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1. INTRODUCTION

In [1], the author has proved the following Griiss type inequality in real or complex inner
product spaces.

Theorem 1.1.Let(H, (-, -)) be an inner product space ovEr(K = R,C) ande € H, |le]| = 1.
If ©,~, P, T are real or complex numbers andy are vectors ind such that the conditions

(1.1) Re (Pe — xz,x — pe) > 0and Re (I'e — y,y — ve) > 0
hold, then we have the inequality

1
1.2) {e,) — (.) (e,9)] < 312 — gl - T =]

The constang is best possible in the sense that it cannot be replaced by a smaller constant.

Some particular cases of interest for integrable functions with real or complex values and the
corresponding discrete versions are listed below.

Corollary 1.2. Letf, g : [a,b] — K (K = R,C) be Lebesgue integrable and such that
13 Re|@-f@) (f@-7)] 20, Re|T=g(@)(s0)-7)] =0
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2 S.S. RAGOMIR

for a.e. x € [a,b], whereyp, v, ®,T" are real or complex numbers arddenotes the complex
conjugate of:. Then we have the inequality

o [ [t [ [t

< | =] T —1~].

e~ =

The constant is best possible.
The discrete case is embodied in

Corollary 1.3. Letx,y €K™ andy, v, ®,I" are real or complex numbers such that

(1.5) Re [(® — ;) (7 —9)] > 0, Re[(I' =) (m —7)] = 0
for eachi € {1,...,n}. Then we have the inequality
(1.6) lix—_lixli— <1‘q)_ ‘.’I‘_ ‘

The constan% is best possible.

For other applications of Theorgm ]L.1, see the recent paper [2].

In the present paper we show that the conditfbr]) may be replaced by an equivalent but
simpler assumption and a new proof of Theofem 1.1 is produced. A refinement of the Griiss
type inequality(L.2) , some companions and applications for integrals are pointed out as well.

2. AN EQUIVALENT ASSUMPTION
The following lemma holds.

Lemma 2.1. Leta, z, A be vectors in the inner product spa#, (-, -)) overK (K = R,C) with
a # A. Then

Re(A—z,x—a) >0
if and only if

Al 1
2 2

Proof. Define

a+ Al

2

1
L =Re(A—z,x—a), I :_ZLHA_aHQ_Hx

A simple calculation shows that
I, = I, = Re[(z,a) + (A, z)] — Re (4,a) — ||z|
and thus, obviouslyl; > 0iff I, > 0, showing the required equivalence. O
The following corollary is obvious
Corollary 2.2. Letx,e € H with ||e|| = 1 andd, A € Kwith§ # A. Then
Re (Ae —x,z — de) >0
if and only if

1
o= 5o < g1a-al.
2 2

J. Inequal. Pure and Appl. Math4(2) Art. 42, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

GRUSS TYPE INEQUALITIES 3

Remark 2.3. If H = C, then
Re[(A—=z)(z—a)] >0
if and only if

1

A
_a+ S§|"4_a|>

2
wherea,z, A € C. If H =R, andA > athena < z < Aifandonlyif [z — ¢34| < 1|4 —q].

X

The following lemma also holds.
Lemma 2.4. Letz, e € H with ||e]| = 1. Then one has the following representation
(2.1) 0 < ||z* — [(x,€)[* = inf [lz — Ae||*.
AeK

Proof. Observe, for any € K, that
(@ = Ae,x — (z,e) ) = |le|* = [{z,e)]" = A[(e,2) = (e, ) [le]”]

Using Schwarz’s inequality, we have

[llll® = [z, e)I’]

g [{x — Xe,x — (x,¢€) e>|2
< Jlz = Ael|* |z — (z,e) ]
= [l = Ael|* [[|=[|* = [(z, ) |"]
giving the bound
(2.2) 1" = [(z, e)|* < [l = Ael|*, A € K.
Taking the infimum in2.2) over A € K, we deduce
a2 = [z, e} < ing [}z = Ae].

