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Abstract

Using the Ostrowski type inequality for functions of bounded variation, an ap-
proximation of the finite Hilbert Transform is given. Some numerical experi-
ments are also provided.
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Cauchy principal value integrals of the form

(1.1) (Tf)(a,b;t) = PV b 7J_C<—_Tid7'
O [ 10

= lim
e=0+ | ), T-—1 tre T— 1

a

. " . . .. Approximating the Finite Hilbert
play an important role in fields like aerodynamics, the theory of elasticity and  fransform via an Ostrowski

other areas of the engineering sciences. They are also helpful tools in some Tyre '“ggﬂﬁggdfgaﬁiggions o
methods for the solution of differential equations (cf., exg]).

For different approaches in approximating the finite Hilbert transfdir) ( S:S. Dragomir
including: interpolatory, noninterpolatory, Gaussian, Chebychevian and spline
methods, see for example the papéeis{[17], [14] —[27], [24] — [37] and the Title Page

references therein.

In contrast with all these methods, we point out here a new method in ap- Contents
proximating the finite Hilbert transform by the use of the Ostrowski inequality <44 44
for functions of bounded variation established if]| < >

For a comprehensive list of papers on Ostrowski’s inequality, visit the site
http://rgmia.vu.edu.au : Go Back

Estimates for the error bounds and some numerical examples for the obtained Close
approximation are also presented. Quit
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We start with the following lemma proved i §] dealing with an Ostrowski
type inequality for functions of bounded variation.

Lemma 2.1. Letu : [a,b] — R be a function of bounded variation da, b|.
Then, for allz € [a, b], we have the inequality:

(2.1)

u(x)(b—a)—/abu(t)dt' < B(b—a)+

x-@;bugw,

where\/’ (u) denotes the total variation af on [a, b].
The constang is the best possible one.

Proof. For the sake of completeness and since this result will be essentially used

in what follows, we give here a short proof.

Using the integration by parts formula for the Riemann-Stieltjes integral we

have . .
/ (t—a)du(t) =u(z)(z—a) —/ w (t)dt
and

b b
/(t—b)du(t):u(a:)(b—x)—/u(t)dt.

If we add the above two equalities, we get

b x b
(2.2) u(x)(b—a)—/u(t)dt:/ (t—a)du(t)—l—/ (t—0b)du(t)
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foranyz € [a, b).
If p : [c,d] — R is continuous orje, d] andv
variation on[c, d|, then:

. [e,d] — R is of bounded

d

< sup |p (@) \/ (u).

z€[e,d]

d
(2.3) / p () dv (z)

c

Using 2.2) and @.3), we deduce

xr —

= B(b—a)Jr

and the inequality4.1) is proved.
Now, assume that the inequalit.p) holds with a constant > 0, i.e.,

x_a;bu\?(u)

(2.4)

u(m)(b—a)—/abu(t)dt‘ < {C(b—a)-‘r

forall z € [a, b].

Approximating the Finite Hilbert
Transform via an Ostrowski
Type Inequality for Functions of
Bounded Variation

S.S. Dragomir

Title Page
Contents
44 44
| | 2
Go Back
Close
Quit
Page 5 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sever@matilda.vu.edu.au
http://jipam.vu.edu.au/

Consider the function, : [a,b] — R given by

0 if z€lab)\{%}
uy () =

1 if x:“Ter.

Thenu, is of bounded variation ofu, b] and

b b
\/ (uo) =2, / g (t) dt = 0.

If we apply @2.4) for uy and choose = GT“’ then we geRc > 1 which implies
thatc > 1 showing that is the best possible constant ). O

The best inequality we can get from.{) is the following midpoint inequal-
ity.

Corollary 2.2. With the assumptions in Lemridl, we have

(2.5) ‘u<a;b>(b—a)—/abu(t)dt‘g%(b—a)\i/(u).

The constang is best possible.

