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1. I NTRODUCTION

In [1], the author has proved the following Grüss type inequality in real or complex inner
product spaces.

Theorem 1.1.Let(H, 〈·, ·〉) be an inner product space overK (K = R,C) ande ∈ H, ‖e‖ = 1.
If ϕ, γ, Φ, Γ are real or complex numbers andx, y are vectors inH such that the conditions

(1.1) Re 〈Φe− x, x− ϕe〉 ≥ 0 and Re 〈Γe− y, y − γe〉 ≥ 0

hold, then we have the inequality

(1.2) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

4
|Φ− ϕ| · |Γ− γ| .

The constant1
4

is best possible in the sense that it cannot be replaced by a smaller constant.

Some particular cases of interest for integrable functions with real or complex values and the
corresponding discrete versions are listed below.

Corollary 1.2. Letf, g : [a, b] → K (K = R,C) be Lebesgue integrable and such that

(1.3) Re
[
(Φ− f (x))

(
f (x)− ϕ

)]
≥ 0, Re

[
(Γ− g (x))

(
g (x)− γ

)]
≥ 0
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2 S.S. DRAGOMIR

for a.e. x ∈ [a, b] , whereϕ, γ, Φ, Γ are real or complex numbers and̄z denotes the complex
conjugate ofz. Then we have the inequality

(1.4)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x)dx− 1

b− a

∫ b

a

f (x) dx · 1

b− a

∫ b

a

g (x)dx

∣∣∣∣
≤ 1

4
|Φ− ϕ| · |Γ− γ| .

The constant1
4

is best possible.

The discrete case is embodied in

Corollary 1.3. Letx,y ∈Kn andϕ, γ, Φ, Γ are real or complex numbers such that

(1.5) Re [(Φ− xi) (xi − ϕ)] ≥ 0, Re [(Γ− yi) (yi − γ)] ≥ 0

for eachi ∈ {1, . . . , n} . Then we have the inequality

(1.6)

∣∣∣∣∣ 1n
n∑

i=1

xiyi −
1

n

n∑
i=1

xi ·
1

n

n∑
i=1

yi

∣∣∣∣∣ ≤ 1

4
|Φ− ϕ| · |Γ− γ| .

The constant1
4

is best possible.

For other applications of Theorem 1.1, see the recent paper [2].
In the present paper we show that the condition(1.1) may be replaced by an equivalent but

simpler assumption and a new proof of Theorem 1.1 is produced. A refinement of the Grüss
type inequality(1.2) , some companions and applications for integrals are pointed out as well.

2. AN EQUIVALENT ASSUMPTION

The following lemma holds.

Lemma 2.1. Leta, x, A be vectors in the inner product space(H, 〈·, ·〉) overK (K = R,C) with
a 6= A. Then

Re 〈A− x, x− a〉 ≥ 0

if and only if ∥∥∥∥x− a + A

2

∥∥∥∥ ≤ 1

2
‖A− a‖ .

Proof. Define

I1 := Re 〈A− x, x− a〉 , I2 :=
1

4
‖A− a‖2 −

∥∥∥∥x− a + A

2

∥∥∥∥2

.

A simple calculation shows that

I1 = I2 = Re [〈x, a〉+ 〈A, x〉]− Re 〈A, a〉 − ‖x‖2

and thus, obviously,I1 ≥ 0 iff I2 ≥ 0, showing the required equivalence. �

The following corollary is obvious

Corollary 2.2. Letx, e ∈ H with ‖e‖ = 1 andδ, ∆ ∈ K with δ 6= ∆. Then

Re 〈∆e− x, x− δe〉 ≥ 0

if and only if ∥∥∥∥x− δ + ∆

2
· e
∥∥∥∥ ≤ 1

2
|∆− δ| .
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GRÜSS’ T YPE INEQUALITIES 3

Remark 2.3. If H = C, then
Re [(A− x) (x̄− ā)] ≥ 0

if and only if ∣∣∣∣x− a + A

2

∣∣∣∣ ≤ 1

2
|A− a| ,

wherea, x, A ∈ C. If H = R, andA > a thena ≤ x ≤ A if and only if
∣∣x− a+A

2

∣∣ ≤ 1
2
|A− a| .

