1 , .
S POTO) = F0(0) £ b PO (O) |+ bao(t) b

Aog (t)
Hence,

(3.7) —(p(®)ao(1)" < =bil(p()2o(8))'] + Aobag(t)o(t) + Aobsg(t).
Integrating both sides of (3.7) fromto oo, one gets

0=~ [ wlersie)ya
< b [ 0O O) i+ dabs [z + s [ g(on,

which gives

o0 , , b o0 b
(3.8) | o@a@yi <2 [ g
0 b1 Jo by
Similarly, from (H2), we also obtain
(3.9) | stomitar <2
0 C1
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On the other hand,

(3.10) mwrzA”mwmqu+AmMu$@@nu$ﬁw
(3.11) < [ attrttrar+ [kt 1ot (o).
Then, [3.8){(3.9) yield

Co bQCQ bg) /OO 1
B=|lzolly < 2422242 —ds,
H OHX (&1 <b161 b1 0 p(S)

which contradictd (315). B
To prove 5, considerr € Ker L N s. Thenz(t) = con |0, 00). Let

H(e,\) =c¢— MNc| — )\/Ooog(s)f(s, lc|)ds

forc € [-B,B]and\ € [0,1]. Itis easy to show thai = H(c, \) impliesc > 0. Suppose
0= H(B, \) for some) € (0, 1]. Then, [3.5) leads to

0<B(1-)\)= )\/Oo 9(s)f(s,B)ds < A(—c1B +¢2) <0,
0

which is a contradiction. In addition, ik = 0, then B = 0, which is impossible. Thus,
H(z,\) # 0forz € Ker LN 0 andX € [0, 1]. As a result,

degp{H(-,1),Ker LNy, 0} = degg{H(-,0),Ker L Ny, 0}.
However,
degp{H(-,0),Ker LNy, 0} = degp{l,Ker LNy, 0} = 1.
Then,
degp{[l — (P + JQN)V]kerr, Ker LN Qy,0} = degp{H (-, 1), Ker LNy, 0} # 0.

Next, we prove 8. Letz € Q, \ ©; andt € [0, 00),
Wa)0) = [ olallds + [ o(s) s lals))as
+ [T k90 | 1) [ o) letir| d
= [ aleolds + [ Gt s ats) )

> /000(1 — kG(t,s))g(s)|z(s)|ds > 0.

Hence, ¥, (0, \ Q) C C,i.e. & holds.
Since forx € 99),,

<P+J@wa:Awmﬁu@wk+4mﬂ$ﬂ&u@m%
EAMH—MM@M&WBZQ

then,(P + JQN)~x C C for x € 09,, and ? holds.
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It remains to verify 8. Letuy(t) = 1 on[0,00). Thenuy, € C\ {0}, C(uy) = {z € C :
z(t) > 0 on [0,00)} and we can take (ug) = 1. Letz € C(up) N 9. Thenz(t) > 0 on
[0,00), 0 < ||z]|x < bandz(t) > §||x||x on[0,00). For everyr € C(ug) N0y, by (H3)

<w@m»:Awm$awu+4mamwmwﬁ@m@»u
> 0l|z||x + /OOO G(to, s)g(s)Mxp(s)ds

(s
zmmx+muwj‘aw,mmﬂ;”w

b
—6||$[|X—|-5p]x||XH s / G(to, s) (S G

f(s,b)
; ds

> dlallx+ lellx | Gt s)als)
0
> ol

Thus,||z||x < o(ug)||Px||x forall z € C(ug) N OQy.

In addition, T holds and Lemmja 3.2 yields 2Then, by Theorein 2.2, the BVP (IL.1)—(1.2)
has at least one positive solutieh on [0, co) with b < ||z*||x < B. This completes the proof
of Theorem 3.B. O

Remark 1. Note that with the projectio(z) = «(0), Conditions 7 and 8 of Theoren{ 2.p
are no longer satisfied.

To illustrate how our main result can be used in practice, we present here an example.

Example 3.1. Consider the following BVP
2(et2’'(t)) + e tf(t,z(t)) =0, a.e.in(0,00),
(3.12) N
2'(0) = Jim e'x'(t), x(0)= [ e
Corresponding to the BVIP (1.1) F (1.2)¢) = 2¢', g(t) = e " and f(t,z) = (t — 3)e %z +
f22. We can getv = ; and
% + Le7t —3e7*) + i(e*% +2e7%) — %e*(f*zs), 0<s<t< oo,

(3.13) G(t,s) = {

5 Lt (e 4 2e) — o), 0<t<s<ox
ObVIOUSIYGi(, ) 2 001 .5 € 0. +oc). Chooses = b B =5, = 3., = bbb = &

s) =
by = 5 3 andb; = % -3 such that (H2) holds, and talb S ty=0,p=1andi =2 such that
(H3) is satisfied. Then thanks to Theorem| 3.3, the B 3 12) has a positive solut[(mmoh
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