Using the above Ostrowski type inequality we may point out the following
result in estimating the finite Hilbert transform.
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Theorem 2.3.Let f : [a,b] — R be a function such that its derivativg :
[a, b] — R is of bounded variation ofu, b]. Then we have the inequality:

(2.6) (Tf)(a,b;t)—ffrt)ln<b_t)

t—a
b—a

[Fi M+ (1= A) b, At + (1 — \)a]

_1 B+‘A—%H B(b—a)Jr't—a;bH\b/(f/%

(e

a

foranyt € (a,b) and\ € [0, 1), where[f; «, 5] is the divided difference, i.e.,

fa) = f(B)
a—0F
Proof. Since f” is bounded orja, ], it follows that f is Lipschitzian onja, b]

and thus the finite Hilbert transform exists everywheréiirb).
As for the functionf; : (a,b) — R, fo (t) = 1,t € (a,b), we have

[fio, 8] =

(T'fo) (a, b;t) Z%IH (f_t), t € (a,b),

—a

then obviously

en @y -2 < Lpy [LEZI0,,

t—a ™ T—1
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Now, if we choose inZ.1), u = f/, z = Xc+ (1 —\)d, A € [0, 1], then we get
[f (d) = f(c) = (d=c) [ (Ae+ (L= A)d)

e+ (1—=A)d—

1
< {§|d—c|+

c+d
2

wherec, d € (a,b), which is equivalent to

2.8) ‘%—f’o\cjt(l—)\)d)‘g [1+'A—1H \d/(f/)

foranyc,d € (a,b), ¢ # d.
Using 2.8), we may write

2.9) ‘pv f(j {t ; /fAtJrl—))d

S% 5T /\—5 Pv/a \/(f/) dt

e[ (Vo) [ (V) o
B t b

s% 5T A3 (t—a)\/(f’)+(b—t)\/(f’)]

<zlsepeal w5 Ve
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Since (for\ # 1)

%PV/bf/()\t—l-(l—)\)T)dT

;513& U /J (At + (1= ) 7) dr)

1 t—e
:;61_1%1_’_ ll—f()‘t+(1_)‘)7)a DY
L O fMH I =Na)+ fOEH (=N~ f (1)
G DY

:b;a[f;)\t+(1—/\)b,)\t+(1—)\)a].

b

t+5]

+;f()\t+(1—>\) 7)

Using 2.9 and @.7), we deduce the desired restit). O]

It is obvious that the best inequality we can get frobg) is the one for
A = 3. Thus, we may state the following corollary.

Corollary 2.4. With the assumptions of Theoren3, we have
I 1n<b_t) _b-a [f;t+b7a+t]
s t—a T 2 2

T\

(2.10) |(Tf)(a,b;t) —
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The above Theorer.3 may be used to point out some interesting inequal-
ities for the functions for which the finite Hilbert transforrtif) (a, b; t) can
be expressed in terms of special functions.

For instance, we have:

1) Assume thayf : [a,b] C (0,00) — R, f (z) = L. Then

T et = 2w | FZ08) e ),

b—a

M4 (1= A b A+ (1= A) d]
1 b—a

T M-I Mt (- Nd’

b b b2 — g2
Vi = [ elr="55

Using the inequalityZ.6) we may write that

1 (b—1t)a 1 b—t b—a
7t n{(t—a)b} Tt n(t—a)+7r[)\t+(1—)\)b][>\t+(1—)\)a]

1 1 1 a+0bl] v*—a?
pr Pl oo -3

1
< =
T
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which is equivalent to:

(ZH)MM+U—%QRZ+Q—M@_%m(%‘

1 1 1
<=4+ X==|]||=(b— t—
<lzrpeaf] pe-or -3
If we use the notations

B b—a
" Inb—1Ina

L(a,b) (the logarithmic mean)

Ay (z,y) ==X Xx+ (1 =Xy (the weighted arithmetic mean)

G(a,b) = +ab (the geometric mean)
b . .
Ala,b) = a ;r (the arithmetic mean)

then by ¢.11) we deduce

e
A, (,0) Ax(ha)  tL (a,b)

< |z P3| [0 o+ - Aol D,

giving the following proposition:

Approximating the Finite Hilbert
Transform via an Ostrowski
Type Inequality for Functions of

Bounded Variation

S.S. Dragomir

Title Page

Contents
44 44
| | 2
Go Back
Close
Quit
Page 11 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sever@matilda.vu.edu.au
http://jipam.vu.edu.au/