The following lemma also holds.

Lemma 2.4. Letx, e ∈ H with ‖e‖ = 1. Then one has the following representation

(2.1) 0 ≤ ‖x‖2 − |〈x, e〉|2 = inf
λ∈K

‖x− λe‖2 .

Proof. Observe, for anyλ ∈ K, that

〈x− λe, x− 〈x, e〉 e〉 = ‖x‖2 − |〈x, e〉|2 − λ
[
〈e, x〉 − 〈e, x〉 ‖e‖2]

= ‖x‖2 − |〈x, e〉|2 .

Using Schwarz’s inequality, we have[
‖x‖2 − |〈x, e〉|2

]2
= |〈x− λe, x− 〈x, e〉 e〉|2

≤ ‖x− λe‖2 ‖x− 〈x, e〉 e‖2

= ‖x− λe‖2 [‖x‖2 − |〈x, e〉|2
]

giving the bound

(2.2) ‖x‖2 − |〈x, e〉|2 ≤ ‖x− λe‖2 , λ ∈ K.

Taking the infimum in(2.2) overλ ∈ K, we deduce

‖x‖2 − |〈x, e〉|2 ≤ inf
λ∈K

‖x− λe‖2 .

Since, forλ0 = 〈x, e〉 , we get‖x− λ0e‖2 = ‖x‖2 − |〈x, e〉|2 , then the representation(2.1) is
proved. �

We are able now to provide a different proof for the Grüss type inequality in inner product
spaces mentioned in the Introduction, than the one from paper [1].

Theorem 2.5.Let(H, 〈·, ·〉) be an inner product space overK (K = R,C) ande ∈ H, ‖e‖ = 1.
If ϕ, γ, Φ, Γ are real or complex numbers andx, y are vectors inH such that the conditions(1.1)
hold, or, equivalently, the following assumptions

(2.3)

∥∥∥∥x− ϕ + Φ

2
· e
∥∥∥∥ ≤ 1

2
|Φ− ϕ| ,

∥∥∥∥y − γ + Γ

2
· e
∥∥∥∥ ≤ 1

2
|Γ− γ|

are valid, then one has the inequality

(2.4) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

4
|Φ− ϕ| · |Γ− γ| .

The constant1
4

is best possible.

Proof. It can be easily shown (see for example the proof of Theorem 1 from [1]) that

(2.5) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤
[
‖x‖2 − |〈x, e〉|2

] 1
2
[
‖y‖2 − |〈y, e〉|2

] 1
2 ,
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4 S.S. DRAGOMIR

for anyx, y ∈ H ande ∈ H, ‖e‖ = 1. Using Lemma 2.4 and the conditions(2.3) we obviously
have that [

‖x‖2 − |〈x, e〉|2
] 1

2 = inf
λ∈K

‖x− λe‖ ≤
∥∥∥∥x− ϕ + Φ

2
· e
∥∥∥∥ ≤ 1

2
|Φ− ϕ|

and [
‖y‖2 − |〈y, e〉|2

] 1
2 = inf

λ∈K
‖y − λe‖ ≤

∥∥∥∥y − γ + Γ

2
· e
∥∥∥∥ ≤ 1

2
|Γ− γ|

and by(2.5) the desired inequality(2.4) is obtained.
The fact that1

4
is the best possible constant, has been shown in [1] and we omit the details.