Since, for\g = (z,¢) , we get||lz — Ael|” = ||z]|> — |(z,€)|*, then the representatia.1)) is
proved. O

We are able now to provide a different proof for the Griss type inequality in inner product
spaces mentioned in the Introduction, than the one from paper [1].

Theorem 2.5.Let(H, (-, -)) be an inner product space ovEr(K = R,C) ande € H, |le]| = 1.
If p,~, ®, I are real or complex numbers andy are vectors in such that the conditior@
hold, or, equivalently, the following assumptions

e+ 1 v+T 1
2. — e < =D — - cell < =T —
(2.3) v e <gl@—4l. 5ol < 5T
are valid, then one has the inequality
1

The constang is best possible.

Proof. It can be easily shown (see for example the proof of Theorem 1 from [1]) that

(2.5) . y) — {z.e) ()] < [l — (. [yl — 1w, €))7
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foranyz,y € H ande € H, |e| = 1. Using Lemma 24 and the conditioi3)) we obviously
have that

2 213 - go+(I> 1
el = Ko ] = jut o el < o~ 232 o] < S1o -
and
2 2% . v+ T 1
[lyll? = Ky e}’ = inf 1y w_H — | =51

and by((2.5) the desired inequalit{2.4) is obtained.
The fact that}l Is the best possible constant, has been shown in [1] and we omit the details.
O

3. A REFINEMENT OF THE GRUSSINEQUALITY
The following result improving|[1.1)) holds

Theorem 3.1.Let(H, (-, -)) be an inner product space ovEr(K = R,C) ande € H, |le]| = 1.
If ©,~v,®,I" are real or complex numbers and y are vectors inH such that the conditions
(1.1), or, equivalently(2.3|) hold, then we have the inequality

3.1) [(z,y) = (z,€) (e, y)]
< 110 = | T =] = [Re (@e — 2,2 — )]

NI
=

[Re (e —y,y —ve)]
Proof. As in [1], we have

3.2) (2, y) = (z,e) e, ) < [lell® = [z, )] [yl — [y, )],

(33) ol —|(z, &) =Re (@ = (z,¢)) ({z.) — 7)] — Re(@e — 2,2 — pe)
and
@4 yl* = ) =Re (T = (g.e)) ((5.¢) = 7)] — Re (Te =z, = ¢
Using the elementary inequality

4Re (ad) < |a+b*; a,b € K(K =R,C)

we may state that

(35) Re[(®— (z.e)) (T - 7)] < ;12— o
and
(3.6) Re (T~ {y.)) (To.e) —7)] < 710

Consequently, by3.2) — (3.6) we may state that

N[

2 1 2 2
B7) @) = (@.€) (e, ) < | 710 = ¢ = ([Re (@e — 2,2~ ve)]?)
1 2 % 2
= = (IRe ey —et)’].
Finally, using the elementary inequality for positive real numbers

(=) (= ) < (o =)’
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we have
10— ol ([Re e — oz - pellt)]

[0 = (e tre = vy - et |

(NI

1 1\’
< (12 - 11T =21 = Re (e — .2 - o)l Re (L =,y — 2e))
giving the desired inequalit{3.1]) . O
4. SOME COMPANION INEQUALITIES

The following companion of the Griss inequality in inner product spaces holds.

Theorem4.1.Let(H, (-, -)) be aninner product space ovEr(K = R,C) ande € H, |le]| = 1.
If v,I' € Kandz,y € H are such that

(4.2) Re<Fe—x+y,x+y—’ye>20
2 2

or, equivalently,

r+y ~y+T 1
4.2 — ce|ll < = | —
@2 Y-t <51,
then we have the inequality

1

(43) Re((z,y) = {z.¢) {e,y)] < 71T =

The constan§ is best possible in the sense that it cannot be replaced by a smaller constant.

Proof. Start with the well known inequality
1
(4.4) Re (z,u) < Z||z+u||2; z,u € H.