Proposition 2.5. With the above assumption, we have
(212) |tL (CL, b) - A)\ (t7 b) A)\ (t7 CL)|
<MB ‘A—lHé(b—a)Jr‘t— }

= G (a, b) 2
X tA)\ (t, b) A)\ (t, CL) L (a, b)

a+b

foranyt € (a,b), A € [0, 1).
In particular, fort = A (a,b) andX = 1, we get
(A(a,b) +a) (A(a,b) +b) ‘

(2.13) ‘A(a, b) L (a,b) — -
1 A%*(a,b) (A(a,b)+a)(A(a,b)+0)
Sﬁ'G‘L(a,b). 1 L(a,b).

2) Assume thaf : [a,b] C R — R, f (z) = exp (z). Then

) (@ bit) = 2O (i — ) — Bia 1),

where

Also, we have:
b—a

lexp; At + (1 — A) b, At + (1 — A) d]
1 exp(AM+(1—=A)b) —exp (At + (1 - A)a)

T 1—\ ’
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b

\ () = / 7 (0)] dt = exp (5) — exp (a)

a

Using the inequalityd.6) we may write:

(2.14) |exp (¢) [EZ (b—t) — Ei(a—1t)—In (5:2)}
Cexp(M+ (1 =Nb) —exp(M+(1=N)a)
-\
< B+‘A—%H B(b—a)Jr‘t—a;bH fexp (b) — exp (a)]

for anyt € (a,b).
If in (2.14) we makeX = 1 and¢ = “t2, we get

(138 (52) (552 oo (2]

(b—a) [exp (b) — exp (a)],

which is equivalent to:

o (5) - (5) ()]
<0-a o (U50) —ew (<259)].
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If in this inequality we maké?g—“ = z > 0, then we get

@19 [1:(0 2o () - on ()]

1
< 5% lexp (2) — exp (=2)]
foranyz > 0.
Consequently, we may state the following proposition. S —
" . , o e o ok
Proposition 2.6. With the above assumptions, we have TyprearnsengIi\g/afgrn Fuicr:(t)i\gr?slof
Bounded Variation
1 .
(2.16) ‘Ez (z) — 4sinh (52) ‘ < zsinh (2) S.S. Dragomir
foranyz > 0. Title Page
The reader may get other similar inequalities for special functions if appro- Contents
priate examples of functionsare chosen. pp b
< >
Go Back
Close
Quit
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The following lemma is of interest in itself.

Lemma 3.1. Letw : [a,b] — R be a function of bounded variation ga, b|.
Thenforalln > 1, \; € [0,1) (i=0,...,n—1)andt, 7 € [a,b] witht # T,
we have the inequality:

1 /" 1 < , T—t
11 N
<= |= p—— .
- n {2 +i$i)—<1 A 2” \t/(u)

Proof. Consider the equidistant division @f 7| (if ¢ < 7) or [1,¢] (if 7 < ?)
given by

(3.2) E,iai=t+i-—" i=0n.

Thenthe pointg; = \; [t +4- =4 + (1= X)) [t + (i + 1) - =]

(A €[0,1], i =0,n — 1) are between; andz;.;. We observe that we may
write for simplicity§; = ¢ + (i + 1 — \;) =% (i = 0,n — 1). We also have

5 33i+33i+1_7__t
' 2 2

§i—xi=(1-N)

(1-2N),

T—1

n
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and
T—1

Tip1 —& =N -

forany: =0,n — 1.
If we apply the inequalityZ.1) on the intervalz;, z; 1] and the intermediate
point¢; (i = 0,n — 1), then we may write that

T—t T—t Fit1
t+(G+1—\ — d
- u(-I—(z—i— i) - ) /xl u(s)ds

(3.3)

Approximating the Finite Hilbert

1 |7_ o t| F—1 Tit1 Transform via an Ostrowski
. _ . Type Inequality for Functions of
= {2 n + 2n (1=2%) } \/ (u)} Bounded Variation
Summing, we get S:S. Dragomir
T Tt T—1
/ u(s)ds — U [t +(GE+1-=N) ] Title Page
n “ n
! =0 Contents
|7_ . t| n—1 Tit1
< ;[1+|1—2Ai|] \/ (u) 4« 3
= i < >
-1t [1 N
_| - |{§+ max )\1—5} \/(u), Go Back
i=0,n—1
o ) ! Close
which is equivalent to3.1). O
Quit