�

3. A REFINEMENT OF THE GRÜSS I NEQUALITY

The following result improving(1.1) holds

Theorem 3.1.Let(H, 〈·, ·〉) be an inner product space overK (K = R,C) ande ∈ H, ‖e‖ = 1.
If ϕ, γ, Φ, Γ are real or complex numbers andx, y are vectors inH such that the conditions
(1.1), or, equivalently,(2.3) hold, then we have the inequality

(3.1) |〈x, y〉 − 〈x, e〉 〈e, y〉|

≤ 1

4
|Φ− ϕ| · |Γ− γ| − [Re 〈Φe− x, x− ϕe〉]

1
2 [Re 〈Γe− y, y − γe〉]

1
2 .

Proof. As in [1], we have

(3.2) |〈x, y〉 − 〈x, e〉 〈e, y〉|2 ≤
[
‖x‖2 − |〈x, e〉|2

] [
‖y‖2 − |〈y, e〉|2

]
,

(3.3) ‖x‖2 − |〈x, e〉|2 = Re
[
(Φ− 〈x, e〉)

(
〈x, e〉 − ϕ

)]
− Re 〈Φe− x, x− ϕe〉

and

(3.4) ‖y‖2 − |〈y, e〉|2 = Re
[
(Γ− 〈y, e〉)

(
〈y, e〉 − γ

)]
− Re 〈Γe− x, x− γe〉 .

Using the elementary inequality

4 Re
(
ab
)
≤ |a + b|2 ; a, b ∈ K (K = R,C)

we may state that

(3.5) Re
[
(Φ− 〈x, e〉)

(
〈x, e〉 − ϕ

)]
≤ 1

4
|Φ− ϕ|2

and

(3.6) Re
[
(Γ− 〈y, e〉)

(
〈y, e〉 − γ

)]
≤ 1

4
|Γ− γ|2 .

Consequently, by(3.2)− (3.6) we may state that

(3.7) |〈x, y〉 − 〈x, e〉 〈e, y〉|2 ≤
[
1

4
|Φ− ϕ|2 −

(
[Re 〈Φe− x, x− ϕe〉]

1
2

)2
]

×
[
1

4
|Γ− γ|2 −

(
[Re 〈Γe− y, y − γe〉]

1
2

)2
]

.

Finally, using the elementary inequality for positive real numbers(
m2 − n2

) (
p2 − q2

)
≤ (mp− nq)2
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GRÜSS’ T YPE INEQUALITIES 5

we have[
1

4
|Φ− ϕ|2 −

(
[Re 〈Φe− x, x− ϕe〉]

1
2

)2
]

×
[
1

4
|Γ− γ|2 −

(
[Re 〈Γe− y, y − γe〉]

1
2

)2
]

≤
(

1

4
|Φ− ϕ| · |Γ− γ| − [Re 〈Φe− x, x− ϕe〉]

1
2 [Re 〈Γe− y, y − γe〉]

1
2

)2

,

giving the desired inequality(3.1) . �

4. SOME COMPANION I NEQUALITIES

The following companion of the Grüss inequality in inner product spaces holds.

Theorem 4.1.Let(H, 〈·, ·〉) be an inner product space overK (K = R,C) ande ∈ H, ‖e‖ = 1.
If γ, Γ ∈ K andx, y ∈ H are such that

(4.1) Re

〈
Γe− x + y

2
,
x + y

2
− γe

〉
≥ 0

or, equivalently,

(4.2)

∥∥∥∥x + y

2
− γ + Γ

2
· e
∥∥∥∥ ≤ 1

2
|Γ− γ| ,

then we have the inequality

(4.3) Re [〈x, y〉 − 〈x, e〉 〈e, y〉] ≤ 1

4
|Γ− γ|2 .

The constant1
4

is best possible in the sense that it cannot be replaced by a smaller constant.

Proof. Start with the well known inequality

(4.4) Re 〈z, u〉 ≤ 1

4
‖z + u‖2 ; z, u ∈ H.