Since
<$,y> - <l’, 6) (e,y) = <$ - <$7 6> €,y — <y7 €> €>
then using(4.4) we may write

(4.5) Re [(z, ) — {3,€) (e )] = Re [(z — {z,€) e,y — (y,€) €)]

<o —(m e ety— el

x+y_<x+y €>.6
2 2 7

52

If we apply Griiss’ inequality in inner product spaces for, gay, b = %ﬂ/, we get
r+vy H2 B

x—l—ye
2 2

Making use off4.5)) and(4.6) we deduce4.3)) .

2

2

2

(4.6)

1 2
< 20— A2,
4\ ol
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The fact that} is the best possible constant ([.3) follows by the fact that if in(4.1]) we
chooser = y, then it become®Re (l'e — z,x — ve) > 0, implying 0 < [|z||* — |(z,e)|> <
;11 IT — ~|*, for which, by Griiss’ inequality in inner product spaces, we know that the constant
1 is best possible. O

The following corollary might be of interest if one wanted to evaluate the absolute value of

Re[(z,y) — (z,¢) (e, )]

Corollary 4.2. Let(H, (-,-)) be an inner product space ovE&r(K = R,C) ande € H, |e| =
1.Ifv,I' e Kandzx,y € H are such that

+ +
(4.7) I%<Fﬂ—x vz y-w>zo
2 2
or, equivalently,
rxxy ~v+T 1
4. — cell< 2D =
@) - e <510,
then we have the inequality
1
(4.9) [Re [(z,5) = {z,€) (e, )] < 710 ="
If the inner product spacé/ is real, then(for m, M € R, M > m)
+ +
(4.10) <Me—x ij y—me>20
2 2
or, equivalently,
rxy m+M 1
4.11 — cell < = (M —
(4.11) 2 7o =M -m),
implies
1
(4.12) [(2.9) = {w,€) (e, )| < 5 (M —m)*

In both inequalities4.9) and (4.12) , the constant is best possible.

Proof. We only remark that, if

Re@b—$_yx_y—w>>0

2 72
holds, then by Theorem 4.1, we get

1
Rﬂ—@w%ﬂ%@@wﬂézw—ﬂa
showing that
1
(4.13) Re [{z,y) — (z.€) (e,y)] > 7|0 ="
Making use of{4.3)) and({4.13)) we deduce the desired res(t9) . O

Finally, we may state and prove the following dual result as well
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Proposition 4.3.Let(H, (-, -)) be an inner product space ov&r(K = R,C) ande € H, |¢|| =
1.If ¢, ® € Kandz,y € H are such that

(4.14) Re [(cp ~ Az, e)) ((x, ey — @)} <0,

then we have the inequalities

(4.15) Iz — (z,€) e]| < [Re (& — Pe, z — pe)|?
\/§ 1
< 5 [l = @el* + fla - pe|*] .

Proof. We know that the following identity holds trusee(3.3))
(418)  llzl* = [{w,e)]* = Re |(@ ~ (,e)) ((,e) = 7) | + Re (z — de,z — e
Using the assumptiofit.14) and the fact that

2 2 2
[2]l” = [z, )" = [l = (z, e) el

by (4.16) we deduce the first inequality {d.15)) .
The second inequality ifyl.15) follows by the fact that for any, w € H one has

1
Re (w,v) < 5 (Ilwl]®+ o))

The proposition is thus proved. O

5. INTEGRAL INEQUALITIES

Let(Q2, X, 1) be a measure space consisting of & 5&to —algebra of part¥ and a countably
additive and positive measugeon X with values inRU {oo} . Denote byL? (2, K) the Hilbert
space of all real or complex valued functiofislefined orf2 and2—integrable o2, i.e.,

J @R < o
The following proposition holds

Proposition 5.1.1f f,g,h € L?(Q,K) andp, ®,~,T € K, are such thaf,, |7 (s)|* du (s) = 1
and