We may now state the following theorem in approximating the finite Hilbert
transform of a differentiable function with the derivative of bounded variation
ona, bl.
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Theorem 3.2. Let f : [a,b] — R be a differentiable function such that its
derivative f" is of bounded variation ofu, b]. If A = (\;),_g7=1, A € [0,1)
(i=0,n—1)and

(3.4) S, (f;\ 1)

b—an

™

1

b—t —t
{ (i+1-— )———+u@+1—A05——+4,
i—0 n n

i Approximating the Finite Hilbert
then we have the estimate: Transform via an Ostrowski

Type Inequality for Functions of

t b—t Bounded Variation
(3.5) ‘(Tf) @bty LY 1n( ) s, (f;A,t)‘
s t—a S.S. Dragomir
b
b—a |l 1 1 a+b ,
= nmw {5 * Z-:If)li}fl Ai = §H {5 (b—a)+ ‘t 2 H \a/(f ) Title Page
b Contents
b—a
< /
- onm \a/ () 44 44
Proof. Applying Lemma3.1for the functionf’, we may write that ¢ >
Go Back
) —f) 1% Tt
(3.6) ———Zf {t—l—(z—l—l—)\) } Cless
T—1 n = n Quit
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foranyt, ™ € [a,b], t # 7.
Consequently, we have

@U‘PK/L———Qm

1=0

1 [1 1 N

~ |z — 2P !
—nr {2+i—n(}2)_(1 A 2” V/a \t/(f) o

b

1 |1 1 1 a+b
<_ - _ - - _ _ !
<or o+ mes ]| oo -5 Ve

On the other hand

b
(3.8) Pv/ fP+@+1—A0T;1dT

[ [ rennm ] w)

. r—t\|"
= lim ¢+1——Aif(t+<z+1_Ai> " )
n T—1 b
—f ¢ 1 — )\
+z’+1—Aif(+(l+ ) )tJ
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Tl -

—f <t+(z'+1—Ai)a_t>}

" {f(t+(i+1—)\i)$>

n

=(b—a) {f;t+(z‘+1—Ai)$,(i+1—)\i)a7_t+t}.

Since (see for examplé (7)),
Approximating the Finite Hilbert

b Transf i Ostrowski
(TF) (a,b:t) = 2PV / fo -1,  fo, (b - f) Type Inequaliy for Functions of
bl b 7T Y 7_ . t

T t—a Bounded Variation
fort € (a,b),then by 8.7) and @3.8) we deduce the desired estimases]. [ 55 bragomt
Remark 3.1. For n = 1, we recapture the inequality (6). Title Page
Corollary 3.3. With the assumptions of Theorén®, we have Contents

t b—t 44 44
B9  (Thabt=1" 1n( ) + lim S, (f:\0)

T t—a n—00 < >
uniformly by rapport of € (a,b) and X with \; € [0,1) (i € N). Go Back
Remark 3.2. If one needs to approximate the finite Hilbert Transf@iif) (a, b; t) Close
in terms of Quit

f@) b—t
In + Sn (f3 A1) Page 19 of 37
7 t—a
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with the accuracy > 0 (¢ small), then the theoretical minimal numberto be
chosen is:

b—a’
(3.10) ne = [ \ ()

ET
a

+1

where[a] is the integer part ofv.

It is obvious that the best inequality we can get !15] is for \; = %
(i = 0,n — 1) obtaining the following corollary.

Corollary 3.4. Let f be as in Theorer3.2. Define

n—1

@A) M, (5i1) = 03 [f; (w%) Tl (H%) “;Ht] |

=0

Then we have the estimate

612) () (@bt~ (f - t) - M, (f;t)‘

—a

<boa B(b—a>+]t—“jbu\?<f'>

- 2nmw

for anyt € (a,b).

This rule will be numerically implemented in Sectibrfior different choices
of f andn.
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We may state the following lemma.