Since
〈x, y〉 − 〈x, e〉 〈e, y〉 = 〈x− 〈x, e〉 e, y − 〈y, e〉 e〉

then using(4.4) we may write

Re [〈x, y〉 − 〈x, e〉 〈e, y〉] = Re [〈x− 〈x, e〉 e, y − 〈y, e〉 e〉](4.5)

≤ 1

4
‖x− 〈x, e〉 e + y − 〈y, e〉 e‖2

=

∥∥∥∥x + y

2
−
〈

x + y

2
, e

〉
· e
∥∥∥∥2

=

∥∥∥∥x + y

2

∥∥∥∥2

−
∣∣∣∣〈x + y

2
, e

〉∣∣∣∣2 .

If we apply Grüss’ inequality in inner product spaces for, say,a = b = x+y
2

, we get

(4.6)

∥∥∥∥x + y

2

∥∥∥∥2

−
∣∣∣∣〈x + y

2
, e

〉∣∣∣∣2 ≤ 1

4
|Γ− γ|2 .

Making use of(4.5) and(4.6) we deduce(4.3) .
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6 S.S. DRAGOMIR

The fact that1
4

is the best possible constant in(4.3) follows by the fact that if in(4.1) we
choosex = y, then it becomesRe 〈Γe− x, x− γe〉 ≥ 0, implying 0 ≤ ‖x‖2 − |〈x, e〉|2 ≤
1
4
|Γ− γ|2 , for which, by Grüss’ inequality in inner product spaces, we know that the constant

1
4

is best possible. �

The following corollary might be of interest if one wanted to evaluate the absolute value of

Re [〈x, y〉 − 〈x, e〉 〈e, y〉] .

Corollary 4.2. Let (H, 〈·, ·〉) be an inner product space overK (K = R,C) ande ∈ H, ‖e‖ =
1. If γ, Γ ∈ K andx, y ∈ H are such that

(4.7) Re

〈
Γe− x± y

2
,
x± y

2
− γe

〉
≥ 0

or, equivalently,

(4.8)

∥∥∥∥x± y

2
− γ + Γ

2
· e
∥∥∥∥ ≤ 1

2
|Γ− γ| ,

then we have the inequality

(4.9) |Re [〈x, y〉 − 〈x, e〉 〈e, y〉]| ≤ 1

4
|Γ− γ|2 .

If the inner product spaceH is real, then(for m, M ∈ R, M > m)

(4.10)

〈
Me− x± y

2
,
x± y

2
−me

〉
≥ 0

or, equivalently,

(4.11)

∥∥∥∥x± y

2
− m + M

2
· e
∥∥∥∥ ≤ 1

2
(M −m) ,

implies

(4.12) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

4
(M −m)2 .

In both inequalities(4.9) and(4.12) , the constant1
4

is best possible.

Proof. We only remark that, if

Re

〈
Γe− x− y

2
,
x− y

2
− γe

〉
≥ 0

holds, then by Theorem 4.1, we get

Re [−〈x, y〉+ 〈x, e〉 〈e, y〉] ≤ 1

4
|Γ− γ|2 ,

showing that

(4.13) Re [〈x, y〉 − 〈x, e〉 〈e, y〉] ≥ −1

4
|Γ− γ|2 .

Making use of(4.3) and(4.13) we deduce the desired result(4.9) . �

Finally, we may state and prove the following dual result as well
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Proposition 4.3.Let(H, 〈·, ·〉) be an inner product space overK (K = R,C) ande ∈ H, ‖e‖ =
1. If ϕ, Φ ∈ K andx, y ∈ H are such that

(4.14) Re
[
(Φ− 〈x, e〉)

(
〈x, e〉 − ϕ

)]
≤ 0,

then we have the inequalities

‖x− 〈x, e〉 e‖ ≤ [Re 〈x− Φe, x− ϕe〉]
1
2(4.15)

≤
√

2

2

[
‖x− Φe‖2 + ‖x− ϕe‖2] 1

2 .