(5.1) / Re [(@h () — £ (5)) (F5) 0 9) ] dos(5) > 0,
/Q Re (T (s) — g (5)) (705~ 75.(9)) ] dos(5) > 0

or, equivalently

52) (/ Fs)~ 5 (s) du(8)> <zle -l
(/Qgcs)—%h(s) du(S)) <3Ir=al,

J. Inequal. Pure and Appl. Math4(2) Art. 42, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

8 S.S. RAGOMIR

then we have the following refinement of the Gruss integral inequality

(5.3)

/Q £ ()9 (3)dp (s) — / F () (8)d (5) / B (s) 9 () (s)

<712 -0 =1 - {/R (@ (s) = £ () (F(5) — 2 (5)) | du(s)

< [ Re[n ()= 96 (51~ 7)) <s>]

The constang is best possible.

The proof follows by Theoref 3.1 on choosifg= L? (2, K) with the inner product

(f.g) = / £ ()9 (&) (s).

We omit the details.

Remark 5.2. It is obvious that a sufficient condition f@s. 1)) to hold is

Re |(@h(s) = £ (s)) (F(5) - 7h(9))] = 0.

and

Re [(Th(s) = g (5)) (9(5) = 32 (5)) | > 0,
for uy—a.e.s € 2, or equivalently,

P+

’f(s)—Th(S) S%@—(pl |h(s)| and
()~ S50 < T =l o,

for y—a.e.s € Q.
The following result may be stated as well.

Corollary 5.3. If 2, Z,t, T € K, n(Q) < oo and f, g € L? (2, K) are such that:

(5.4) Re[(Z = f(s) (F(5)-2)] =0,

Re [(T—g(s)) (W—tﬂ >0 fora.e.s €

or, equivalently

z+ 7 1
(5.5) ‘f(s)— : ‘sgw—z\,
T 1
‘9(8)——t; §§|T—t| fora.e.s € Q
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then we have the inequality

69 |- [ 70700 - o [ @) o [ GG

<1Z-Am =t - o | [ Re[(z - 1 9) (G- 2)] (o

« /QRe (099 (56— 1)] du(s)r.

Using Theorem 4]1 we may state the following result as well.
Proposition 5.4.If f,g,h € L? (Q,K) andv,I" € K are such thatf,, | (s )P du(s) =1 and

(5.7) /QRe{[rh(s)— f(5>;g(8)] RHOEYIO] —’yh(s)]}du(s) >0

2
or, equivalently,

59) ( Ji

then we have the inequality

(5.9) I:= /QRe [f (s)g 3)] dp(s)

—Re[/gf(s)h s)d

1
< 1 T =
If (6.7) and [(5.8) hold with “+ " instead of “ 4 ", then

f(8)+g(s) y+T
2 2

1
(5.10) [ < S0 =o

Remark 5.5. It is obvious that a sufficient condition fdr (5.7) to hold is
(5.11) Re{{l”h (s) — f(s) +9(5)} : [f(s) +9(5) — Fh(s) } >0

2 2
1
h(s)‘ < 3 I —~||h(s)| fora.e.s e .

for a.e.s € (), or equivalently

f(s)+g(s) a+T
2 2

Finally, the following corollary holds.
Corollary 5.6. If Z,z € K, u () < oo and f, g € L? (2, K) are such that

(Z—f(s)+g(s)) <m+m—z>] >0 fora.e.s €

(5.12)

5.13
(513)  Re 5 5

or, equivalently

1
(5.14) < 3 |Z — z| fora.e.s €,
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then we have the inequality

J = %Q)/QRe [f(s)g_s)} du(s)

(€2) Ja (2
siw—d?
If (5.13) and [(5.14) hold with “+ " instead of “ 4+ ", then
(5.15) 1J| < i|Z—z!2.

Remark 5.7. It is obvious that if one chooses the discrete measure above, then all the inequal-
ities in this section may be written for sequences of real or complex numbers. We omit the
details.
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