Lemma 4.1. Letw : [a,b] — R be a function of bounded variation ga, b|,
< i1 < p, = landy; € [u;, piz1], @ = 0,n — 1. Then

0 = /’LO < 1 < e
foranyt, T € [a, b] witht # 7, we have the inequality:

n—1

(4.1) ‘% /tTU (s)ds — Z (ki1 — pi) w[(1 = vi) t + v47]

=0

M T Mg + :uz—&-l

|

Proof. Consider the division dft, 7] (if ¢ < 7) or [r,¢] (if T < t) given by

Vel

t

whereA,, (1) := max (fiy1 — ;) -

i=0,n—1

4.2) Lyixii=1—pw)t+pwr (i=0,n).
Then the points; := (1 — )t + ;7 (z =0,n— 1) are between; andzx; ;.
We have
Tiv1 — T = (fipr — ) (7 — 1) (Z =0,n— 1)
and

- Lt <U_u+%) (r—t) (i=0n=T).
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Applying the inequality 2.1) on [z;, z;1] with the intermediate points
& (i =0,n—1), we get

/%iﬂ u(s)ds = (pivr — pa) (7 = ) w[(1 — v3) t + v;7]

Tit+1

V (@)

T

Wi + it
2

V; —

1
< 5(#i+1—ﬂi)17—t|+17—t|

- . . . . ) ] Approximating the Finite Hilbert
for any: = 0,n — 1. Summing ovet, using the generalised triangle inequality Transform via an Ostrowski

T . T | lity for Functi f
and dividing by|t — 7| > 0, we obtain e ey AR

1 b n—1 S.S. Dragomir
—/ U(S)ds—;(uiﬂ ) ul(l = )t + ]
= i Title Page
1 % % s
< Z [2 fiv1 — i) + (Vi — % } \/ (u) Contents
_ << >
1 3 + K3
< |:_An () + max |y — HTHE MH 1 \ (w) < >
2 i=0,n—1 )
Go Back
and the inequality4.1) is proved. O ——
The following theorem holds. Quit
Theorem 4.2. Let f : [a,b] — R be a differentiable function such that its Page 22 of 37

derivativef’ is of bounded variation ofu, b]. If 0 = o < 13 < -+ < pip_1 <
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Wy, = 1 andui € [,U/i,,ui+1], (Z = O,n — 1) , then

b—t
t—a

43)  (Tf)(a,b;t) = fff) In ( ) 4 %Qn (1,1, ) + W (11, 0, 1)

for anyt € (a,b), where

(4.4) Qn(p,v,t) == f'(t) (b —

n—2
b_a Z{ Mit1 —
i=1

X [f; (1 —v)t+vb, (1 — )t + v44a] }
+ (1= pna) [f (b) = f (a)]

if Vg = 0, Vp—1 = 1,

i
L

(4.5) Qn (v t) = f () (b—a)+ (b—a) ) (pip1 — )

=1

X [f, (1 — Vz') t+ Vib, (1 — Vi) t+ I/i(l]

if vy =0,v,_1 <1,

n—2

(4.6) Qu(uvit):=(b—a))  (ni1 — )

x [f; (1 —Z:Vi) t+vib, (1 —v;)t+ v4a]
+ (1= ) [f (0) = £ (a)]
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if vo >0,v,_1=1and

(4.7) Qn(p,v,t)

[y

n—

=(b—a) ) (pi1 — ) [f; (L —vi) t +vib, (1 = v3) t + 0]

=1

if vy >0, 0,1 < 1.
In all cases, the remainder satisfies the estimate:

(4.8) (W, (i, v,t)| < % BAn (1) +£01%>_<1 v — %}
<[o-as -y
< 20,00 300 +|r - H\/

< AL (-0 ()

a

Proof. If we apply Lemma4.1for the functionf’, we may write that

flr)= /() Z pivr = ) [ L1 = vi) £+ v47]

T—t

i T Hit1 + :uz-i-l

Vi

t

v —

1
< [—An (1) + max
2 i=0,n—1

IV
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foranyt,r € [a,b],t # T.
Taking thePV in both sides, we may write that