Proof. We know that the following identity holds true(see(3.3))

(4.16) ‖x‖2 − |〈x, e〉|2 = Re
[
(Φ− 〈x, e〉)

(
〈x, e〉 − ϕ

)]
+ Re 〈x− Φe, x− ϕe〉 .

Using the assumption(4.14) and the fact that

‖x‖2 − |〈x, e〉|2 = ‖x− 〈x, e〉 e‖2 ,

by (4.16) we deduce the first inequality in(4.15) .
The second inequality in(4.15) follows by the fact that for anyv, w ∈ H one has

Re 〈w, v〉 ≤ 1

2

(
‖w‖2 + ‖v‖2) .

The proposition is thus proved. �

5. I NTEGRAL I NEQUALITIES

Let (Ω, Σ, µ) be a measure space consisting of a setΩ, aσ−algebra of partsΣ and a countably
additive and positive measureµ onΣ with values inR∪{∞} . Denote byL2 (Ω, K) the Hilbert
space of all real or complex valued functionsf defined onΩ and2−integrable onΩ, i.e.,∫

Ω

|f (s)|2 dµ (s) < ∞.

The following proposition holds

Proposition 5.1. If f, g, h ∈ L2 (Ω, K) andϕ, Φ, γ, Γ ∈ K, are such that
∫

Ω
|h (s)|2 dµ (s) = 1

and ∫
Ω

Re
[
(Φh (s)− f (s))

(
f (s)− ϕh (s)

)]
dµ (s) ≥ 0,(5.1) ∫

Ω

Re
[
(Γh (s)− g (s))

(
g (s)− γh (s)

)]
dµ (s) ≥ 0

or, equivalently (∫
Ω

∣∣∣∣f (s)− Φ + ϕ

2
h (s)

∣∣∣∣2 dµ (s)

) 1
2

≤ 1

2
|Φ− ϕ| ,(5.2)

(∫
Ω

∣∣∣∣g (s)− Γ + γ

2
h (s)

∣∣∣∣2 dµ (s)

) 1
2

≤ 1

2
|Γ− γ| ,
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8 S.S. DRAGOMIR

then we have the following refinement of the Grüss integral inequality

(5.3)

∣∣∣∣∫
Ω

f (s) g (s)dµ (s)−
∫

Ω

f (s) h (s)dµ (s)

∫
Ω

h (s) g (s)dµ (s)

∣∣∣∣
≤ 1

4
|Φ− ϕ| · |Γ− γ| −

[∫
Ω

Re
[
(Φh (s)− f (s))

(
f (s)− ϕh (s)

)]
dµ (s)

×
∫

Ω

Re
[
(Γh (s)− g (s))

(
g (s)− γh (s)

)]
dµ (s)

] 1
2

.

The constant1
4

is best possible.

The proof follows by Theorem 3.1 on choosingH = L2 (Ω, K) with the inner product

〈f, g〉 :=

∫
Ω

f (s) g (s)dµ (s) .

We omit the details.

Remark 5.2. It is obvious that a sufficient condition for(5.1) to hold is

Re
[
(Φh (s)− f (s))

(
f (s)− ϕh (s)

)]
≥ 0,

and

Re
[
(Γh (s)− g (s))

(
g (s)− γh (s)

)]
≥ 0,

for µ−a.e.s ∈ Ω, or equivalently,∣∣∣∣f (s)− Φ + ϕ

2
h (s)

∣∣∣∣ ≤ 1

2
|Φ− ϕ| |h (s)| and∣∣∣∣g (s)− Γ + γ

2
h (s)

∣∣∣∣ ≤ 1

2
|Γ− γ| |h (s)| ,

for µ−a.e.s ∈ Ω.

The following result may be stated as well.

Corollary 5.3. If z, Z, t, T ∈ K, µ (Ω) < ∞ andf, g ∈ L2 (Ω, K) are such that:

Re
[
(Z − f (s))

(
f (s)− z̄

)]
≥ 0,(5.4)

Re
[
(T − g (s))

(
g (s)− t̄

)]
≥ 0 for a.e.s ∈ Ω

or, equivalently ∣∣∣∣f (s)− z + Z

2

∣∣∣∣ ≤ 1

2
|Z − z| ,(5.5) ∣∣∣∣g (s)− t + T

2

∣∣∣∣ ≤ 1

2
|T − t| for a.e.s ∈ Ω
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then we have the inequality

(5.6)

∣∣∣∣ 1

µ (Ω)

∫
Ω

f (s) g (s)dµ (s) − 1

µ (Ω)

∫
Ω

f (s) dµ (s) · 1

µ (Ω)

∫
Ω

g (s)dµ (s)

∣∣∣∣
≤ 1

4
|Z − z| |T − t| − 1

µ (Ω)

[∫
Ω

Re
[
(Z − f (s))

(
f (s)− z̄

)]
dµ (s)

×
∫

Ω

Re
[
(T − g (s))

(
g (s)− t̄

)]
dµ (s)

] 1
2

.

Using Theorem 4.1 we may state the following result as well.

Proposition 5.4. If f, g, h ∈ L2 (Ω, K) andγ, Γ ∈ K are such that
∫

Ω
|h (s)|2 dµ (s) = 1 and

(5.7)
∫

Ω

Re

{[
Γh (s)− f (s) + g (s)

2

]
·

[
f (s) + g (s)

2
− γ̄h̄ (s)

]}
dµ (s) ≥ 0

or, equivalently,

(5.8)

(∫
Ω

∣∣∣∣f (s) + g (s)

2
− γ + Γ

2
h (s)

∣∣∣∣2 dµ (s)

) 1
2

≤ 1

2
|Γ− γ| ,

then we have the inequality

I :=

∫
Ω

Re
[
f (s) g (s)

]
dµ (s)(5.9)

− Re

[∫
Ω

f (s) h (s)dµ (s) ·
∫

Ω

h (s) g (s)dµ (s)

]
≤ 1

4
|Γ− γ|2 .

If (5.7) and (5.8) hold with “± ” instead of “ + ”, then

(5.10) |I| ≤ 1

4
|Γ− γ|2 .

Remark 5.5. It is obvious that a sufficient condition for (5.7) to hold is

(5.11) Re

{[
Γh (s)− f (s) + g (s)

2

]
·

[
f (s) + g (s)

2
− γ̄h̄ (s)

]}
≥ 0

for a.e.s ∈ Ω, or equivalently

(5.12)

∣∣∣∣f (s) + g (s)

2
− γ + Γ

2
h (s)

∣∣∣∣ ≤ 1

2
|Γ− γ| |h (s)| for a.e.s ∈ Ω.

Finally, the following corollary holds.

Corollary 5.6. If Z, z ∈ K, µ (Ω) < ∞ andf, g ∈ L2 (Ω, K) are such that

(5.13) Re

[(
Z − f (s) + g (s)

2

)(
f (s) + g (s)

2
− z

)]
≥ 0 for a.e.s ∈ Ω

or, equivalently

(5.14)

∣∣∣∣f (s) + g (s)

2
− z + Z

2

∣∣∣∣ ≤ 1

2
|Z − z| for a.e.s ∈ Ω,
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then we have the inequality

J :=
1

µ (Ω)

∫
Ω

Re
[
f (s) g (s)

]
dµ (s)

− Re

[
1

µ (Ω)

∫
Ω

f (s) dµ (s) · 1

µ (Ω)

∫
Ω

g (s)dµ (s)

]
≤ 1

4
|Z − z|2 .

If (5.13) and (5.14) hold with “± ” instead of “ + ” , then

(5.15) |J | ≤ 1

4
|Z − z|2 .

Remark 5.7. It is obvious that if one chooses the discrete measure above, then all the inequal-
ities in this section may be written for sequences of real or complex numbers. We omit the
details.
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