1 P - f()
(49) ‘%PV/CL TdT

p [/n—1
—%Pv / (Z (i1 = i) [ 1L = vi) t + vir
@ =0

)
Az

,uz + Hz—i—l
Vi —

111
< - {éAn (1) + max

i=0,n—1

vl

If o =0, 1,1 =1, then

V/ (2—: (ttigr — i) [T (1= vi) t 4 Vﬂ]) dr

n—2

=PV /,ulf d7—+2 i1 — My PV/f 1_Vz)t+yz]d
(1= ) PV / 7 (7)dr
:le/(t)(b_a>+(b_a>2(,ui+1_Mi)

x [f; (L =w)t+vb, (1 -

vi)t +vial + (1 — pin—1) [f (b) — f(a)].
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If o =0, 1,1 <1,then

p [/n—1
PV/ (Z(uiﬂ—m)f (1 =)t +vT )dT
@ \i=0

n—1
= f () (b—a) + (b —a) > (e -
i=1

X [f; (T —v)t +vib, (1 —v;) t + v4a] .

If o >0, 1,1 =1, then

PV/ (i(ﬂi+1_ﬂz)f (1 —w)t+wur ]) dr

=(b—a) A (i1 — ) [f5 (L= v) t + b, (1 — 1) t + v4a]

+ (=) [f (0) = f(a)].

and, finally, ifvg > 0, v,,_1 < 1, then

PV/ (i (Hirr — i) f{(L—vi) t + Vﬂ]) dr

=0

—_

n—

=(b—a) ) (ti1 —p) [f; (1 —vi)t + v, (1 = vi) t + va] .

=1
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Since

a—+b b
PV i \t/ d7<{ (b—a)—l—‘t— : H\a/(f’)
and
, 1 IGENI0) f@), (bt
(Tf)(a,b,t):;PV/a p— dr + - hl(t—a)’
then by ¢.9) we deduce4.3). ] Approximating the Finite Hilbert
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For a functionf : [a, ] — R, we may consider the quadrature formula

—1

—a

E.(f;a,b,t) := fff)ln(tb >+Mn(f;t),t€[a,b].

As shown above in Section 4,(f;a,b,t) provides an approximation for the

Finite Hilbert Transform(7'f) (a, b;t) and the error estimate fulfils the bound

described in2.3).
If we consider the functiorf : [—1,1] — R, f (z) = exp(x), then the exact
value of the Hilbert transform is
exp(t)Fi(l —t) —exp(t)Ei(—1 —t)
™

(T'f) (a, b;t) = e [-1,1]

and the plot of this function is embodied in Figtire

If we implement the quadrature formula provided BYy(f;a,b,t) using
Maple 6 and chose the value of = 100, then the errorEr (f;a,b,t) =
(Tf) (a,b;t) — E,(f; a,b,t) has the variation described in the Figire

Forn =1,000, the plot oft'r (f; a,b,t) is embodied in the following Figure
3.

Now, if we consider another functiorf,: [-1,1] — R, f(x) = sinz, then
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4 08 06 04 402 n2 o4 08 1
o

Figure 1.

the exact value of the Hilbert transform is

—Si(—141t)cos(t) + Ci(1l — t)sin(t)

(TF) (a,bit) = -
J Silt+1cos(t) —sin@Cit+1) )y,
where '
Si(z) = /0 ' Smt<t)dt, Ci(z) =~ +Inz + /0 ’ %dt;

having the plot embodied in the following Figute
If we choose the value of = 100, then the errorEr (f;a,b,t) for the

function f(z) = sinz,z € [—1, 1] has the variation described in the Figre
below.
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Figure 2:
S.S. Dragomir
Moreover, forn =100,000, the behaviour dir (f; a, b, t) is plotted in Fig-
ureo. Title Page
Finally, if we choose the functiori : [-1,1] — R, f(z) = sin(2?), the Contents
Maple 6 is unable to produce an exact value of the finite Hilbert transform. If
we use our formula « dd
| >
' (@) b—t '
for n =1,000, then we can produce the plot in Figdre Sles3
Taking into account the bound.12) we know that the accuracy of the plot Quit
in Figure7 is at least of ordet0—°. Page 30 of 37
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